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Equal-norm tight frames have been shown to be useful for robust data
transmission. The losses in the network are modeled as erasures of trans-
mitted frame coefficients. We give the first systematic study of the general
class of equal-norm tight frames and their properties. We search for ef-
ficient constructions of such frames. We show that the only equal-norm
tight frames with the group structure and one or two generators are the
generalized harmonic frames. Finally, we give a complete classification of

frames in terms of their robustness to erasures.

1. INTRODUCTION

Frames are redundant sets of vectors in a Hilbert space which yield one natural
representation for each vector in the space, but which may have infinitely many
different representations for a given vector [4, 5, 6, 7, 8, 9, 10, 11, 16, 18, 20, 23].
Frames have been used in signal processing because of their resilience to additive
noise [10], resilience to quantization [14], as well as their numerical stability of
reconstruction [10], and greater freedom to capture signal characteristics [2, 3]. Re-
cently, several new applications for (equal-norm tight) frames have been developed.
The first, developed by Goyal, Kovacevi¢ and Vetterli [15, 25, 24, 27], uses the
redundancy of a frame to mitigate the effect of losses in packet-based communica-
tion systems. Modern communication networks transport packets of data from a
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source to a recipient. These packets are sequences of information bits of a certain
length surrounded by error-control, addressing, and timing information that assure
that the packet is delivered without errors. This is accomplished by not delivering
the packet if it contains errors. Failures here are due primarily to buffer overflows
at intermediate nodes in the network. So to most users, the behavior of a packet
network is not characterized by random loss, but by unpredictable transport time.
This is due to a protocol, invisible to the user, that retransmits lost packets. Re-
transmission of packets takes much longer than the original transmission. In many
applications, retransmission of lost packets is not feasible and the potential for large
delay is unacceptable.

If a lost packet is independent of the other transmitted data, then the information
is truly lost to the receiver. However, if there are dependencies between transmitted
packets, one could have partial or complete recovery despite losses. This leads us
naturally to use frames for encoding. The question, however, is: What are the best
frames for this purpose? With an additive noise model for quantization, in [25], the
authors show that an equal-norm frame minimizes mean-squared error if and only
if it is tight. So it is this class of frames - the equal-norm Parseval tight frames -
which we seek to identify and study.

Another recent important application of equal-norm Parseval tight frames is in
multiple-antenna code design [17]. Much theoretical work has been done to show
that communication systems which employ multiple antennas can have very high
channel capacities [13, 21]. These methods rely on the assumption that the receiver
knows the complex-valued Rayleigh fading coefficients. To remove this assumption,
in [19] new classes of unitary space-time signals are proposed. If we have N trans-
mitting antennas and we transmit in blocks of M time samples (over which the
fading coefficients are approximately constant), then a constellation of K unitary
space-time signals is a (weighted by /M) collection of M x N complex matrices
{®} for which ®;®; = I. The nth column of any ®; contains the signal trans-
mitted on antenna n as a function of time. The only structure required in general
is the time-orthogonality of the signals.

Originally it was believed that designing such constellations was a too cumber-
some and difficult optimization problem for practice. However, in [19], it was shown
that constellations arising in a “systematic” fashion can be done with relatively
little effort. Systematic here means that we need to design high-rate space-time
constellations with low encoding and decoding complexity. It is known that full
transmitter diversity (that is, where the constellation is a set of unitary matrices
whose differences have nonzero determinant) is a desirable property for good per-
formance. In a tour-de-force, in [17], the authors used fixed-point-free groups and
their representations to design high-rate constellations with full diversity. More-
over, they classified all full-diversity constellations that form a group, for all rates
and numbers of transmitting antennas.

For these applications, and a host of other applications in signal processing, it
has become important that we understand the class of equal-norm Parseval tight
frames. In this paper, we make the first systematic study of such frames. In Sec-
tion 2 we review basic notions on frames. In particular, we state the Naimark’s
Theorem [1] which has been rediscovered several times in recent years [16, 12] al-
though it has been used for several decades in operator theory. We give examples
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of equal-norm Parseval tight frames such as harmonic and Gabor frames. For har-
monic frames, we define a more general class — general harmonic frames (GHF) —
and study when harmonic frames are equivalent to each other and general harmonic
frames. In Proposition 2.5, we give a simple equivalence condition on general har-
monic frames which states that the inner product between any two frame vectors
¢; and ¢; in a GHF is equal to the inner product between ;11 and ¢j41. Sec-
tion 3 concentrates on equal-norm tight frames (ENTF). We start with a review
in Section 3.1 and proceed with several ways of classifying ENTFs including pro-
viding a correspondence between subspaces of the original space and the ENTFs,
obtaining ENTFs as alternate dual frames for a given frame as well as finding
ENTFs through frames equivalent to them. In Section 4, we shift our attention
to ENTFs with group structure. We show that the ENPTFs generated by the set
{U*@o}aL," (where U is unitary and ¢y € H) are precisely the GHFs. We then
extend our discussion to ENPTFs generated by {U¥V7p,} and higher numbers of
generators. Finally, Section 5 introduces erasures modeled as losses of transform
coefficients (f, ¢;), where f is the signal to be transmitted and {¢;}ics is a set of
frames vectors corresponding to erased transform coefficients. We give a complete
classification of frames with respect to their robustness to erasures. We study when
we can obtain frames robust to a certain number of erasures as a projection from
another frame with a different number of erasures.

2. FRAME REVIEW
A set of vectors ® = {p;};er in a Hilbert space Hj is called a frame if

0 < Allzl> < Y Kz, < Bllz|* < 400, z#0, (2.1)
icl
where [ is the index set and the constants A, B are called frame bounds. Although
many of our results hold in more general settings, in this paper, we concentrate
mostly on the N-dimensional real or complex Hilbert spaces RN and CV (which
we denote Hpy ) with the usual Euclidean inner product. When results generalize
to the infinite-dimensional setting, we will point it out.

When A = B the frame is tight (TF). If A = B = 1, the frame is Parseval tight
(PTF). A frame is equal-norm (ENF) if all its elements have the same norm c,
llpill = ¢. When ¢ = 1, the frame is called unit-norm (UNF). For an equal-norm
tight frame (ENTF), the frame bound A gives the redundancy ratio. A UNPTF,
that is, an ENPTF with norm-1 vectors is an orthonormal basis (ONB).

2.1. A Digression: Notation Battle

When Vivek Goyal and Jelena Kovacevié started working on frames in multiple
description systems [26], they called the frames where all the frame vectors were
of norm 1 — normalized frames. As they went through the more mathematically-
oriented frame literature, they realized that the term “normalized” was used by
many frame researchers, most notably Han and Larson [16], to denote tight frames
with a frame bound equal to 1. Consequently, bowing to the frame authorities,
Vivek and Jelena changed their notation from “normalized” to “uniform” and re-
served the term “normalized” for tight frames with a frame bound equal to 1. This
switch shows the ambiguity in notation which has arisen thanks to the two camps.



4 CASAZZA AND KOVACEVIC

At the DIMACS Workshop on Source Coding and Harmonic Analysis, at Rutgers,
NJ, in May of 2002, the self-elected “Frame Nomenclature Standardization Com-
mittee” consisting of Matt Fickus, John Benedetto, Radu Balan, Carlos Cabrelli,
Pete Casazza and Jelena Kovacevié, agreed to solve this problem as follows:

1. Equal-norm frame (ENF): Frame where all the elements have the same norm,
lemll = llenll, for all m and n.

2. Unit-norm frame (UNF): Frame where all the elements have norm 1, ||¢n|| =
1, for all m.

3. A-tight frame (A-TF): Tight frame with frame bound A.

4. Parseval tight frame (PTF): Tight frame with frame bound A = 1. This could
also be denoted as a 1-tight frame. The motivation for this name comes from the
Parseval’s equality, best known in Fourier analysis, which states that the norm of
the signal we are considering is equal to the norm of the signal in the “transformed
domain”.

This diplomatic solution was agreeable to everyone and thus we decided to adopt
it. Whether it will be followed, remains to be seen.

2.2. Back to Frames
The analysis frame operator' F maps the Hilbert space H into f2(I)

(Fz)i = (pi,x), (2)

for i € I. When H = Hy, the analysis frame operator is an M x N matrix whose
rows are the transposed frame vectors ¢j:

pii o PN
F = : .. : . (3)
O PuN
We say that two frames {p;}icr and {¢;}icr for H are equivalent if there is an
invertible operator L on H for which Lp; = ; for all i € I, and they are unitarily
equivalent if L can be chosen to be a unitary operator. If {¢;}ics is a frame with
frame bounds A, B, and if P is an orthogonal projection on H, then by (2.1) we
have that {Py;}icr is a frame for PH with frame bounds A and B. In particular,
if {p;}ier is a Parseval tight frame for H (for example, if it is an orthonormal basis
for H), then {Py;}icr is a Parseval tight frame for PH.
The following theorem tells us that every Parseval tight frame can be realized as
a projection of an orthonormal basis from a larger space. It serves as a converse to
the observation above that orthogonal projections of Parseval tight frames produce
Parseval tight frames for their span.

TueoreM 2.1 (Naimark [1], Han & Larson [16]). 2 A set {;}ier in a Hilbert
space H is a Parseval tight frame for H if and only if there is a larger Hilbert space

L F is sometimes called just frame operator. Here, we use analysis frame operator for F', synthesis
frame operator for F* and frame operator for F*F'.

2This theorem has been rediscovered by several people in recent years: The second author first
heard it from I. Daubechies in the mid-90’s. Han and Larson rediscovered it in [16]; they came up
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H C K and an orthonormal basis {e;}ic1 for K so that the orthogonal projection P
of K onto H satisfies: Pe; = @;, for all i € I.

Let us now go through certain important frame notions. Using the analysis frame
operator F, (2.1) can be rewritten as

Al < F*F < BI. (4)

We call S = F*F the frame operator. It follows that S is invertible (Lemma 3.2.2
in [10]), and furthermore

B < §7!' < A7l (5)

It follows that {y;}icr is a Parseval tight frame if and only if F is an isometry.
Also, S is a positive self-adjoint invertible operator on H and S = AI if and only
if the frame is tight. In finite dimensions, the canonical dual frame of ® is a frame
defined as ® = {@;} M, = {S~¢;} M, where

G = Sy, (6)
fork=1,---,M. Now,

f= Z(f,571¢i><pi, forall f € H.

icl

So the canonical dual frame can be used to reconstruct the elements of H from
the frame. However, there may be other sequences in H which give reconstruction.
This formula points out both the strengths and weaknesses of frames. First, we
see that every element f € H has at least one natural series representation in
terms of the frame elements. Also, this element may have infinitely many other
representations. However, in order to find this natural representation of f, we
need to invert the frame operator, which may be difficult or even impossible in
practice. The best frames then are clearly the tight frames since in this case the
frame operator becomes a multiple of the identity.

Noting that ¢f = ¢fS~! and stacking ¢}, @5, --+, P, in a matrix, the frame
operator associated with ® is

F = FS™% (7)

Since F*F = S~', (5) shows that B~! and A~' are frame bounds for &.
Another important concept is that of a pseudo-inverse F'. It is the analysis
frame operator associated with the dual frame,

Ft = F*. (8)

with the idea that a frame could be obtained by compressing a basis in a larger space and that
the process is reversible (the statement in this paper is due to Han and Larson). Finally, it was
pointed out to the second author by E. Soljanin [22] that this is, in fact, the Naimark’s theorem,
which has been widely known in operator theory and has been used in quantum theory.
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Note that for any matrix F' with rows ¢}

M
S = F'F = o). 9)
=1

This identity will prove to be useful in many proofs.
Another interesting fact is that {S~/?;} is a Parseval tight frame for any frame
{pi}. Thus, every frame is equivalent to a Parseval tight frame.

2.3. The Role of Eigenvalues
The product S = F*F will appear everywhere and its eigenstructure will play an
important role. Denote by Ag’s the eigenvalues of S = F*F. We now summarize
the important eigenvalue properties.

General Frame. For any frame in Hy, the sum of the eigenvalues of S = F*F,
equals the sum of the lengths of the frame vectors:

N M
S = Y lleilP. (10)

Equal-Norm Frame. For an equal-norm frame, that is, when ||pi|| = ¢, i =
1,---, M,

N M
> Z loill* = M- (11)

k=1

Tight Frame. Since tightness means A = B, for a TF, we have from (2.1)

M

YU eal® = AlfIP, (12)

i=1
for all f € Hy. Moreover, according to (5), a frame is a TF if and only if
F*F = A-Iy. (13)

Thus, for a TF, all the eigenvalues of the frame operator S = F*F' are equal to A.
Then, using (10), the sum of the eigenvalues of S = F*F is as follows:

M
N-A =N = el (14)
i=1

k=1

Parseval Tight Frame. 1If a frame is a PTF, that is, A = B =1, then

M

Yol = AP, (15)

i=1
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for all f € Hiy. In operator notation, a frame is a PTF if and only if
S = F'F = Iy. (16)

For a PTF, all the eigenvalues of S = F*F are equal to 1.
Then, using (10), the sum of the eigenvalues of S = F*F is as follows:

N M
N =3 =) llail (17)
k=1 i=1
Equal-Norm Tight Frame. From (11) and (14), we see that
N M
N-A=> XN = leall> = M - (18)
k=1 i=1
Then, from (12) and (18),
M
M
S f el = eI (19)

i=1
for all f € Hy. The redundancy ratio is then

M
A = W'C2. (20)

Since S = F*F = (M/N)I, the following is obvious:
M
M
k? = . 21
; lpik| N (21)

Equal-Norm Parseval Tight Frame. If a frame is an ENPTF, that is, we also
ask for A = B =1, and if the frame vectors have norm ¢, then

N M
No=3 % = lleill® = M
k=1 i=1

Thus, an UNPTF, that is, when ¢ = 1, is an orthonormal basis.
The following proposition describes unitary equivalence for ENPTFs.

PROPOSITION 2.1. If{pr} is a frame for H with the frame operator S, and T is
an invertible operator on H, then TST* is the frame operator for the frame {T¢y}.
In particular, if {1} is an ENPTF then every frame unitarily equivalent to {py}
is also a ENPTF.

Proof (Proposition 2.1). Let L be the frame operator for {Tp}. For any f € H
we have:

Lf =) (f,Toe)Ter = T(Z(T*f,sokxok) = T[S(T")f].

k k
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2.4. Examples of Equal-Norm Parseval Tight Frames
We start with a simple example of a frame; three vectors in two dimensions. The
particular frame we examine is termed Mercedes-Benz (MB) frame (for obvious
reasons, just draw the vectors). The ENPTF version of it is given by the analysis
frame operator

0 1
F = \ﬁ —/3/2 —1/2|. (22)
3 V3/2  —1/2

This is obviously an ENPTF since (2/3)F*F = I. We could make this frame just
an ENTF with norm 1 (as in [25]) by having the analysis frame operator be simply
F.

We now review two general classes of equal-norm tight frames which are com-
monly used. The (general) harmonic frames and the tight Gabor frames. More
general classes of equal-norm tight frames are the full-diversity constellations that
form a group given in [17].

2.5. Harmonic Frames
Harmonic tight frames (HTF) are obtained by keeping the first N coordinates of
an M x M discrete Fourier transform basis as in Naimark’s Theorem 2.1. They
have been proven to be useful in applications [19].
An HTF is given by:

1 k k k

Pr = \/—M(wl)wé"')wN% (23)

for k = 0,---,M — 1, where w; are distinct Mth roots of unity.> This is thus a
PTF, that is, F*F = I. A more general definition of the harmonic frame (general
harmonic frame) is as follows:

DEFINITION 2.1 Fix M > N, |e] = 1 and {b;}[; with [bi] = = Let {c;}i,
be distinct Mth roots of ¢, and for 0 < k < M — 1, let
or = (Kb, ckby, -, cKbn).
Then {py}22,! is an equal-norm Parseval tight frame for Hy. Any frame unitarily
equivalent to one of these is called a general harmonic frame (GHF).

We will now examine the general harmonic frames in detail. Our goal is to
determine their relationship to HTFs. We start by showing that the harmonic
frames (not GHF's) are unique up to a permutation of the orthonormal basis (that
is, if and only if their columns are permutations of each other).

PROPOSITION 2.2.  Let {pp}alst and {1 }22,' be harmonic frames on Hy .
Then {py 2Lyt is equivalent to {4 }alyt if and only if there is a permutation o of

3Note that in the engineering literature, the normalization is 1/v/N.
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{1,2,---, N} so that or; = po(j), for all0 <k < M—1andall1 < j < N. Hence,
two harmonic frames are equivalent if and only if they are unitarily equivalent.

Proof (Proposition 2.2). Let {e; }5\!:1 be the natural orthonormal basis for Hy
and

N
_ ko, .k kY _ k.
or = (wi,wy -, wy) = E:wje],
i=1
and
N
_ ko k kY _ k
Y = (v17U27"'va) - E :Uje]"
i=1

where w;,v; are sets of distinct Mth roots of unity. If
{wjl]l <j <N} # {y;1 <j< N},

then, without loss of generality, we may assume that v; ¢ {w;|l1 < j < N}
Therefore,

M—1 N /M-1 N
Zﬁ’fg@k = Z(Z(ﬁlw]) )e] = ZO ej =0
k=0 j=1 k=0 j=1
On the other hand,
M-1 M—1
de(l) = 3 A = A
k=0 k=0

It follows that {py }ri,! is not equivalent to {14 }o-,'. The other direction is imme-

diate. M

We now show that every general harmonic frame is unitarily equivalent to a
simple variation of a harmonic frame.

PROPOSITION 2.3. FEwery general harmonic frame is unitarily equivalent to a
frame of the form {ckwk}i\/‘;l, where |c| =1 and {wk}kM:f)l is a harmonic frame.

Proof (Proposition 2.3). Let M > N, |¢| =1 and |bg| = 1/VM, forall 1 <k <
N. Let {c; }5\!:1 be distinct Mth roots of ¢ and consider the GHF,

Pr = (cllcbl)cgb% T ;CjchN)v

forall0 < k< M—1. If ¢ = €, let d = /M. Then there exist distinct Mth
roots of unity wi,ws---,wy with ¢; = ew/ij = dw;. For all sets of complex
numbers {ay,}+2;" we have:

[

N M-1 N M-

M—-1
I arl? = 1Y weknl? = 2301wl =
k=0

j=1 k=0 j=1 k=0
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N Mo
Y we M = L Z ard gy I,
j=1 k=0
where ¥, = (w{“,wg, ---,wk). Thus, the GHF {cpk}iv[:f)l is unitarily equivalent to

\/—{Mh oL with {¢} 05! an HTF. m

Finally, we show that the frames given in Proposition 2.3 are not unitarily equiv-
alent to each other or to harmonic frames except in the trivial case.

PROPOSITION 2.4. Let {pp}20" and {4} 25" be harmonic frames and let |c| =
1. Then {ckgok}kM:BI is equivalent to {¢k}£i51 if and only if ¢ is an Mth root of
unity and there is a permutation o of {1,2,---,N} so that pr; = Ve, for all
0<k<M-—1andall<j < N. In particular, a general harmonic frame is
unitarily equivalent to a harmonic tight frame if and only if it equals a harmonic
tight frame.

Proof (Proposition 2.4). Let ¢ = Z;V:1 w;-“ej, foral0 <k < M-1.Ifc= w;l,

for some j, we are done. Otherwise, since 22/1251 Y = 0, if {cFpr} is equivalent to
{1bx} then also S0 " b = 0. Hence, for all 1 < j < N we have

M—1 M—1
: 1 — (cw;)™
k, k k j
c"w? = cw;)t = ———2 = (.
Z J (cw;) 1 — cw;
k=0 k=0
ANM _ M, M _ _
Hence, (cw;)" = cMw;" = c 1. The proposition now follows from Proposi-

tion 2.2. W

We now have immediately,

COROLLARY 2.1. Let {¢p}nryt and {i}oly" be harmonic frames and let |c| =
|d| = 1. The frames {cor} 2yt and {di} 2, are equivalent if and only if ¢ = d
and there is a permutation o of {1,2,---,N} so that prj = Ype(j), for all 0 <k <
M —1.

The next proposition gives a classification of GHFs.

PROPOSITION 2.5. A set {(pi}f\ial in Hy is a GHF if and only if for all 0 <
1,7 < M — 1 we have

(i, 5) = (Pit1,Pj+1),

where ppr = o .-

Proof. Note that {p; f\igl satisfies the equality in the proposition if and only if
{chi}f\igl satisfies it for every unitary operator V' on Hpy . So, by Proposition 4.1,
we may assume our GHF is of the form {Uigag}i]\ial where U is a unitary operator
on Hy . Hence, for all 0 <i,7 < M — 1 we have

(Pir1, pj+1) = (U0, U o) = (Ulpo, Ulgo) = (i, 05)-
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Conversely, given our equality, for any sequence of scalars {ai}ij\ial,

M-1
I Z aipir1|]? = Z AiPi+1, Z @iPit1)
i=0
-1
= Y aid(pii1,pia1) = Z aiT; (i, ;)
t,j=0 i,j=0
-1 M-

= a;Pi, aipi) = || Z ai‘Pi”z-

i=0

is

=

1§
<)

i

It follows that Uy; = ;41 is a unitary operator and Ulpy = ¢;, forall 0 < i < M —
1. m

As we will see in the next section, ENTFs with M = N + 1 are all unitarily
equivalent. Thus, as a direct consequence of Theorem 3.3, any ENTF with M =
N + 1 is unitarily equivalent to the HTF with M = N + 1. This is a very useful
result since we have HTFs for any N and M; thus, for M = N + 1, we always
have an expression for all ENTFs. For example, this means that the MB frame we
introduced earlier is equivalent to the HTF with M =3 and N = 2.

Another interesting property of an HTF is that it is the only ENPTF such that
its elements are generated by a group of unitary operators with one generator, as
we will see in Section 4. That is, ® = {¢;}}, = {Ulpo},, where U is a unitary
operator.

Moreover, HTFs have a very convenient property when it comes to erasures. We
can erase any e < (M — N) elements from the original frame and what is left is still
a frame (Theorem 4.2 from [25]). We provide a complete classification of frames in
terms of their robustness to erasures in Section 5.

2.6. Gabor or Weyl-Heisenberg Frames
For the other general class of frames, we introduce two special operators on Ly (RR).
Fix 0 < a,b and for f € Ly(R) define translation by a as

Taf(t) = f(t - a):
and modulation by b as

Eyf(t) = e f(1).

Now, fix g € Ly(R). If {EpmpThag}mnez is a frame for Ly (R), we call it a Gabor
frame (or a Weyl-Heisenberg frame). It is clear that in this class the frames are
equal-norm. Also, since the frame operator S for a Gabor frame {EpT0ag}m, nez
must commute with translation and modulation, each Gabor frame is equivalent
to the (equal-norm) Parseval tight Gabor frame {E.sTy0S™"?g}m nez. For an
introduction to Gabor frames we refer the reader to [7] and [18].
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3. EQUAL-NORM TIGHT FRAMES
3.1. What is Known about ENTFs?

As we have mentioned in the introduction, ENTFs have become popular in appli-
cations. In particular, in [25], the authors attack the problem of robust transmission
over the Internet by using frames. Being redundant sets of vectors, they provide
robustness to losses, which are modeled as erasures of certain frame coefficients. It
is further shown in [25] that, assuming a particular quantization model, an equal-
norm frame with quantized coefficients, minimizes mean-squared error if and only
if it is tight. Moreover, the same is true when we consider one erasure and look at
both the average- and worst-case MSE.

As a result, our aim is to construct useful sets of frames for such applications.
To that end, it is important to classify equal-norm Parseval tight frames in order
to facilitate the search for useful sets.

Our notion of usefulness includes any sets which would be computationally effi-
cient; for example, those that can be obtained from one or more generating vectors
or those with a simple structure, for example, such that any of the frame operators
could be expressed as a product of sparse matrices.

Finally, we are interested in the robustness of our frames to coefficient (frame
vector) erasures. These and other issues will be explored in the rest of the paper.

3.1.1.  Construction of ENTF's

There is a general well known method for getting finite ENTFs. We state this
result here in its standard form and will give a new proof of the result in Section 5.
In Section 5 we will also extend this result to equal-norm frames.

THEOREM 3.1. There is a unique way to get ENTFs with M elements in Hy .
Take any orthonormal set {wk}fcvzl in Hps which has the property

N
N

Z|’wki|2 = for all 3.

k=1

Thinking of the wy, as row vectors, switch to the M column vectors and divide by
VN/M. That is, our ENTF {p;}}, is

D>
Y = N 2 Wki€k,

where {e;}_, is an orthonormal basis for Hy. Then ||¢il|> = 1. This set is a
equal-norm tight frame for Hy; with M elements, and all ENTFs for Hy with M
elements are obtained in this way.

There is a detailed discussion concerning the unit-norm tight frames for R? in
[25]. In [17], there is a deep classification of groups of unitary operators which
generate unit-norm tight frames. The simplest case of this is the harmonic frames.
In Section 4 we do not assume that we have a “group” of unitaries, but instead
conclude that our set of unitaries must be a group.

The picture becomes much more complicated if the unit-norm tight frame is
generated by a group of unitaries with more than one generator (see [17]) or worse,
if the equal-norm tight frame comes from a subset of the elements of such a group.
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3.1.2.  Classification of ENTFs

Although we would like to classify all equal-norm tight frames, especially those
which can be obtained by reasonable algorithms, this is an impossible task in gen-
eral. The following theorem shows that every finite set of norm-1 vectors in a
Hilbert space can be extended to become an equal-norm tight frame.

THEOREM 3.2. If {(pi}f\il is a set of norm-1 vectors in a Hilbert space H, then
there is a unit-norm tight frame for H which contains the set {p;}M,.

Proof (Theorem 3.2). For each 1 < i < M choose an orthonormal basis {e;;};cs
for H which contains the vector ¢;. Now the set {e;; }}; ;¢
vectors and for any f € H we have

M M
Yo Kfed = DOIAP = MIfIP
i=1

i=1jeJ

7 is made up of norm-1

In the above construction we get as a tight frame bound the number of elements
M in the set {p;}M,. In general, this is the best possible. For example, just let
;i = ¢; be norm-1 vectors for all 1 <4,j < M. Then

M

> leinwp)lP = M.

j=1

Hence, any tight frame containing the set {y;} has the tight frame bound at least
M.

There is another general class of equal-norm tight frames (see [25]). The result
below tells us that all ENPTFs with M = N + 1 are unitarily equivalent. It is a
direct consequence of Theorem 2.6 from [25] where it is stated for UNTFs.

THEOREM 3.3 (Goyal, Kovacevi¢ and Kelner [25]). A set {@;} N4 is an equal-
norm Parseval tight frame for Hy if and only if {(pl}fiﬁl is unitarily equivalent
to the frame {Pe;}N" where {e;}\+" is an orthonormal basis for Hyy, and P
is the orthogonal projection of Hiny1 onto the orthogonal complement of the one-

dimensional subspace of Hyy1 spanned by Ef:{l €.

Since there are HTFs with N + 1 elements in Hy, it follows that every ENPTF
for Hy with N 4 1 elements is unitarily equivalent to an HTF.

3.2. Parseval and Equal-Norm Tight Frames and Subspaces of the
Hilbert Space

Here, we begin to classify PTFs and ENPTFs by providing a correspondence
with subspaces of the original Hilbert space. We give two results, one for PTFs and
another for ENPTFs. Note that these results hold for equivalence classes of PTFs
and ENPTFs. The material in this section grew out of conversations between the
first author and V. Paulsen.

As we saw in Theorem 2.1, there is a unique way to get Parseval tight frames
in Hy with M elements. Namely, we take an orthonormal basis {ei}ij‘il for Hy,
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and take the orthogonal projection Py, of Hys onto Hy. Then {Py,e;}M, is a
Parseval tight frame for Hy with M elements. In particular, there is a natural
correspondence between the Parseval tight frames for Hy with M elements and the
orthonormal bases for Hjys. Then, the equal-norm Parseval tight frames for Hy are
the ones for which ||Pe;|| = ||Pejl|, for all 1 <i,j < M. We use this to exhibit a
natural correspondence between these sets and certain subspaces of Hy,;. Here we
treat two frames as the same if they are unitarily equivalent.

THEOREM 3.4. Let P be a rank-N orthogonal projection on Hyr and let {e;}},
be an orthonormal basis for Hys. There is a natural one-to-one correspondence
between the equivalence classes of Parseval tight frames for PHys with M elements
and the set of all N-dimensional subspaces of Hys .

Proof (Theorem 3.4). If {p;}M, is any Parseval tight frame for PH),, then by
Naimark’s Theorem, there is an orthonormal basis {e;}, for Hy; so that Pe; = ;.
Define a unitary operator U on Hy; by Ue; = e;. Now, ¢; = PUe; which is uni-
tarily equivalent to ap; = U*PUe;. So we will associate our Parseval tight frame
{@i} with the subspace U*PUH,,. Now we need to check that this correspon-
dence is one-to-one. Let {¢;} be another Parseval tight frame for PH,; which is
associated with the same subspace of Hys, namely U* PUH);. Then there is an
orthonormal basis {e; } and a unitary operator Ve; = e; with V*PV = U*PU
and PVe; = e;l. Hence, V*PVe; = V*; = U*PUe; = U*p;. This implies
that the Parseval tight frames {p;} and {¢;} are unitarily equivalent (and hence
the same). Finally, we need to see that this correspondence covers all subspaces.
If W is any subspace of Hy; of dimension N, we can define a unitary opera-
tor U on Hjys so that UW = PH,;. Then U*PU = Py while {PUei}i]\i1 is a

Parseval tight frame for PHj,; (which under our association corresponds to W). H

One of the consequences of the above result is that if we have one Parseval tight
frame for Hy, then all the others can be obtained from it by this process. We now
turn our attention to equal-norm frames:

THEOREM 3.5. Fiz an orthonormal basis {e;}}, for Hy so that if P is the
orthogonal projection of Hy onto Hy then {Pe;}M, is an equal-norm Parseval
tight frame for Hy . Then there is a natural one-to-one correspondence between the
equivalence classes of equal-norm Parseval tight frames for Hy with M elements
and the subspaces W of Has for which ||Pwe;||* = M/N, for all 1 <i < M.

Proof (Theorem 3.5). We already have our classification of the Parseval tight
frames in terms of all subspaces. Now we need to see which of these subspaces
correspond to the equal-norm Parseval tight frames. Suppose U is any unitary
operator on H so that {PUe;} is an equal-norm Parseval tight frame for PHyy,.
Then this frame is associated to the subspace W = U*PH),; and Py = U*PU.
Hence, PUe; = U Pwe;, for all i. But, {PUe;} is a equal-norm Parseval tight frame
for PHj; and so ||PUe;|| = N/M, for all i. Hence,

N
|PUei|| = V- IUPwei|l = [Pweill.
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So our association between Parseval tight frames and subspaces given in Theo-
rem 3.4 identifies the subspaces W of Hys for which ||Pwe;|| = N/M, for alli. ®

3.3. Equal-Norm Dual Frames
Another method for classifying ENTFs uses a back door: get ENTF's as alternate
dual frames for a given frame. To do this, we need the definition of alternate dual
frames:

DEFINITION 3.1. Let {¢; }ier be a frame for a Hilbert space H. A set {t;}icr is
called an alternate dual frame for {p;}icr if

f= Z(fa¢i>¢i, for all f € H.

i€l

In Definition 3.1, if we let Fy (respectively, F») be the analysis frame operators
for {p;} (respectively {¢;}), then we see that Fy F} = I.

There are many alternate dual frames for a given frame. In fact, a frame has a
unique alternate dual frame (the canonical dual frame) if and only if it is a Riesz
basis [16]. Moreover, no two distinct alternate dual frames for a given frame are
equivalent [16]. For a Parseval tight frame, its canonical dual frame is the frame
itself since F = FS~' = F - I = F. Moreover,

PROPOSITION 3.1. If {pi}icr is a Parseval tight frame for Hy, then the only
Parseval tight alternate dual frame for {p;}icr is {pi}icr itself.

Proof (Proposition 3.1). Let F; be the analysis frame operator for {y;};cr. Let
{ti }icr be any Parseval tight alternate dual frame for {p;};c; with analysis frame
operator Fy. It follows that Fi, F5 are isometries. Now,

Fy(F, - F,) = F;F, —F;F, = I—-1 = 0.
Hence, for every f,g € H we have
(Fog,(Fr — F)f) = (9, F5(Fi — F2)f) = (9,0) = 0.

Since {¢; }ier is a PTF, for every f € H we have

M
AP = D Kl = RSP (24)
i=1
We can further expand this as
IEFIP = [[(F £ B fIP
= IBAIP + (R = B)IP + (F (R — o), f) + (F5 (F = Fo)f, )"

0 0
However, since F3 corresponds to a PTF as well,

1A+ 1(Fy = B) I = 117 + 1P = F2) £ (25)
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Equating (24) and (25), we get
I(Fy = Ex)fII = 0.

Hence, F} = F; and so p; = ¢;, forallieI. ®
If we ask for the dual frame just to be tight, but not Parseval, then:

PROPOSITION 3.2. If {¢;}M, is a Parseval tight frame for Hy and M < 2N,
then the only tight dual frame for {p;}M, is {p:i}M, itself. If M > 2N then there
are infinitely many (nonequivalent) tight alternate dual frames for {p;}M,.

Proof (Proposition 3.2). With the notation of the proof of Proposition 3.1, the
only change is that, since the dual frame is only tight and not Parseval tight, there
is a frame bound A > 0 so that

IEfII7 = Allf|I?, forall fel
Hence, as in the proof of Proposition 3.1 we have
117 = IEFI1P = IEfIP+ (B =~ F)fIP = AlFI? + I~ B)fI”.

Hence, ||(F1 — ) f||> = (1 — A)||f]]? for all f € H. Hence, either F; — F» = 0 and
A =1 which gives us the PTF as in the previous proposition, (and so ¢; = ; for
all 1 <i < M) or (1/y/1— A)(F» — Fy) is an isometry on Hy. In the latter case it
follows that dim (FiHy)* > N, and so M > 2N. Thus, if M < 2N, the only tight
dual frame is the frame itself.

On the other hand, if M > 2N given any F : Hy — ¢}! which is a constant times
an isometry, and with F1Hy L FHy, F} + F defines a tight frame which is an alter-

nate dual frame for {¢;}. ®
However, since it is really the equal-norm case we are interested in,

PROPOSITION 3.3. Let M = 2N and let {p;}, be a Parseval tight frame for Hy
with analysis frame operator Fy : H — I}, If there is an isometry F : Hy — 1M
with F\Hy L FHy and Fye; L F*e;, for all1 <i < M, then {p;}M, has infinitely
many equal-norm tight alternate dual frames.

Proof (Proposition 3.3). Again we use the notation of the proof of Proposi-
tion 3.1. Let F» = aF, where a # 0. Then F; + F» defines a tight alternate dual
frame for {¢;}M,, say ; = (Fy + Fy)e;, for all 1 < i < M. We just need to
check that this frame is equal-norm. Let P : ¢}Y — FiHy be the orthogonal pro-
jection, so that Pe; = Fiyp;, for all 1 <i < M. It follows that ||Pe;||*> = N/M and
(I = P)e;||> =1— N/M, for all 1 <i < M. Now,

¢i:Ffei-i—Fgei:(pi-i—Fg(I—P)ei.

Also, there is an a > 0 so that for every 1 <i < M we have

. N
1ll® = llpall® + 15 (I = Phesl|* = 7 + all(1 = P)es]|”
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N N N

Hence, {1;}}, is an equal-norm tight frame. ®

It can be shown that the results of this section actually classify when PTFs or
ENPTFs have tight (respectively equal-norm tight) alternate dual frames, that is,
all tight alternate dual frames for {¢;} are obtained by the methods of this section.
We do not know in general which frames (not tight) have tight (respectively equal-
norm tight) alternate dual frames.

3.4. Frames Equivalent to ENTF's

Another approach to the classification of ENTFs looks into sets of frames ob-
tained from an ENTF by equivalence relations. For example, we know that every
frame is equivalent to a Parseval tight frame. That is, given any frame {p;}icr
with the frame operator S, the frame {S~'/2p;};cr is a Parseval tight frame which
is equivalent to {p;}ier. Therefore, it is natural to try to find ways to turn frames
into equal-norm Parseval tight frames. As it turns out, this is not possible in most
cases:

THEOREM 3.6. If a frame {¢;}icr with the frame operator S is equivalent to an
ENTF, then {S‘l/2<pi}iej is an ENPTF. In particular, a tight frame which is not
equal-norm cannot be equivalent to any ENPTF.

Proof (Theorem 3.6). It is known that {S~/2p;} is a Parseval tight frame
which is equivalent to {¢pr}. So if {¢r} is equivalent to an equal-norm tight frame,
say {1}, and |[¢]| = ¢, for all k, then {S~1/%¢.} is equivalent to {1/} }. That is,
there is an invertible operator T' on H so that T'S~1/2p, = .

Now we show that T/\/Z is a unitary operator. Let A be the tight frame constant
of {T'S~'/%¢.}. Then for all f € H, the tightness of {T'S~'/2¢}} implies

AP = DOKATS o) = Y UTf,5 ). (26)
k k

However, since {S~'/?¢;} is a PTF, then this leads us to

Y KT f, ST o) = T FIP. (27)
k

Equating (26) and (27), we get that
AlLFIE = T f117,
that is, T/\/Z is unitary. Hence, the frame
ST = Ty,

is an ENPTF since

1 1

= —¢, forall k=1, ---,M.

1 _
1T el = Ji
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4. EQUAL-NORM TIGHT FRAMES WITH GROUP STRUCTURE

In this section, we examine frames which are generated by a group of unitary
operators applied to a fixed vector in the Hilbert space. These classes are espe-
cially important in applications. The traditional use of one of these classes is in the
Gabor frames used in signal/image processing. These are groups with two genera-
tors. There is also a class of wavelet frames which has two generators [9]. Recently,
several new applications have arisen. In [25], the authors proposed using the redun-
dancy of frames to mitigate the losses in packet-based communication systems such
as the Internet. In [17], frames are used for multiple antenna coding/decoding (see
the discussion Section 4.3 for further explanation). In [22, 12], connections between
quantum mechanics and tight frames are established. Although each of these appli-
cations requires a different class of ENPTFs, they all have one important common
constraint. Namely, calculations for the frame must be easily implementable on the
computer. Since ENPTFs generated by a group of unitary operators satisfy this
constraint, this class is one of the most important to understand.

In this section we will show that up to unitary equivalence, the ENPTFs gen-
erated by the set {UFpo}25! (where U is unitary and ¢, € H) are precisely the
GHFs. We then extend our discussion to ENPTFs generated by {U*V7p,} and
higher numbers of generators. In the discussion Section 4.3 we will relate the results
of this section to the literature.

4.1. ENTFs with a Single Generator

Here, we give a complete classification of ENPTFs of the form {U* g}~ ! where
U is a unitary operator on Hy. We will, in fact, find that in this case {U*}2;!
must be a group. Moreover, we will see that the GHFs will be that special class.

Since the proofs of the following results are long, the reader can find them in the
Appendix. Our first result classifies GHF's as those frames generated by powers of

a special class of unitary operators applied to a fixed vector in H.

PROPOSITION 4.1. There is a unitary operator V on Hy with ¢, = Vi and
{wk}i\/fzf)l is a general harmonic frame for Hy, if and only if there is a vector
wo € Hy with ||pol|*> = 2, an orthonormal basis {e;}Y., for Hy and a unitary
operator U on Hy with Ue; = c;e;, with {c;}Y.| distinct Mth roots of some |c| =1

s0 that oy, = Urpq, for all 0 <k < M —1,

Proof. See Appendix A.1. ®

We now show that the only ENPTF's with group structure and a single generator
are GHF's. This result is an excellent result and a disappointment at the same time.
On the one hand, the fact that GHFs are the only ones with such a group structure
proves once more why they are so universally used. It also spares us the trouble
of looking for other such ENPTFs. On the other hand, we cannot find any other
useful sets via this route as we were hoping for. Another important property of
GHFs (Theorem 4.2 from [25]) is that GHF's are robust to the maximum number
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of possible erasures, that is, a GHF with M elements in Hy is robust to e erasures
for any e < (M — N).

Our next theorem completes the classification of GHF's as being unitarily equiv-
alent to those ENPTFs of the form {U¥¢pg}" " where U is a unitary operator on

H. As a consequence, we discover that, in this case, {U* 24:51 is a group.

THEOREM 4.1. Let U be a unitary operator on Hy, po € Hy and assume
{UR@o L, is an ENPTF for Hy . Then UM = cI for some |c| = 1 and {U*po }2L ;!
is a general harmonic frame. That is, the GHF's are the only frames unitarily equiv-
alent to ENPTFs generated by a group of unitary operators with a single generator.

Proof. See Appendix A.2. ®

4.2. ENTFs with Two or More Generators

Having completely characterized ENTFs which come from a group of unitary
operators with one generator, we now turn our attention to those with more than
one. The fundamental examples of frames with two generators are the Gabor frames
{EmpTmag}mnez (or, in our case, the finite discrete Gabor frames). Each of these
frames is equivalent to the ENPTF Gabor frame {EypT10S g} m nez where S is
the frame operator for {EppTimag}mnez-

We will classify the ENPTFs of the form {U"Vjcpo}f:_[)l’}-fo_l where {V7p, jﬂigl
is an ENPTF for its span. In the process of proving these results, we introduce a
general method for using special sets of finite-rank projections to produce frames
for a space. If we associate a frame {¢;}£, with the set of rank-1 orthogonal
projections P; taking H onto span ¢;, then we can view the results of this section
as a generalization of the very notation of a frame to the case where the P; have
arbitrary rank.

Our first result states that given a GHF generated by a unitary operator V', a
unitary operator U and an integer M, we can always find a corresponding ENPTF
generated by U, V.

PROPOSITION 4.2. Let V be a unitary operator on Hy, let m € N and ¢y € H
s0 that {Viyg ?;51 is an ENPTF for Hy. Then for every unitary operator U on
Hy and every M € N, there is a vector pg € Hy such that {Ukl/i<,00}M_l’m_1

k=0,i=0 is
an equal-norm, Parseval tight frame for Hy .

Proof (Proposition 4.2). Let @ = tg/V M. Now, for every f € Hy we have

M—-1m-1 M—-1m-—1 1 M—-1m-1
kyri 2 _ —k i 2 _ —k i 2
kﬂZﬂmUVWM—ZggwfLVWI—MZ;;WYLV%W

Since {Vi)g 2’;‘01 is an ENPTF, the previous sum equals

1 M—1 1 M—1
27 2T = o DO AP = P
k=0 k=0
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It is easily seen that an invertible operator on H maps a frame for H to another
frame for H. As a consequence of Proposition 2.1, we can apply a unitary operator
to any ENPTF and get a new ENPTF. If this unitary operator is part of the
generating set for our ENPTF, then our new ENPTF has a special form as given
in the next proposition.

PROPOSITION 4.3. If U is unitary and {U*V7py} is an ENPTF for Hy, then
for every M € Z and for every f € Hy we have,

fo=D (f UMMV UMMy ig,,
k.j

that is, {UF*MVipgly ; is an ENPTF as well.

Proof (Proposition 4.3). Since UM is unitary and {U*V7¢g}y ; is an ENPTF for
Hy , it follows that {UMUij(p[)}k’j is also an ENPTF for Hy. ®

To explain where we are going from here, let us revisit the notion of an ENPTF
and look at it from a slightly different point of view. Suppose {y; }icr is an ENPTF
for a (finite or infinite-dimensional) Hilbert space H with ||¢;|| = ¢, for all i € I.
For each ¢ € I, let P; be the orthogonal projection of H onto the one-dimensional
subspace of H spanned by ¢;. Then, for all f € H

Z||Pif||2 = Z||<f:<Pi><Pi||2

iel i€l
= D LedPlled® = &Y 1ol = AP
iel i€l

Conversely, let {P;};c; be rank-1 orthogonal projections on H satisfying

Y IR =allfI?, forall feH

i€l

Then {¢;}icr is an ENPTF for H where ¢; € P;H and ||o;||*> = 1/a. That is, if
f € H then

Z|(fa<Pi>|2 = Z|<Pz’fa<Pi>|2 = Z||Pif||2||80i“2

el icl iel

1 1
= = PSP = =alfI* = IfI”
a 4 a
iel

It follows that the condition on {y;} which guarantees that we have an ENPTF is
really a condition on the rank-1 orthogonal projections of H onto the span of ;.
It is this which we now generalize to find our next general class of ENPTFs. Since
this material is also new for general frames, we start here.

PROPOSITION 4.4. Let {P;};cr be a set of projections (of any rank) on a (finite
or infinite-dimensional) Hilbert space H and assume there are constants 0 < A, B
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satisfying,
AP < DIRAIP < BIFIP, for all f € H.

iel
For each i € I, let {cpij};.w:"l be a frame for P;H with frame bounds A;, B;. Then
{Soij}?/l:i1,iel has frame bounds,

A (infic[Ai), B (supjcrBi) .

Proof. For any f € H we have

Mi Mi
Z |<f7§01]>|2 = ZZKfﬂQOZJHQ
j=1,i€l iel j=1
M;
= ZZ|(Pz’f;<Pij>|2 < ZBi||Pif||2
i€l i=1 iel
< supierBi Y _||PifII> < (supie;Bi) BIfII>-
el

The lower frame bound is computed similarly. H

The cases of interest to us are the next two corollaries: the first for PTFs and
the second for ENPTFs.

COROLLARY 4.1. Let {P;}icr be a set of projections on a Hilbert space H satis-
fying:
DY IPAIP = @I, for all f € H.
iel
Then a > 1, and if, for all i € I, {goij};w:il is a PTF for P;H, then {%@ij}y:ﬁ,iel
is a PTF for H.

In the next corollary we assume that the projections P; all have the same rank
and the frames for P;H all have the same number of elements. This assumption is
necessary to guarantee that our frame is equal-norm. That is, as we observed in
Section 2.3, if dim P;H = N and {¢; ;}jes is an ENPTF for P;H then

N
leisll* =
! 7]

COROLLARY 4.2. Let {P;}icr be a sequence of projections (all with the same
rank) on a Hilbert space H satisfying:

SIPAN? = @®lIfIP, for all f € H.

i€l

Thena > 1, and if, for alli € I, {p;j}jes is an ENPTF for P;H, then {%cpij Yiedier
is an ENPTF for H.

We are now ready to consider ENPTFs with two generators.
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THEOREM 4.2. Let U be a unitary operator on H, and let {Vj¢g}j]vi61 be an
ENTF (with tight frame bound 1/a) for its closed linear span in H. Let Py be the
orthogonal projection of H onto this span. Assume that {Uiijo}z»L:_O{]’go_l is an
ENPTF for H. If P; is the orthogonal projection of H onto the span of U'PyH, for
all1<i <L -1, then

L—1
SR = allfI’, for all f € H.
=0

Proof. Note that for all 1 < i < K — 1 we have P; = U'P,U~*. Now, for any
f € H we compute,

L-1 L-1 ] )
STIPSIP = Y IURU £
=0 =0
L—-1 ) L-1 M-1 ) )
= Y NRUTSIP = > ad (U™ £,V o)
=0 =0 7j=0
K—-1M-1 ) )
= oY Y KAUVIe? = allfIl”
=0 j=0

The next theorem is the converse of the above.

THEOREM 4.3. Let {Pi}f:_ol be a set of orthogonal projections on H satisfying
L1
YIRS = @lIfIP, for all f € H.
=0

Assume that U is a unitary operator on H so that U'PH = P;H. Let ¢g € PyH
and let V' be a unitary operator on PoH such that {ngoo}j]\igl is an ENPTF for
PoH. Then {1UVIgo} [ Y5" is an ENPTF for H.

Proof. For all f € H we have,

L-1M-1 1 1 L-1M-1
D2 KA UV = 530 3 WUVl =
=0 j=0 =0 j=0

1 L—-1 ) 1 L—1 ) ) 1 L—1
o) SOIRU I = p SNURUI = o) STUPLIP = [I£1%-
=0 =0

=0

4.3. Discussion
Some remarks are in order:
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1. The assumptions in Theorems 4.2 and 4.3 that {V7 cpo}j]vigl is a ENPTF for its
span is sufficient for the conclusion of the theorems but not necessary. For exam-
ple, it is known to Gabor frame specialists that for ab < 1, there are Gabor frames
{EmpTnag}m nez for which neither of {E;pThag}tmez nor { EmpTheg tnez is a frame
for its closed linear span. The equivalent ENPTF Gabor frame { EppTna S~ 29} monez
fails the hypotheses of Theorems 4.2 and 4.3 but satisfies the conclusion.

2. The results of Section 4.2 generalize to three or more generators. For example,
for three generators, Theorem 4.3 becomes:

THEOREM 4.4. Let U,V be unitary operators with ‘{Uiijo}f:_Ol’}-fo_l a ENPTF
for its span. Let Py be the projection of the Hilbert space H onto this span. Let W
be a unitary operator on H so that

K-1
S NWERWEAP = @®||fI?, for all f €H.
k=0

Then {2WEUVigo ol WAt is an ENPTF for H.

3. It would be very interesting to classify when a finite group of unitaries G
generates an ENPTF for H of the form {Ugg}luecq. Since finite Abelian groups
are isomorphic to a direct product of cyclic groups, the results of this section give
sufficient conditions for {Uyg } e to generate an ENPTF for H. Frames generated
by Abelian groups of unitaries were studied in [4] where they are called geometrically
equal-norm frames (GU frames). It is shown there that the canonical dual frame
of a GU frame is also a GU frame and that the equivalent PTF frame is also GU.
Since GU frames have strong symmetry properties, they are particularly useful
in applications. In [4], it is further shown that the frame bounds resulting from
removing a single vector of a GU frame are the same regardless of the particular
vector removed. This result for HTFs was observed in [25].

4. Frames generated by possibly noncommutative groups of unitaries are impor-
tant in multiple antenna coding and decoding [17]. Here, one needs classes of
unitary space-time signals (that is, frames generated by classes of unitary opera-
tors) called constellations. It is also desirable in this setting to have full transmitter
diversity, meaning that

det (I —U)#0, forall T#U € G.

Groups with this property are called fized-point free groups. In a tour-de-force,
the authors in [17] classify all full-diversity constellations that form a group, for
all rates and numbers of transmitting antennas. Along the way they correct some
errors in the classification theory of fixed point free groups.

5. CLASSIFICATION OF EQUAL-NORM TIGHT FRAMES WITH
ERASURES

As mentioned in the introduction, one of the main applications that motivated us

to examine equal-norm tight frames is that of robust data transmission. This means
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that at some point, the system experiences losses. These losses are modeled as
erasures of transmitted frame coefficients. Since at the receiver side, this looks like
the original frame was the one without vectors corresponding to erased coefficients,
we examine the structure of our frames after losses.

The first question is whether after erasures what we have is still a frame? For
the MB frame, if we erase any one element, the remaining two are enough for
reconstruction. However, if we erase any two, we have lost one subspace and recon-
struction is not possible. We can provide more robustness by adding more vectors.
For example, take a equal-norm tight frame in R?> made up of two orthonormal
bases (1,0), (0,1),(—1,0),(0,—1). This frame is robust to any one erasure; what
is left contains at least one of the two bases. However, if two elements are erased,
the situation is not that clear anymore. We could erase coefficients corresponding
to one of the bases and still have a basis able to reconstruct. If, on the other hand,
we lose coefficients corresponding to two collinear vectors, we are stuck; we have
lost one entire subspace and cannot reconstruct. We could, however, take another
ENPTF with M = 4 vectors in R?> — the HTF with the analysis frame operator

1 0
F o= ‘/%/2 */51/2 (28)

V32 V32

This frame is also made up of two orthonormal bases. However, this frame is robust
to any two erasures. It is thus more robust than the MB frame; we pay for this
added benefit with more redundancy (more vectors). It is also more robust than
the previous frame with 4 vectors.

These simple examples demonstrate the types of questions we will be asking in
this section. One might think that starting with a tight frame might provide some
resilience to losses (as opposed to starting with a general frame). As we have seen
in our example, this is not the case. Thus, we are searching for frames robust to
a certain number of erasures. That is, frames which remain frames after erasures.
There are frames on Hy with M elements which are robust to M — N erasures,
namely the HTFs (Theorem 4.2 from [25]). Such frames are the best. This is clearly
optimal since any more erasures would not leave enough elements to span Hy . In
this section, we will characterize frames based on their robustness to erasures.

5.1. ENTFs and ENPTFs Robust to One Erasure
In this section we will consider ENPTFs which are robust to one erasure. This
contains the basic idea for the general case.
We start with the notion of a frame robust to k erasures, or a k-robust frame.

DEFINITION 5.1. A frame {p;}, is said to be robust to k erasures if {¢;}icre
is still a frame, for I any index set of k erasures, I C {1,2,---M} and |I| = k.

The following property tells us we do not destroy the robustness of the frame
by projection. This observation lead us to the idea that we could classify frames
by starting from a large space and “step down”using projections. For example, we
could start with a frame robust to one erasure and step down to frames (hopefully)
robust to two erasures, then once more to frames robust to three erasures and so
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on. Although this will not be the case, the idea of stepping down lead us to the
results in this section.

Note that it is clear from the definition of a frame that if we apply an orthogonal
projection P on H to a frame we will get a frame for PH with the same frame
bounds.

PROPOSITION 5.1. Let {¢;}M, be a frame in Hy robust to k erasures and let P
be an orthogonal projection on Hy. Then {Papi}ij\il is a frame for PHy robust to
k erasures.

Proof. Let I be the index set of erasures, I C {1,2,--- M} with |I| = k. Now,
{¢i}icrc spans Hy and so {Pg;}icre is a frame for PHy with the same frame

bounds. W

The main ingredient for classifying frames robust to one erasure is contained in
the next proposition.

PROPOSITION 5.2. Let {¢;}M, be a set of vectors in Hy. The following are
equivalent:

1.{pi} M, is a frame robust to one erasure.
2.There are nonzero scalars a; 7 0, for 1 < i < M so that

M
Z ajp; = 0.
=1

Proof. (1) = (2): Choose I C {1,2,--- M} maximal for which there are nonzero

a;’s, 1 € I and
g = Z a;p; = 0.
icl
We claim that |I| = M. We proceed by contradiction. If I # {1,2,--- M}, choose
m € I°. Since {p;}, is robust to one erasure, there are scalars {b;}, not all zero,
so that if ¢, is erased, it can be recovered from the rest as

om = Y bipi,
i#£Em
or
h = <Pm—zbi<Pi— Z bip; = 0.
iel m#icle
We have two cases:
Case I: Assume that b; = 0 for all 7 € 1.

Then, h = ¢, — Zm;ﬁielc bip; = 0. In this case, g + h = 0 and has nonzero
coefficients on every ¢;, i € I, plus a nonzero coefficient on ¢, contradicting the
maximality of I.



26 CASAZZA AND KOVACEVIC

Case II: At least one b; # 0 for some i € I.

Since a; # 0 for all i € I, we can choose an € > 0 so that
€ #a;/b;, forall i€l

Now, g + eh = 0 and has nonzero coordinates on ;, for all ¢ € I, as well as € for a
coordinate on ¢,,, again contradicting the maximality of 1.

(2) = (1): Assume a; #0, for all 1 <47 < M and

Zai% =0

iel

Then for each m € I we have:

m#iel

that is, any vector lost can be recovered using the rest and so {¢;}, is robust to the

erasure of ¢,,, for an arbitrary m € I. H

Note that to construct a frame guaranteed not to be robust to one erasure, it is
enough to put one vector, say ¢y, orthogonal to the span of the rest. Erasing that
vector destroys the frame property. Thus, we cannot find a nonzero coefficient aas
such that "M a;0; = 0.

For example, we know that the MB frame {¢;}?_; is robust to one erasure (The-
orem 4.1 from [25]). Hence, we can find a; = a2 = a3 = 1 such that 2?21 a;p; = 0.

The next results will characterize frames robust to one erasure. Since we men-
tioned the idea of stepping down, we will start from an orthonormal basis {e;}},
for Hs and project it using a projection operator P (or I — P). We thus look into
a few facts connecting P and (I — P).

1. If P is an orthogonal projection, then (I — P) is an orthogonal projection as
well.
2. The subspaces P and (I — P) project onto are orthogonal. For any f € H,

(I=P)f,Pf) = (P"(I-P)f,f) = (P=P)f,f) =

3. {(I-P)e;}M, is equal-norm if and only if { Pe;}2, is equal-norm. To see this
we compute, for all 7, j

((I — P)e;, (I —P)e;

<(I—P*)(I—P)€“ €;

(I = P)ej, (I = P)e;)
(I =P*)(I = Pej,e;)
= ((I = Pej,ej)
1-—

)

)

(I = P)eieq)
1—(Pe;,e;) = (Pej,e;)
(P*Pej,e;y = (P"Pej,e;)
(Pe;i, Pe;) = (Pej, Pe;).

Here we used the fact that P is an orthogonal projection and thus P = P2 = P*P.
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4. Both {Pe;}M, and {(I — P)e;}M, are PTFs.

By Theorem 2.1, all PTFs are of the form {Pe;}},, where {e;}£, is an or-
thonormal basis for H and P is an orthogonal projection on H. The ENPTF's form
a subclass of these frames. In the rest of this paper we will identify this subclass.
So we will be working with frames of the form above. We will discover that the sub-
space PH determines when the frame is an ENPTF. From our earlier discussion, if
P is an orthogonal projection on H, we may work either with {Pe;} or {(I — P)e;}
to classify ENPTFs. We will freely switch between these classes because each of
them has certain advantages for specific results. The class {Pe;} works well for
classifications when the dimension of PH is “large” relative to the dimension of H.
On the other hand, {(I — P)e;} is easier to work with when the dimension of PH is
“small” relative to the dimension of H. Also, as we will see, important information
about {Pe;} is often contained in (I — P)H (and vice-versa). So we will need to
bring both of these into our discussion.

Now we give the general classification for frames robust to one erasure.

COROLLARY 5.1. Let {e;}L, be an orthonormal basis for Hys and let P be an
orthogonal projection on Hyr. The following are equivalent:

1.{(I — P)e;}, is a frame robust to one erasure.
2.There are nonzero scalars a; # 0, for 1 <i < M so that

M

> ai(I = P)e; = 0.

i=1
3.There is an f € span, <;<Pe; so that

(f,ei) 0, forall 1<i< M.

Proof. The equivalence of (1) and (2) comes from Proposition 5.2. Let us check
the equivalence of (2) and (3).
(2) = (3): Given (2), choose f to be

M
f=" ae.
i=1
. M M
By our assumption, > ,—, ae; = y_,_; a;Pe; and thus

M
f = ZaiPei € PHyy,.
i=1
Moreover, (f,e;) =a; #0, for all 1 <14 < M.
(3) = (2): Choose f € PHjs asin (3) and call a; = (f,e;) #0, for all 1 <4 < M.
Now

M M M M

Y ai(I=Ple; = Y (f,e)(I—Ple; = > (fedei — Y (Pfee; = 0,

i=1 i=1 i=1 i=1
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since f € PHjs, and thus Pf=f. ®

Corollary 5.1 classifies frames which are robust to one erasure. We now extend this
to a classification of ENPTFs robust to one erasure.

COROLLARY 5.2. Let {e;}, be an orthonormal basis for Hys and let P be an
orthogonal projection on Hyr. The following are equivalent:

1.{(I — P)e;}M, is a frame robust to one erasure.
2.There is a g = Zf\il aze; with nonzero scalars a; # 0, for all 1 < i < M such
that Pf = (f,g)g, for oall f € Hys, and ||g|| = 1.

Moreover, if P is rank-1, {(I — P)e;}, is a equal-norm frame if and only if
la;| = 1/VM, for all1 <i< M.

Proof. (1) & (2) is immediate from Corollary 5.1.

For the moreover part, we know that {(I — P)e;}, is equal-norm if and only if
{Pe;}M | is equal-norm. Also, since P is rank-1, for all 1 < i < M and using the
expression expression Pf = (f, g)g in Part 2. with f = e; we have,

Pe; = a;g.

Hence, ||Pe;|| = || Pe;|| is true if and only if |a;| = |a;|, for all 1 < ¢,j < M. That
is, {Pe;}M, is equal-norm (and hence {(I — P)e;}M, is equal-norm) if and only
if |a;| = |aj|, for all 1 < 4,5 < M. Finally, ||Pe;|| = |a;l||lg]| = |a;| =1/vM. R

5.2. ENTFs Robust to More than One Erasure
We now try to apply the same ideas from the previous section to classify frames
robust to more than one erasure. The classification of ENPTFs with k erasures in
this section is useful if we have M vectors in an N-dimensional space and M — N
is “small”. In the next section we will give another classification of this set which
works best when M — N is “large”.
In what follows, I C {1,2,---, M} will denote the erasure index set.

PROPOSITION 5.3. Let {e;}}, be an orthonormal basis for Hy;. Let P be an or-
thogonal projection of Hys onto an L-dimensional subspace Hy,. Fiz I C {1,2,---, M}
with |I| = k < L and let K = span;cjcei. If {gaj}]Lzl is any orthonormal basis for
H;, and we have the following L x M matriz

A = <(p]'76i> jzla"'aLa izl:"'aMa
then

dim [ker (I — P)|k] = L — [row rank of the k columns of A indexed by I|.

Proof. We have

ker (I — P)lx = {f € K|I-P)f=0} = [ker (I- P)]NK.
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Now, apply row reduction (relative to {e;},) to {¢;}L, using the elements of the
columns in I. This gives a linearly independent set {g;}5_, U {g;};Z,, spanning
K with

L

s = row rank of ((¢j;€i>)jz1 il

gi€Kfors+1<j<Land

(span; <;<,9;) N K =0.

Hence,
ker (I — P)NK = spang,<j<1,8j

Therefore,

dim (ker (] — P))NK =dim (ker I-P)[xk =L —(s+1)+1=L—s.
|

We are looking for the PTFs which are robust to k erasures. Proposition 5.3
actually yields a stronger result. Namely, it gives necessary and sufficient conditions
for {Pe;} to be robust to one particular choice of k erasures. We state this stronger
result in two different forms in the next two propositions.

PROPOSITION 5.4. With the notation of Proposition 5.3, the following are equiv-
alent:

1.{(I — P)e;}M, is robust to the erasure of the elements {(I — P)e;}icr-
2.We have rank (I — P)lxk = M — L.
3.We have dim [ker (I — P)|k] =L — k.

Proof. (1) & (2): {(I — P)e;}2, is robust to the erasure of the elements
{(I = P)e;}ier if and only if (I — P)|k is full rank, which must be rank (I — P) =
M - L.

(2) & (3): By Proposition 5.3,

dim (ker (I — P)|x = L — [row rank of the k columns of A indexed by I] > L — k.

On the other hand, (I — P)|xk is full rank if and only if (I — P)(I — F;) is full rank,
where P; is the orthogonal projection of Hjys onto span;re;. Hence,

dim (ker (I — P)(I — F;)) < L.
But, e; € ker (I — P;), for all i € I. Hence,
dim (ker (I — P)(I — P;) =dim (ker (I — P)+k < L.

Therefore,

dim (ker (I — P) < L — k.
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Proposition 5.4 gives precise information when a frame is robust to the erasure of
one particular choice of k elements in terms of the coefficients of {p;} relative to
the unit vector basis of H,. The following corollary is a statement for a fixed choice
of erasures as well.

COROLLARY 5.3. With the notation of Proposition 5.3, the following are equiv-
alent:

1.{(I — P)e;}, is robust to the erasure of the elements {(I — P)e;}icr.
2.The row rank of ((gaj,ei))]L:ME] =k.

Applying the above result to every choice of erasures results in Theorem 5.1 and
a classification of when our frame is robust to any k erasures. We are dealing here
with general frames. We will deal with equal-norm frames right afterwards.

THEOREM 5.1. With the notation of Proposition 5.3, the following are equivalent:

1.{(I — P)e;};Z, is robust to k erasures.
2.For every I C {1,2,---M} with |I| = k, the row rank of A = ((¢j)ei>)]L:1,ieI
equals k.

Note the crucial role played by erased elements in the theorem, since in the
statement, the indices are from I.

Next we see what it takes for such frames to be equal-norm. Here, we call the
“angle” between two vectors the inner product when this is really the cosine of the
angle. Note that this result classifies when {(I — P)e;} is an ENPTF without any
reference to erasures.

THEOREM 5.2. With the notation of Proposition 5.3, the following are equivalent:

1.{Pe;}M | is equal-norm (and hence {(I — P)e;}M, is equal-norm).
2.For every 1 <1i < M we have,

L
* .. _ . . 2 — _
(Wi = Y lene)l = 15
Jj=1
That is, the columns of A = {p; ]L:1 all have the same square sums.

Moreover, the angle between (I — P)e; and (I — P)e; is given by the inner product
of the ith and jth columns of {goj}]Lzl.

Proof. (1) & (2): We know that {(I — P)e;}}, is equal-norm if and only if
{Pe;}M, which, in turn, is equal-norm if and only if the diagonal elements of the
matrix for P relative to {e;}}, have constant modulus. We have,

L M L
Pe; = Z(eia¢n>9@n = Z (Z(eia¢n><¢n)em>> €m.

n=1
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The diagonal element of Pe; is:

L L

Z(eia¢n><¢nvei> = Z|<¢nvei>|2'

n=1 n=1
So {Pe;}M, is an equal-norm tight frame if and only if for all 1 <4, j < M we have

L L

Y lemed® = D Keneil.

n=1 n=1

For the moreover part, we compute for 1 <i # j < M:

((I = P)ei, (I — Plej) = (ei,ej) — (Pei,ej) — (ei, Pej) + (Pey, Pej)

= (Pei,Pej> = <6i,P€j>

L L
az e]a‘Pn ‘Pn = eu Z (Z €5, ¥Yn <<Pnaem>> em) = Z(eja@n><90naei>-

m=1 n=1 n=1
The right-hand side of the above equality is precisely the inner product of the ith
and jth columns of {p;}f_,. ®

The following consequence of the above is surprising at first. It says that we can
almost never get (in the real case) frames robust to k erasures by stepping down
from frames robust to one erasure, then to frames robust to two erasures etc.

COROLLARY 5.4. In the real case, if M > 3, there do not exist rank-1 orthogonal
projections Py, Py with PyP» =0 so that {(I — Pl)ei}i]\il is equal-norm and {(I —
Py)(I — P)e;}M, is equal-norm and robust to two erasures.

Proof. Assume such P, P exist. Since {(I — Py)e;}}, is equal-norm, by The-
orem 5.2, there is a vector ¢; = Ef\il aje; € Hy with P f = (f, ¢1)¢1, for all
f € Hy and |ag| = |a;, for all 1 < i,j < M. Now choose gy = Y bie; € Hy
so the Pof = (f, p2)p2, for all f € Hys. Since Py, P> are rank-1, Py P, = 0 implies
P2P1 = 0. That iS <(p1,(P2> = 0. Let P_P1+P2 Then (I PQ)([_Pl) =I1-P.
Since {(I — P)}, is equal-norm, by Theorem 5.2 we have

al + b7 = a?+b§, for all a <i,j < M.

Hence, b7 = b7, for all 1 < i, < M. Since ||¢1]| = [[¢2]] = 1, it follows that

1
al = b = e forall 1<4,j <M.

K3

N

Since {(I — P)e;}M, is robust to two erasures, by Theorem 5.2

aib; —ajb; # 0, forall 1<4,7 <M. (29)
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However, for all i,j we have a; = +a; = +b;. Hence, there is some ¢,j with
either a; = a;j and b; = bj or a; = —a; and b; = —b;. In either case (29) fails. W

Corollary 5.4 is heavily dependent on having a real Hilbert space. In the complex
case, we will show in Corollary 5.6 that the GHFs have the property that we can step
down to the frame by successively applying rank-1 projections to the orthonormal
basis. Corollary 5.4 shows that in general we cannot step down one dimension at
a time to construct frames robust to k£ erasures. It would be interesting to extend
this to a classification of when we can step down from k; erasures to ks erasures
and so on. One reason is that this has implications for entangled states in quantum
detection theory [12, 22].

This raises the question of whether we can step down one dimension at a time
as in Corollary 5.4 if we only ask for each level to be equal-norm. The answer is no
as the next example shows.

ExAMPLE 5.1. Let {e;}{_, be an orthonormal basis for Hy and let

1 +1 +1
= —e —e —€
PY1 \/51 23 24,

and
1 1 -1
Y2 = —=ex+ ez + ——eq.

V222 2

Then (p1,92) = 0, and if P is the orthogonal projection of Hy onto the span of
{p1, 2}, then by Theorem 5.2, {(I — P)e;}%_, is a equal-norm Parseval tight frame.
However, there does not exist a rank-1 orthogonal projection P; of Hy into range
of P so that {(I — Py)e;}}_, is a equal-norm frame.

Proof. By Theorem 5.2, in order for such a P, to exist, there must exist a vector
in PHy of the form $.%_, bie; with |b;| = |b;|, for all 1 < i,j < 4. For any ay, as,

a; + as a; — as

a a
arp1 + aspa = \/—1561 + \/—2562 + 5 es + 5 ey4.

If (Ja1 + a2])/2 = (Ja1 — az])/2, then one of |ay]|, |az| equals 0 so |a;| # |az|. W

The next question is whether we can step down one dimension at a time as in
Corollary 5.4 if all we want is for our frame to be robust to j erasures at the jth level
but are willing to give up the requirement of equal-norm at each level. Surprisingly,
the answer here is yes.

PROPOSITION 5.5. Let P be an orthogonal projection of Hys onto an L-dimensional
subspace Hy,. Let {e;}], be an orthonormal basis for Hyr. If {(I — P)e;} M, is
robust to k erasures (k < L), then there are mutually orthogonal rank-1 projections
{P}L., taking Hyr into Hy, so that {(I — P;)(I — Pj_1)--- (I — P1)e;}, is robust
to j erasures, for all 1 < j <k, and robust to k erasures for all k < j < L.

Proof. See Appendix A.3. H
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5.3. ENTFs Robust to More than One Erasure: An Alternative
Approach

In the previous sections we used the orthogonal projection P on Hy; to classify
when {(I — P)e;}M, is robust to k erasures and when it is equal-norm. However, if
the dimension of PH), is large (that is, close to the dimension of Hj, ) these results
become difficult to implement since they require knowledge about the orthonormal
bases for the large-dimensional space PHys. In this case, {(I — P)e;}M, is a large
number of vectors in a small-dimensional space (I — P)Hys. So it is easier in this
case to work directly with (I — P)H and {(I — P)e;}. Or, equivalently, with PH
and {Pe;}, where dim PH is small.

PROPOSITION 5.6. Let {¢;}Y, be an orthonormal sequence in Hyr, let {e;}}1,
be an orthonormal basis for Hy, and let P be the orthogonal projection of Hys onto
the span of {pi}.,. Then the Parseval tight frame {Pe;} | is unitarily equivalent
to {gi} M, where for 1 < j < M we have

N

9i = Z(Sf?i,@j)ei-

i=1

That is, {Pe;}}, is the frame obtained by turning the columns of {p;}, into row
vectors in Hy .

Proof. For any 1 <i < M we have:

L

Pe; = Z(eivtpn)(pn-

n=1

Since {¢,}L_, is an orthonormal sequence, the operator T'¢,, = e, for 1 <n < L
is a unitary operator which takes Pe; to {g;}}L; where for 1 < j < M and we have

N

g9;i = Y {piej)ei

i=1

COROLLARY 5.5. Given the conditions in Proposition 5.6 we have:
1.{g]-}j]\/i1 is an equal-norm frame for Hy if and only if

al N
Z|<¢I,€j>|2 = —, forall 1<j <M.
‘ M
i=1
2.The following are equivalent:
(a) {gj}j]vil is robust to the erasure of {g;};er for some I C {1,2,---M}.
(b) We have that

N
((‘Pi: €j>)i:17je]c

has row rank N .
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Hence, {gj}j]vil is robust to any choice of k erasures, k < M — N, if and only if
every set of M — k columns of the matriz

A = ((pi, ej))iszij\:/ll

has row rank N.
Finally, the angle between g; and g; is given by the inner product of the ith and
jth columns of A.

It would be interesting and useful to classify the GHFs in the format of this
section. That is, precisely when is {(I — P)e;}}£, a GHF? One important property
of GHF's is contained in the following result which says they have the step-down
property of Section 5.1.

COROLLARY 5.6. Let P be an orthogonal projection of Hy; onto an L-dimensional
subspace Hy, and let {e;}}2;* be an orthonormal basis for Har. If {(I — P)e;} Mot
is a GHF then there is an orthogonal sequence of rank-1 projections {P;}~_, of Hy
into Hr, so that for all 1 < j < L and for all permutations o of {1,2,---,L} we
have that

Jj—1
{ H (I - Pa’(m))ei ij\ialv
m=0

is a GHF and hence is an ENPTF which is robust to j erasures. Here, Py(,,) = P;
fori=o(m).

Proof. We will do the proof for HTFs since the GHF case requires only nota-
tional changes but obscures the basic ideas of the proof. By Proposition 5.6, there
is a unique way to get HTFs. Namely, let {ei}i]\ial be the natural orthonormal basis
for Hjs. Let {wi}ij\ial be distinct Mth roots of unity and consider the orthonormal
basis {p;} ;! for Hy, given by:

M-1
- E: e,
Y = wje;j.
j=0

Without loss of generality, we may as well assume that Hy = span {p;}L,.
Now, turning the row vectors of {p; l]\i Zl into column vectors gives an HTF for
HM—L . Moreover, again by Proposition 5.6, this HTF is unitarily equivalent to
{(I - P)e;} 5" where I — P is the orthogonal projection onto (Hz ). Now, let P;
be the orthogonal rank-1 projection of Hjy; onto span ¢; for 0 <i < L —1. Fix a
permutation o of {1,2,---,L} and let I; = {¢(0),0(1),---,0(j —1)}. Then, again
by Proposition 5.6,

j—1
{I] U = Pomy)es} 5",
m=0

is unitarily equivalent to the HTF obtained by turning the row vectors of {¢;};¢r,

into column vectors. M
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It is possible that the property in Corollary 5.6 characterizes GHFs, but we do
not have a proof for this. We can show that the use of permutations is necessary in
Proposition 5.6. That is, there are ENPTFs which have the step-down property for
erasures and for being equal-norm for one fixed ordering of the rank-1 projections
P; while failing to be equivalent to a GHF. This is the point of the next example.

EXAMPLE 5.2. In C*, let
4 4
‘Plzzez’, <P2=Zwi€i, p3 = €1t ez — ez — ey,
i=1 =1

where w; = 1, ws = —1, w3 = i and wq = —i. Let {P;}3_, be the rank-1 orthogonal
projections of C* onto the span of ¢;. Then it follows easily from our results that:

1. {(I — Pi)e;}}{_, is an ENPTF which is robust to one erasure.

2. {(I = P)(I — Py)e;}t_, is a ENPTF which is robust to 2 erasures.

3. {(I - B3)(I — P)(I — Py)e;}t, is an ENPTF which is robust to 3 erasures,
but is not a harmonic frame since {(I — P;)(I — P;)e;}}_; is an ENPTF which is
not robust to 2 erasures.

ExaMPLE 5.3. If ¢; = (1,w;) in C? for 1 < i < M, where |w;| = 1 and the
{w; }M, are distinct, then {p;}¥, is an ENPTF for C? if and only if Elj\il w; = 0.
In this case, if P; is an orthogonal rank-1 projection onto the span ;, then {(I —
Pj)e;}M, is an ENPTF which is robust to one erasure while {(I — P;)(I — Py)e; }4,
is a ENPTF which is robust to 2 erasures for all 1 < j # k < M.

Proof. This set is certainly equal-norm. The assumption Ef\il w; = 0 guaran-
tees that the vectors

(1717171) and (w17w27"'7wM)

are orthogonal in Hy, (and conversely). Hence, {¢;}}4, is an ENPTF for C? by
Proposition 5.6. M

EXAMPLE 5.4. In general, the frames constructed in Example 5.3 are not equivalent
to harmonic frames even after a permutation.

Proof. The reason is that {¢; jj\igl is a GHF implies that

(i, 0j+1) = (@jr1,0j42), forall 0<j< M -2,

(see Proposition 2.5). This would imply in Example 5.3 that

(pjspit1) = 1+wjwjma = 1+wjnWire = (pj+1,Pj+2)-
Hence, WjWj41 = Wijp1Wjit2- Now, let wy = 1, ws = —1/2 + \/3/4’i and wy =

—1/2 — \/3/4i. Then |w;| = 1 and 23:1 w; = 0. Hence, by Example 5.3,
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{(1,w;)}3_, is an ENPTF for C*. However, for any permutation o of {1,2,3},
we do not have g (;)Wy(j31) = Wo(j4+1)Wa(j12), forall0 < j < 2 (withwy = w;). M

It is not hard to see that in the case of R?, the condition in Corollary 5.6 is sufficient.

6. CONCLUDING REMARKS

The results in this paper were motivated by our wish to find the “perfect frames”,
at least for the applications of transmission with losses. Prior to embarking on this
work, the best frames we knew of were the HTFs; that is the case still. The
HTFs remain the most computationally efficient, the ones with most structure
(group structure) as well as the only good example we know of which remain frames
with any number of up to M — N erasures. Thus our search for “perfect frames”
continues...

APPENDIX: PROOFS

A.1. PROOF OF PROPOSITION 4.1
First note that if {c,}}_, are distinct Mth roots of ¢ with |c| = 1, then

M-1 M-1 M-—1 )
S0 YIdP - M Slael =0 (A
i=0 1=0 i=0
k£l
and thus
M—1 '
> (@) = Moy (A.2)
i=0

We now check the necessity of our condition for a frame to be a general harmonic
frame. If {¢;}}, is a general harmonic frame for Hy then there exists a unitary
operator V on Hy with Vi, = ¢ and by the definition:

N
pi = (cibr,chba, - civby) = > cibrer,
k=1

where {e;}I_, is the natural unit vector orthonormal basis of Hy, |bx| = 1/VM,
and {cj}_, are distinct Mth roots of ¢ with |¢| = 1. Now let

N
Po =Y brex.
k=1

Define a unitary operator U on Hy by Uer = cge. Then, forall 0 <i < M —1
we have U'ey, = ciey, and thus, Ulpy = ¢; for all 0 < i < M — 1. So our frame has
the form given in the proposition.

The sufficiency of the condition is checked similarly. If we assume that {p;} is of
the form described in the proposition, then:

) | N
||<Pi||:||Ul<PO|| = ||<P0|| = M
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since U is a unitary operator. So {y;} is an equal-norm frame. To see that {¢;} is
a Parseval tight frame, we let f = ch\f:l arer € Hy and compute:

M—-1 M-1 N
SULT ) = D1 arcibil” =
=0 =0 k=1
M—-1 N M—1
= Z |akc;€bk|2 + Z amb[ Z (Cmc_[)l
i=0 k=1 m#L =0

uy

k=1

N
1
ar|bk* +0 = MY |arf|l—=I> = IfI
k=1 M

where in the next to last equality we used the fact that the {c;} is a set of distinct
Mth roots of ¢ (see (A.2)). Hence, {p;} is an ENPTF. Thus, using (15) and writing
f =ej, we see that

M
eI = 1 = > I(e;, Ulpo)* = Z eJ’chbkek Z|C bi[> = Mlb,|*.
i=1 i=1

So |bj| = 1/VM, for all j,0 < j < N — 1. This further means that
0o = (b1,b2,--+,bN)
with |b;| = 1/v/M and since ¢; = Uy,

;i = (Cib1,63b2, .- ,chbN).

A.2. PROOF OF THEOREM 4.1

We prove the theorem in steps.

Step I: We first prove that there is a constant |c| = 1 so that UM = ¢I. This will
show that the operators {U’ i 0 , in fact, form a group with a single generator.
Since the frame is a PTF, for every f € Hy we have,

M—1

=Y (U)o,

i=0
Hence,

M—
Uf

1
vaU (100> =
0

=

M—1
> (U po)Ulpo,  since U =U,

i=

0M 1 M—2 ) ]
U (Z £U  oo)U 1@0) =U (Z(f, UZ¢O>U’¢0>. (A3)

i=0 i=—1
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Since U is one-to-one,

M-—2 ' . M-1 . '
f= Y (EU)U = > (f,Uo)U'p. (A4)
i=—1 i=0

From (A.3) and (A.4), it follows that,
(f,UM o) UM oo = (f,U p0)U " 0.
Applying U we have

(£, UM o) UMpy = (£,U ' 0o)U%0 = (f,U 'o)eo. (A.5)

Hence, there is a ¢ € C so that UMy = cypgy. Replacing f by U™! f in (A.5) gives:

(U F,UM o) UMpy = (f,UMpo)UM g
= <f:C<P0>C<PO = |c|2<fa§00>§00
= (U, U podpo = (f,p0)po.
So |c|? = 1. Also, for all 0 <i < M — 1,
UMUlpy = UUMpy = Ulcpy = cUlypy.

Since {Upp} spans Hy, that is, for any f € Hy f = > .(f, Upo)U'po, it follows
that UM = ¢I. This completes Step L.
Step II: We want to prove:

1. U is diagonalizable with respect to an orthonormal basis {e;}_; with di-
agonal elements {c; }4_, with c; an Mth root of c.

2. g = Zszl brex and |by| = ,/%, forall1 <k <N.

These two steps give us frame elements as in Definition 2.1.

Since U is unitary (and hence normal), and our space is finite dimensional, it follows
that U is diagonalizable with respect to an orthonormal basis {e; }4&_, with diagonal
elements {cj, }2_,. Writing o as in 2., we have that

N
Ulpy = Zcibkek.
k=1
Since UM = clI, it follows that each ¢, is an Mth root of c. Also, since the frame
isa PTF, for all 1 < j < N we have
N

M
Z| (ej, Ulpo)|® = Z e],ZCZbkek Z|ckb > = M|b;|.
i=1

i=1

So |bj| = 1/v/M. This completes Step II.
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Step I1I: We finally prove that the ¢; are distinct Mth roots of ¢. This will
complete the proof.

Fix 1 <m # £ < M. Since the columns of a Parseval tight frame are orthogonal
vectors, that is, F*F = I, we have for columns m, ¢,

M—1 M—1
0 = E bmCrbec;, = byby (cmCr)".
i=0 1=0
Hence,
M—1
(emCg)' = 0.
i=0

Thus, ¢, and ¢, are distinct Mth roots of ¢. This completes the proof of Step 111
and the theorem.

A.3. PROOF OF PROPOSITION 5.5
Forall1 <j<L,let
M

9i = Z<9j>€i>ei:
i=1
be an orthonormal basis for Hj,. We will construct the projections {Pj}JL:1 by
finite induction. We start with P;. Since {(I — P)e;}}, is robust to 1 erasure, by
Theorem 5.1, for every 1 < i < M there exists a 1 < j < L so that (g;,e;) # 0.
Choose scalars a1,as---,ar so that for any 1 < j < L, if (g;,e;) # 0 for some
1 <3< M, then

j—1
laj(gj, el > 2> lar(gr,e:)l.

k=1
It follows easily that
Yy

I 25 asgill
then (p1,e;) #0, for all 1 <i < M. Now, let P, be the orthogonal projection onto
the span {1}, then {(I — P)e;}, is robust to 1 erasure by Corollary 5.1.
Now assume we have found orthonormal vectors {¢;}7_;, n <k — 1 so that the

rank-1 projections P; onto span {¢;} satisfy the proposition and span {p;}}_, =
span {g;}7_,. We will construct 41 and Pny1. Let {g;}7, be an orthonormal

basis for the orthogonal complement of span {¢; Py inHp. Fix 1 <y <ip <
v <dpg1 < M. Since

®1

{I=Po)(I = Poy) -+ (I = Pei}iy

is robust to n erasures, if we row reduce {¢;}7_, using the columns {i, 42, iy}
(and switching rows if necessary) we obtain vectors {h;}}_; with span {h;}"_; =
span {p;}7_; and for every 1 < j < n we have,

<hj>eil> = 0Oj¢-
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Now we verify the following claim:
Claim: For all but finitely many 0 < z < 1, if

L
hn+1 - E mjgjv
j=n+1

then the row rank of

(R, eie))?}_:ll )
isn+ 1.
Proof of Claim: Fix 0 < z < 1. We row reduce this matrix by taking, for all
1<(<M,
L
—( Z z’gj,ei)he + hpta.
j=n+1
We then arrive at a matrix with 1sin the jth row and the ¢;th column for 1 < j < n,
zeroes otherwise, zeroes in the (n + 1)st row for columns i; for all 1 < j < n, and
in the (n + 1,n + 1)st position we have:

n L
<hn+1)ein+1> - Z( Z x]gj)eie><hlveiz>'
=1 j=n+1

If this number is nonzero, then our matrix is of rank n + 1. Now we check what it
takes for this to be nonzero.

n L
(hn+1)ein+1> - Z( Z xjgj)eiexhl)eie)
J4

=1 j=n+1

L n

L
= Y g i) — O, Y (g5 e eq)
j=n+1

j=n+1 =1

L n
= Z x’ <gjaein+1> - Z(gjﬂei[><hfaei[>
j=n+1 =1

By the hypotheses on the proposition,
L n+l
((gjaeie>)j:1,?:1 >

has rank n + 1. It follows that there is an + 1 < j < L so that

n

(gj7ein+1> _Z<gjaeie><hfaeie> 7& 0.

=1
Hence, the number of z’s with

n L

<hn+17ein+1>_z< Z mjgj7ei£><h£7eil> = 0’

(=1 j=n+1
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is finite. This establishes the claim.
Applying the claim to all choices of 1 < iy < ip < -+-ip41 < M, we see that for
all but finitely many 0 < x < 1, for all 1 < iy <2 < -+ <inpq1 < L, the rank of

(g ea)) ;M) 24

isn+1. Let

hn+1
Ont1 = /o
" 1]l

and let P, 11 be the orthogonal projection of Hys onto span {y,+1}. Now,
{(I = Poy)(I = Pp) -+ (I = Pre)

is robust to (n + 1) erasures by Theorem 5.1. This completes the proof of the
proposition.
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