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Jelena Kovǎcević, Fellow, IEEE, Pier Luigi Dragotti, Student Member, IEEE, and Vivek K Goyal, Member, IEEE

Invited Paper

Abstract—We study frames for robust transmission over the In-
ternet. In our previous work, we used quantized finite-dimensional
frames to achieve resilience to packet losses; here, we allow the
input to be a sequence in 2( ) and focus on a filter-bank imple-
mentation of the system. We present results in parallel, or
versus 2( ), and show that uniform tight frames, as well as newly
introduced strongly uniform tight frames, provide the best perfor-
mance.

Index Terms—Frames, multiple descriptions, oversampled filter
banks.

I. INTRODUCTION

A ARON D. Wyner, to whom this issue and this paper are
dedicated, had a profound impact on information theory

and on his colleagues—including the first and third authors.
Among Wyner’s varied contributions were the conception
and development of source coding problems that generalized
Shannon’s basic point-to-point communication problem [1]–[5].
Network source coding problems inspired in part by Wyner’s
work currently occupy many theoreticians and compression
practitioners.

This paper concerns the analysis of one framework for com-
municating infinite sequences over a set of parallel channels,
each of which is either noiseless or does not work at all. The
channel model gives a general form of multiple description
coding [6]. The transmitted information is generated with a
filter bank and scalar quantization, as shown in Fig. 1. The filter
bank implements a frame expansion; thus, the structure itself
and the techniques for analysis and design are generalizations
of results for finite-dimensional vectors in [7], [8].

A. Frames

Frames have become ubiquitous. They started as a mathe-
matical theory by Duffin and Schaeffer [9], who provided an
abstract framework for the idea of time–frequency atomic de-
composition by Gabor [10]. The theory then laid largely dor-
mant until 1986 with the publication of the work by Daubechies,
Grossman, and Meyer [11]. Since then, frames have evolved into
a state-of-the-art signal processing tool.

Manuscript received July 25, 2001; revised December 13, 2001.
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The mathematics of frames can be found in several excel-
lent sources. The original work by Duffin and Schaeffer intro-
duced frames for Hilbert spaces [9]. The paper by Daubechies,
Grossman, and Meyer [11] discusses applications to wavelet
and Gabor transforms. A beautiful tutorial on the art of frame
theory was written by Casazza [12]. Some particular classes of
frames have been extensively studied: Gabor frames (also called
Weyl-Heisenberg frames) are described by Heil and Walnut in
[13] and by Casazza in [14], while the paper [15] and the book
[16] by Daubechies offer excellent introductions to frames and,
in particular, wavelet and Gabor frames.

Frames, or redundant representations, have been used in
different areas under different guises. Perfect reconstruction
oversampled filter banks are equivalent to frames in .
The authors in [17]–[19] describe and analyze such frames.
Frames show resilience to additive noise as well as numerical
stability of reconstruction [16]. They have also demonstrated
resilience to quantization [20], [21]. Several works exploit the
greater freedom to capture significant signal characteristics
which frames provide [22]–[24]. Frames have been used to
design unitary space–time constellations for multiple-antenna
wireless systems [25]. Finally, although a well-known result by a
Russian mathematician M. A. Naimark1 —Naimark’s Theorem
[26]—has been widely used in frame theory in the past few
years [8], [27], only recently have researchers recast certain
quantum measurement results in terms of frames [28], [29].

The bibliography on frames is vast; the list given above is
just a sample. The reader is encouraged to check the references
above and the ones within for more uses of frames and further
technical details.

B. Structure of the Proposed System

As in previous work of two of the authors [8], our aim is to
exploit the resilience of frame expansions to coefficient losses.
This resilience is a result of the redundancy a frame represen-
tation brings. In the earlier work, the frame elements belong to

(or ) and can be seen as filters in a block-transform filter
bank. Here, we investigate frames with elements in ; they
can be seen as filters in a general, oversampled filter bank.

Consider the model depicted in Fig. 1. An input sequence
is fed through an -channel finite-impulse response (FIR)

filter bank followed by downsampling by . The
output sequences are then separately scalar quantized with

uniform scalar quantizers and sent overdifferent channels.
Each channel either works perfectly or not at all. The decoder
receives only of the quantized output sequences, where

1A common alternative spelling ofNaimarkis Neumark.
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Fig. 1. Abstraction of a lossy network with a frame expansion implemented by an oversampled finite-impulse response (FIR) filter bank. An input sequencex[n]
is fed through anM -channel FIR filter bank that includes downsampling byN (N < M). TheM output sequences are then separately scalar quantized with
uniform scalar quantizers and sent overM different channels. Each channel either works perfectly or not at all. The decoder receives onlyM � e of the quantized
output sequences, wheree is the number of erasures during the transmission. We assume there are no more thanM �N erasures. The reconstruction process is
performed by the synthesis filter bank. The choice of synthesis filters depends on which channels are received.

is the number of erasures during the transmission. We assume
there are no more than erasures. The reconstruction
process is linear. We wish to find properties of the filter banks
that minimize the mean square error (MSE) between the input
and the reconstructed sequences.

To analyze cases with more than erasures requires a
statistical model for the input sequence. In [30]–[32], the input
sequence is a stationary Gaussian source; in [30], [32] the case

and one erasure is considered, while in [31] the
case and and up to two erasures is analyzed. In
this work, we do not make any assumptions on the input source.
Rather, a statistical model for the quantization error makes the
reconstruction quality depend only on the characteristics of the
filter bank.

We first go through the basics of frame expansions in
(where denotes a finite-dimensional space such asor

) and . We introduce the notion of strongly uniform
frames and discuss several examples. We then quantize the
frame coefficients and find the MSE. Finally, we let some
coefficients be erased (mimicking the losses in a network)
and discuss the effect on both the structure of the frame and
the MSE. Although we could present only the results for

and specialize them to when the filter
length is , we present the known results for [8] and the
new ones for in parallel; the simple geometry of
makes results feel more intuitive.

A few words about notation: superscriptdenotes the Her-
mitian transpose (complex conjugation as well as transposition
in case of vectors and matrices). In the filter bank literature, it
is customary to denote matrices by bold capital letters; we will
depart from this convention here to be consistent with the frame
notation.

II. SIMPLE EXAMPLE

We are given the following set of three vectors in:

(1)

(see Fig. 2). This set is obviously not a basis, since it has more
vectors (three) than needed to represent vectors in(two).
However, it can still be used to represent vectors from(albeit

Fig. 2. Mercedes-Benz frame: A uniform tight frame with three vectors in two
dimensions. It is a representative of the whole class of uniform tight frames with
N = 2; M = 3.

with linearly dependent vectors, ). We can write
any as

This expression looks like it came out of the blue; however, if we
look more closely, we note that it can be expressed as follows:

(2)

The above equation looks suspiciously like the expansion for-
mula using an orthonormal basis with basis vectors. That
is, except for the term . However, even that seems to make
sense; we are normalizing our expansion by the factor that tells
us what the “redundancy” of the system is, that is, how many
more vectors we have than what we would have needed to rep-
resent vectors in . Moreover, the energy in thetransform co-
efficients with
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is

that is, it is times that in the input vector. Fairly intuitive.2

Thus, it seems that what we obtained is slightly more par-
ticular than just a random collection of three vectors. In fact,
what we have is aframe; and not just any frame, it is auni-
form tight frame(this particular frame is called aMercedes-Benz
(MB) frame).3 We can thus think of this frame as a generaliza-
tion of an orthonormal basis. As we will see in Section III-C3,
a tight frame satisfies where is the matrix having
elements of as its rows. Auniformframe contains all vectors
of norm , as is the case in our example, andis the redun-
dancy ratio .

Suppose now that we perturb our frame coefficients by adding
white noise to the channel, where ,

for . Using (2), we can find the error of the
reconstruction

Then, the averaged MSE per component is

MSE

since all the frame vectors have norm.
The above result will show another particular property of the

frame we chose so “randomly.” Namely, among all other frames
with three norm- frame vectors in , this particular one (and
the others in the same class, as will be shown later) minimizes
the MSE. We can see this if we perturb the first vector by
radians clockwise.4 It then becomes . De-
note the new frame matrix by and find the new left inverse
of . Repeating the above calculation, we get that the MSE is

MSE

This MSE is minimized when ; we are back to the MB
frame! Moreover, our discussion justifies the statement in the
introduction that frames provide resilience to quantization;

2We will see later that this is true only for the so-called uniform tight frames.
3We call this frame a Mercedes-Benz frame since the geometric configuration

of its vectors brings to mind the Mercedes-Benz car logo.
4Of course, perturbing just the first vector does not give us the most general

frame in ; we neglect this issue for simplicity and refer the reader to [8] for
a more general treatment.

with an orthonormal basis,5 the MSE (take the usual or-
thonormal basis , and repeat the above
MSE calculations), while with our frame, the MSE ,
a reduction of the error by one third.

Recall, however, that our intention was to use frames to pro-
vide robustness to losses. Assume, thus, that one of the quan-
tized coefficients is lost, for example, . Does our MB frame
have further nice properties when it comes to losses? Note first,
that even with not present, we can still use and to rep-
resent any vector in . The expansion formula is just not as
elegant

(3)

with

(4)

Repeating the same calculations as above for the MSE, we get
that

MSE

that is, twice the MSE without erasures. However, the above
calculations do not tell us anything about whether there is an-
other frame with a lower MSE. In fact, given that one element
is erased, does it really matter what the original frame was?

It turns out that it does. In fact, among all frames with three
norm- frame vectors in , the MSE averaged over all possible
erasures of one coefficient is minimized when the original frame
is tight [8]. For a hint of the general result, as before, perturb
the first vector by (and as before, be aware that this does not
give us the most general uniform frame). Erasing one element
at a time, compute the new inverse of the matrix formed by the
remaining vectors and compute the MSE in each case. We get

MSE

MSE

MSE

The average MSE with one erasure is then

MSE MSE MSE MSE

The above expression is minimized when ; back to the
MB frame once more!

5The orthonormal basis minimizes the MSE among all two-dimensional
bases; take, for example,' = (cos�; sin�) , ' = (0; 1) . The MSE is
(2� )=(1 + cos 2�). This expression is minimized for� = 0, that is, for an
orthonormal basis.
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What we have done in this simple example is to show the
types of issues that arise when trying to use frames to provide
robustness. We have shown this when the frame elements be-
long to a finite-dimensional space such as, since the demon-
strations are simple and the geometry intuitive. As mentioned
previously, we extend these results to the frame elements from

; this simple example should serve as a guideline.

III. FRAME EXPANSIONS IN AND

We can now define frames more precisely. What we have seen
in our simple example will generalize. We will find other frames
with properties similar to those the MB frame possesses (such
as conservation of energy).

A set of vectors in a Hilbert space is called
a frame if

(5)

for all , where is the index set and the constants
are calledframe bounds. In this paper, we concentrate only on
the -dimensional real or complex Hilbert spaces and
(which we denote ) with the usual Euclidean inner product
and on the Hilbert space of square-summable sequences

with the inner product

For the former, while for the latter,
.

When , the frame istight (TF). If , the
frame isnormalized tight(NTF). A frame isuniform(UF) if all
its elements have norm,6 . For a UTF, the frame
bound gives theredundancy ratio(it is in our example).
A UTF which is also normalized, that is, with , is an
orthonormal basis (ONB). Fig. 3 helps to clarify the “alphabet
soup” of frames.

A frame operator maps the Hilbert space into

for (6)

The frame operator can be represented by a matrix whose rows
are the transposed frame vectors. When , the frame
operator is an matrix

...
... (7)

while with , the frame operator is an infinite ma-
trix (infinite number of frame vectors and infinite number of

6Actually, the definition of a UF is more general; the norm is allowed to be
c 6= 1. In this work, however, we consider only UF with norm1.

Fig. 3. Frames at a glance. Note that here we denote by UF uniform frames
with the same norm, not necessarily1. When the norm is1, we say so explicitly,
as in UF1, that is, uniform frames with norm1.

elements in each vector). For the latter, we will examine a par-
ticular class of frames with vectors which are shifted versions
of prototype ones. This will become clear in a moment.

The following theorem tells us that every tight frame can be
seen as a projection of an orthonormal basis from a larger space.

Theorem 1 [26]7 : A family in a Hilbert space is
a normalized tight frame for if and only if there is a larger
Hilbert space and an orthonormal basis for

so that the orthogonal projection of onto satisfies
, for all .

A. Digression: Frame Interpretation of Filter Banks

Fig. 1 depicts a signal-processing structure called afilter
bank. It has been used extensively in compression as well as
communications (with analysis and synthesis banks reversed)
[33]. Early work in filter banks concentrated on trying to pro-
vide perfect reconstruction, that is, ensure that the output signal
is only a shifted and possibly scaled version of the input signal.
As the field matured, it was recognized that the filter bank
implements a particular, structured linear transform [33]. Most
of the research concentrated oncritically sampledfilter banks,
those with , in which the filter impulse responses are
basis functions from an orthogonal or a biorthogonal basis of

. Some researchers, however, tried to overcome certain
critical sampling restrictions by oversampling, that is, by letting

[34], [17], [18]. Which brings us to frames.
Have a look at Fig. 1 and assume that the filters , ,

, are all of length . The input into the filter
bank is a square-summable infinite sequence . Let
us now understand what such a filter bank is doing. The analysis
filters act on samples at a time and then, due to downsampling
by , the same filters act on the following samples. In other

7This theorem has been rediscovered by several people in recent years: The
first author first heard it from I. Daubechies in the mid-1990s. Han and Larson
rediscovered it in [27]; they came up with the idea that a frame could be obtained
by compressing a basis in a larger space and that the process is reversible. Fi-
nally, it was pointed out to the first author by E.Šoljanin [29] that this is, in fact,
Naimark’s Theorem, which has been widely known in operator theory and has
been used in quantum theory. The theorem was also proved in [28].



KOVAČEVIĆ et al.: FILTER BANK FRAME EXPANSIONS WITH ERASURES 1443

words, there is no overlap. On the synthesis side, the reverse is
true. This process is described by the following matrix equation:

...

...

...

...

...
...

...
...

...

...

...

...

(8)

with

...
...

Since the infinite matrix has a block-diagonal structure, we need
only pay attention to the block —an matrix with
time-reversed analysis filters’ impulse responses as its rows.
This rings a bell. In fact, the matrix is exactly a frame op-
erator as described earlier in (7) and, therefore, the filter bank
as given in Fig. 1 implements a finite-dimensional frame expan-
sion as we explained earlier. (Actually, the form of matrixis
not all that we need; we still require the filters within to satisfy
certain conditions to be explored later.) In other words

(9)

for and (note that since is the
time index, we number the elements offrom to and
those of from to ). Recall, however, that we restricted
the filter length to be , so there is no overlap.8 Lifting this
restriction and allowing our filters to be of length larger than

(though most of the time we will still require them to be of
finite length–FIR), brings us to the topic of this paper and ex-
plains why we restricted the frame vectors to be shifted versions
of prototypes. The prototypes are filters, and shifted
versions arise due to the sliding convolution window and down-
sampling. The frame operator matrixis infinite, and although
it possesses block structure, the blocks overlap. This prevents
us from looking at a single block and forces us to find a simpler
analysis method than dealing with infinite matrices.

We borrow the simpler method from the filter bank literature.
Instead of looking at the infinite, time-domain matrix, we look at
a so-calledpolyphase matrix [33]. The polyphase matrix

8This is called ablock transformin the filter bank literature. A block transform
uses filters of lengthN equal to the downsampling factor exactly as explained
above. The whole procedure can be described by an infinite block-diagonal ma-
trix as in (8).

is based on gathering together samples whose time indexes are
congruent modulo . This allows the system to be analyzed as
time-invariant on vectors of length .

For

is called thepolyphase representation of theth analysis filter9

where

(10)

are thepolyphase componentsfor and
. To relate to a time-domain object, note that it

is the discrete-time Fourier transform of the subsequence
obtained by retaining only the indexes congruent to modulo

. Then is the corresponding analysis polyphase
matrix with elements . In other words, a polyphase de-
composition is a decomposition into subsequences modulo

. When the filter length is , then, each polyphase sequence
is of length . The polyphase matrix reduces to ,
with an antidiagonal matrix;10 that is, becomes inde-
pendent of .

The following result establishes the equivalence between
frames in and polyphase matrices with certain properties.

Proposition 1 (Cvetkovic´ and Vetterli [17]): A filter bank
implements a frame decomposition in if and only if its
analysis polyphase matrix is of full rank on the unit circle.

We now revisit briefly the definition of a UF. The frame is
uniform if for . Applying Parseval’s
relation to this condition, we get that

Since shifted and upsampled polyphase components
and are orthogonal (they

do not overlap in time domain), the above expression is equal to

for [35, p. 52]. We used here the definition of a
polyphase component (10) as well as periodicity.

Although many results generalize from finite dimensions to
, we need a more restricted definition of uniformity than

what is available to us. This leads us to define strongly uniform
frames.

9In the filter bank literature [33], this is usually the definition for the
polyphase representation of the synthesis filter; we reverse the notation for
convenience.

10The matrixJ just reverses the order of columns ofF .
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Definition 1 (Strongly Uniform Frame):A frame expansion
in implemented by an polyphase matrix is
strongly uniform11 if

(11)

for and . This is equivalent to all the
diagonal elements of being .

Clearly, strongly uniform frames are a subset of uniform
frames. If and is uniform, then the cor-
responding frame is strongly uniform. Moreover, a square
paraunitary matrix12 is automatically strongly uniform.

Further examples of strongly uniform frames will be shown
later in this section.

In the remainder of this paper, we will use the frame oper-
ator in finite dimensions and polyphase matrix when
dealing with infinite sequences.

B. Back to Frames

After this filter bank interlude, let us go through certain im-
portant frame notions. Using the frame operator, (5) can be
rewritten as

(12)

It follows that is invertible [16, Lemma 3.2.2], and fur-
thermore

(13)

Then, in finite dimensions, thedual frameof is a frame de-
fined as , where

for (14)

Noting that and stacking , , , in
a matrix, the frame operator associated withis

(15)

Since , (13) shows that and are
frame bounds for .

Another important concept is that of apseudoinverse . It
is the frame operator associated with the dual frame

(16)

Similarly, for infinite sequences, the dual frame is represented
by

(17)

while the pseudoinverse is

(18)

11As before, when we say “strongly uniform,” we will mean “strongly uni-
form with norm1.”

12A square matrixH(!) is calledparaunitaryif

H (!)H(!) = H(!)H (!) = cI; c 6= 0:

Note that for any matrix with rows

(19)

This identity will prove to be useful in many proofs.

C. The Role of Eigenvalues

The products and will appear everywhere;
their eigenstructures play an important role. Denote by’s the
eigenvalues of and by ’s the spectral eigenvalues of

, where a spectral eigenvalue for a fixed is the
eigenvalue of . We could, of course, just analyze
the infinite case and then specialize it to finite dimensions with

when needed. However, we keep the discussions
separate for clarity. We now summarize important eigenvalue
properties.

1) General Frame:For any frame in , the sum of the
eigenvalues of equals the sum of the lengths of the frame
vectors

(20)

For , the integral sum of the spectral eigenvalues
of equals the sum of the filters’ norms

(21)

2) Uniform Frame: For a uniform frame, that is, when
,

(22)

Not surprisingly, the integral sum of spectral eigenvalues
equals as well

(23)

3) Tight Frame: Since tightness means , for a TF, we
have from (5)

(24)

for all . Moreover, according to (13), a frame is a TF if
and only if

(25)

Thus, for a TF, all the eigenvalues of are equal to . Then,
using (20), the sum of the eigenvalues of is as follows:

(26)

If we are dealing with infinite sequences, analogous results
can be formulated. The following is known.
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Proposition 2 (Cvetkovic´ and Vetterli [17]): A filter bank
implements a tight frame expansion in if and only if

.

Proposition 3 (Vaidyanathan [36]):An polyphase
matrix represents a tight frame if and only if it has the
following decomposition:

where is an paraunitary matrix13 and is an
matrix such that , that is, is a tight

frame operator.

Proposition 4 (Cvetkovic´ [35, Theorem 7]): For a frame as-
sociated with an FIR filter bank, with the polyphase analysis
matrix , its dual frame (17) consists of finite-length vec-
tors if and only if is unimodular.14

This result leads us to formulate the following useful property
of TFs.

Corollary 1: Given an FIR analysis polyphase matrix
corresponding to a TF, the synthesis polyphase matrix cor-
responding to the pseudoinverse as in (18) is FIR as well.

Using Proposition 2, we know that .
Since is FIR, is FIR as well. Thus

is unimodular. By Proposition 4, the dual frame (synthesis
polyphase matrix) to is FIR as well. Since scaling
does not affect the FIR property, the dual frame (synthesis
polyphase matrix) to is FIR.

As for the eigenvalues, has eigenvalues constant
over the unit circle and equal to with multiplicity , that is,
for

4) Normalized Tight Frame:If a frame is an NTF, that is,
, then

(27)

for all . In operator notation, a frame is an NTF if and
only if

(28)

For an NTF, all the eigenvalues of are equal to .
Then, using (20), the sum of the eigenvalues of is as

follows:

(29)

The same is, of course, true for an NTF in .

13Moreover, any paraunitary matrix can be decomposed into a sequence of
elementary matrices such as rotations and delays [36].

14Hereunimodularmeans that the determinant ofH (!)H(!) is�1.

5) Uniform Tight Frame: From (22) and (26), we see that

(30)

Then, from (24) and (26)

(31)

for all . The redundancy ratio is then

(32)

Since , the following is obvious:

(33)

The same is true for sequences, that is, has eigen-
values constant over the unit circle and equal to with mul-
tiplicity . Similarly to (33), we see that

(34)

6) Uniform Normalized Tight Frame:If a frame is a UNTF,
that is, we also ask for , then

and, thus, a UNTF is an orthonormal basis.

D. Examples of Uniform and Strongly Uniform Frames

Oversampled filter banks are sometimes preferred to classical
critically sampled filter banks for their greater design freedom.
However, this freedom makes the actual design difficult.

One of the most used families of oversampled filter banks are
nondownsampled filter banks. They are obtained by eliminating
the downsampling in the filter bank scheme. If the analysis and
synthesis filters are power complementary (that is, with FIR fil-
ters, up to a scaling factor, the synthesis filters are the time-re-
versed versions of the analysis ones) then the corresponding
frame is tight and uniform but not strongly uniform.

It will be shown in the following sections that strongly uni-
form tight frames constitute an important class of frames. We
propose the following factorization to design polyphase ma-
trices corresponding to strongly uniform tight frames

(35)

where is an uniform tight frame in and is an
paraunitary matrix. It is easy to see that such a polyphase

matrix corresponds to a strongly uniform tight frame.
Note the difference between this factorization and the one in

Proposition 3 . The order of the elements
is reversed, so in this last factorization, the paraunitary matrix
has size , while in our factorization it has size

. This is not surprising since the family of polyphase
matrices with the factorization represents a
more general class of tight frames and not the restricted class of
strongly uniform tight frames.
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We cannot claim that our factorization includes all possible
strongly uniform tight frames; however, the following is true.

Theorem 2: Define an equivalence relation by bundling a
frame implemented with an FIR oversampled filter bank with
all frames that result from rigid rotations or reflections of the
entire frame as well as negations or shifts of some individual el-
ements (that is, ). When ,
there is a single equivalence class for all strongly uniform tight
frames.

Proof: See the Appendix, Subsection A.

Since a UTF in can be seen as a strongly uniform tight
frame in (that is, ), Theorem 2 basically says
that the factorization in (35) includes all the possible strongly
uniform tight frames when (up to a shift or negation
of some individual elements). Also, when , this
theorem reduces to [8, Theorem 2.6].

For example, the MB tight frame from our simple example
describes all possible UTFs with and in finite
dimensions; the same is true for sequences, that is, the factor-
ization with the MB frame, describes all
possible SUTFs with and .

Unfortunately, when exceeds , there are uncountably
many equivalence classes of the type described above; thus, we
cannot systematically obtain all uniform tight frames. However,
at least for , UTFs still have a simple characterization.

Theorem 3 (Goyal, Kovačević, and Kelner [8, Theorem
2.7]): The following are equivalent:

1) is a uniform tight frame;

2) where for .

Thus, a simple combination of our factorization (35) together
with the complete characterization of UTFs for given
by the above theorem, produces a useful (although probably not
complete) factorization of SUTFs.

E. Harmonic Frames

We now turn our attention to an important family of frames—
harmonic tight frames(HTF). These frames are obtained by
keeping the first coordinates of an discrete Fourier
transform basis. They will prove to be useful for our application.

A complex HTF is given by

(36)

for and , where .
A real HTF could be defined similarly [8]. A more general defi-
nition of the harmonic frame (general harmonic frame) is given
in [37].

As a direct consequence of Theorem 2, we see that any UTF
with is equivalent to the HTF with .
This is a very useful result since we have HTFs for anyand

; thus, for , we always have an expression for all
UTFs.

Another interesting property of an HTF is that it is the only
NTF with equal-norm elements which are generated by a group
of unitary operators with one generator, that is,

where is a unitary operator [37], [38].
Moreover, HTFs have a very convenient property when it

comes to erasures. We can erase any elements
from the original frame; what is left is still a frame [8, Theorem
4.2]. This will be extended in Section V-A to frames represented
by where is an HTF (Theorem 6).

IV. QUANTIZED FRAME EXPANSIONS IN AND

In this section, we will analyze the effect of quantization
under a very simple model. For the moment we assume that
there are no erasures during transmission. We want the recon-
struction operator to be linear, that is, we want it to be imple-
mented by a synthesis filter bank. The reconstruction operator
that we will use is the pseudoinverse (18).

We will assume that the quantization error can be treated as
additive white noise with variance , where rep-
resents the step size of the quantizer and each quantizer has the
same step size. We further assume that the noise sequences gen-
erated by two different channels are pairwise uncorrelated. This
can be expressed as

(37)

for , and

(38)

Now comes the justification of a pseudoinverse. Under this as-
sumption (input sequences corrupted by additive white noise),
the pseudoinverse in (16) is the best linear reconstruction oper-
ator in the mean-square sense [16]. The same could be shown
for (18). Moreover, in Appendix, Subsection B, we show that
the MSE due to quantization is

MSE (39)

(40)

where , denote the spectral eigenvalues of
. We will be using the above two expressions in-

terchangeably. Recall that the integral sum of the eigenvalues is
constant and if we are encoding with a uniform frame, it is equal
to . Thus, we want to minimize the MSE given the constraint
that the integral sum of the eigenvalues is constant. This occurs
when the eigenvalues are equal and constant overwhich is
true if and only if the original frame is tight. We can then state
the following theorem.

Theorem 4: When encoding with a filter bank implementing
a uniform frame and decoding with the pseudoinverse under the
noise model (37) and (38), the MSE is minimum if and only if
the frame is tight. Then

MSE (41)
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This optimality of TFs among UFs holds also for
[8]. This makes sense, since the only difference in the expression
for the MSE given by (40) is that the eigenvalues depend on.
Since the proof of the theorem is essentially the same as the
corresponding proof in [8], we omit it here.

A. A Note on Linear Reconstruction

We have assumed the use of a linear reconstruction algorithm.
In the implausible case that the input and output of each quan-
tizer are jointly Gaussian, linear reconstruction is necessarily
optimal. Otherwise, some nonlinear estimate will generally be
better, but determining such an estimate requires knowledge of
the input signal distribution and is computationally difficult. Of
particular present concern is that a simple and explicit recon-
struction algorithm facilitates the analysis and optimization of
the system.

One alternative to linear reconstruction is calledconsistent re-
construction. Consistent reconstruction is based on viewing the
encoder (analysis filter bank and quantization) as partitioning
the input signal space. Any estimate in the same partition cell
as the true signal will produce the same quantized output and
hence is said to be “consistent” with the true signal. Consistent
estimates depend on the filter bank and quantizers, but not on the
input signal distribution. Nevertheless, in many scenarios, con-
sistent reconstruction performs within a constant factor of op-
timal reconstruction while linear reconstruction is much worse
[20], [39], [40], [8], [21]. Empirical evidence presented in [8]
suggests that the MSE under the assumption of linear recon-
struction is a reasonable objective function even if consistent
reconstruction is used.

V. INTRODUCING ERASURES

Here we consider the effect of erasures on the structure of the
frame and on the MSE. We denote bythe index set of erasures
and by the polyphase matrix after erasures.

is an matrix obtained by deleting the
-numbered rows from the polyphase matrix . The

first question to be answered is under which conditions
still represents a frame. We then study the effect of erasures on
the MSE.

It is interesting to note that there are families of frames for
which the properties of the frame after erasures do not depend
on the actual frame element removed. An example is the class
of geometrically uniform frames [41].

A. Effect of Erasures on the Structure of a Frame

Our aim is to use the pseudoinverse of to reconstruct
after erasures. The pseudoinverse matrix is defined only if the
matrix still represents a frame, that is, if and only if it
is still of full rank on the unit circle. This leads to the following
definition.

Definition 2: An oversampled filter bank which implements
a frame expansion represented by a polyphase matrix is
said to berobust to erasureswhen for any erasure set with

, is of full rank on the unit circle.

Let us consider first the case where there is only one erasure.

Theorem 5: An oversampled filter bank which implements a
uniform tight frame is robust to one erasure if and only if

for and for all .
Proof: See the Appendix, Subsection C .

Recall that with an SUTF

for and for all . In finite dimensions, a UTF
is always robust to one erasure [8, Theorem 4.1]. This is easily
seen from the above theorem if we substitute , that
is, and

since it is a uniform frame and .
A consequence of the previous theorem is as follows.

Corollary 2: Any oversampled filter bank which implements
a strongly uniform tight frame is robust to one erasure.

Theorem 5 does not reveal anything about the existence of
filter banks that are robust to more than one erasure. However,
it has been shown that an HTF in is robust to erasures
[8]. This can be used to show the existence of a family of SUTFs
in that are robust to erasures for .

Theorem 6: Consider an oversampled filter bank with a
polyphase matrix , where is an HTF in ,
and is an polyphase matrix nonsingular on the
unit circle . This filter bank is robust to
erasures .

Proof: See the Appendix, Subsection D.

If is a paraunitary matrix, the resulting oversampled
filter bank represents an SUTF robust to
erasures .

B. Effect of Erasures on the MSE

In the preceding section, it was shown that it is possible to
design oversampled filter banks which are robust up to
erasures. We assume such filter banks for the rest of the paper.

Now, we want to compute the effect of the erasures on the
MSE. Call the polyphase matrix related to the original
frame and the polyphase matrix after erasures.
The reconstruction uses the dual polyphase matrix and
the quantization model is the one proposed in (37) and (38).
Under these assumptions, the MSE is equivalent to that deter-
mined in (39) and (40)

MSE (42)

(43)

where , for are the spectral
eigenvalues of .
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However, our target is to express the MSE in terms of the
original frame and to find properties that the original frame op-
erator has to satisfy to minimize the distortion. Consider first a
strongly uniform frame and :

Theorem 7: Considerencodingwithastronglyuniformframe
and decoding with linear reconstruction.TheMSEaveraged over
all possible erasures of one channel is minimum if and only if
the original frame is tight. Moreover, a tight frame minimizes the
maximum distortion caused byone erasure. TheMSE is given by

MSE MSE (44)

where MSE is given by (41).
Proof: See the Appendix, Subsection E.

It is hard to extend this theorem to cases with more than one
erasure. However, it is possible to compute the MSE with
when the original frame is strongly uniform and tight

MSE MSE

(45)

where are the spectral eigenvalues of and
is the polyphase matrix of erased components with

columns . The derivation of (45) follows closely
that for in [8], so we omit it here.

Note first that with one erasure

and thus the single eigenvalue , reducing (45) to (44).
Expression (45) is similar to (40), and the spectral sum of the
eigenvalues of is constrained to be a constant, that is,

Thus, the minimum in (45) occurs when all the eigenvalues are
equal to if possible.

If , it is indeed possible to have , for
. This occurs if and only if the erased vectors are

pairwise orthogonal. Then and (45) gives

MSE MSE

If , it is not possible to have eigenvalues equal to
because there will be at most nonzero eigenvalues in the

matrix . Denoting the nonzero eigenvalues

MSE MSE

This MSE is minimized when , ,
which occurs when the erased elements form a tight frame.
When any erasure event is possible—meaning any combination
of switches may be open in Fig. 1—it is not possible to make

always correspond to a tight frame. There are situations
in which the number of “physical” channels (separate transmis-
sion media) is less than the number of branches in the analysis
filter bank. In this case, there may be sets of channels that are
each completely lost or completely received and then it may be
possible for the erased vectors to form a tight frame.

VI. CONCLUDING REMARKS

Given the recent surge of interest in frames and their appli-
cations, we continued the previous work of two of the authors,
where frames are elements of or . In this work, we al-
lowed our frame elements to be from . Moreover, we re-
quire these frames to have a filter bank implementation.

We investigated the robustness of such frames to erasures after
quantization.We found thatanyUTF is optimal whennoerasures
are present (Theorem 4). When there is one erasure, we know that
any oversampled filter bank which implements an SUTF is ro-
bust to one erasure (Theorem 5) and minimizes the MSE (The-
orem 7). When there are erasures, depending on whether
is smaller or larger then , the minimum in (45) occurs when
the erased elements are either orthogonal or form a tight frame.

The results in this paper thus present what is known to date
about frames which have a filter bank implementation when
subjected to erasures. Some related issues include classifica-
tion of UTF robust to particular sets of erasures [37] and finding
other frame families with properties similar to those HTFs such
as efficient computation and robustness to erasures. Moreover,
we are investigating the use of frames in multiple-antenna wire-
less systems [42].

APPENDIX

PROOFS

A. Proof of Theorem 2

Given a strongly uniform tight frame represented by the
polyphase matrix , all the other polyphase matrices
related to the same equivalent class are obtained as follows:

(46)

where is an paraunitary matrix,
, and , , .

This equivalence class preserves tightness, uniformity, and
strong uniformity. Thus, if is strongly uniform and tight,
so is .

Now, let be a polyphase matrix associated with an
SUTF with . It can be shown that it consists of
the first columns of a scaled parauni-
tary matrix . Each row (or column) of is of norm

, that is,

(47)

for . Moreover, since our frame is strongly
uniform we have

(48)

for . Subtracting (48) from (47) we obtain

Since is realized with FIR filters, it is formed only of Lau-
rent polynomial elements. This implies that must be
a monomial: , . Without loss
of generality we assume that . That is,
the last column of is
for some choice of signs.
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Any given choice of signs in determines a sub-
space. Thus, the span of the othersubspaces (each subspace
is related to one of the channels) must be the orthogonal comple-
ment to this subspace. Since orthonormal bases for a subspace
are unitarily equivalent, the possible tight frames corresponding
to a single choice of signs are in the same equivalence class.
Flipping signs yields frames in the same equivalence class.

B. Derivation of (40)

We now find the error of the reconstruction after the frame
coefficients have been quantized

MSE

C. Proof of Theorem 5

Assume that the erased channel is . Call the
polyphase matrix after one erasure. Using (19), we get

(49)

is a frame if and only if is of full rank
on the unit circle. That means that must
exist on the unit circle. The identity

(50)

with , , , and
yields

Thus, the matrix is invertible if and only if

for all . The desired inequality now follows from the fact that
the frequency response of each filter is continuous (since we
are only considering FIR filters) and the frame is uniform. The
continuity of the filters implies that ,
for all or , for all . However, since
the frame is uniform, that is,

then , for all .

D. Proof of Theorem 6

First note that if a finite set of channels has a subset that is a
frame, then the original set of channels is also a frame. Thus, it
suffices to consider subsets with channels; since all of these
will be shown to be frames, larger subsets are also frames.

Let us call the polyphase matrix after
erasures. is a frame if and only if on

the unit circle. Now, we know that for any subset
of erasures [8] and since

for all .

E. Proof of Theorem 7

As in the proof of Theorem 5, assume that the erased channel
is . Call the polyphase matrix after one erasure.
Then (49) holds. According to (42), the average MSE with one
erasure is

MSE

Call

Note that is an matrix, while is a scalar. With
that, (49) can be rewritten as

We now find

where we used (50) with , , , and
. Taking the trace of both sides gives
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since both and are scalars and
the trace of a product is invariant to the cyclic permutation of
the factors. The average MSE becomes

MSE

The first term of the preceding equation is minimized if and only
if the frame is tight (since

). We show now that the second term is mini-
mized as well if and only if the frame is tight. We can say that

(51)

Here we used [8, Lemma A.1] which is valid for SUFs and al-
lows us to exploit the following inequality:

Since we have the constraint

the equality and minimization of (51) occur if and only if the
original frame is an SUTF. This condition minimizes the max-
imum error as well. The arguments are identical to those in [8];
we refer the reader to [8] for more details.
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[38] P. G. Casazza and J. Kovačević, “Uniform tight frames for signal pro-
cessing and communications,” inProc. SPIE Conf. on Wavelet Applica-
tions in Signal and Image Processing, San Diego, CA, July 2001, pp.
512–521.

[39] S. Rangan and V. K Goyal, “Recursive consistent estimation with
bounded noise,”IEEE Trans. Inform. Theory, vol. 47, pp. 457–464,
Jan/ 2001.

[40] V. K Goyal, Single and Multiple Description Transform Coding With
Bases and Frames. Philadelphia, PA: SIAM, 2002.

[41] H. Bolcskei and Y. Eldar, “Geometrically Uniform Frames,” Preprint,
2001.
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