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Abstract—We study frames for robust transmission over the In- The mathematics of frames can be found in several excel-
ternet. In our previous work, we used quantized finite-dimensional  |ent sources. The original work by Duffin and Schaeffer intro-
frames to achieve resilience to packet losses; here, we allow theq,ced frames for Hilbert spaces [9]. The paper by Daubechies
input to be a sequence gz (Z) and focus on a filter-bank imple- - ) L !
mentation of the system. We present results in paralleR™ or C¥ Grossman, and Meyer [11] dlspusses gppllcatlons to wavelet
versus,(Z), and show that uniform tight frames, as well as newly and Gabor transforms. A beautiful tutorial on the art of frame

introduced strongly uniform tight frames, provide the best perfor-  theory was written by Casazza [12]. Some particular classes of

mance. frames have been extensively studied: Gabor frames (also called
Index Terms—Frames, multiple descriptions, oversampled filter Weyl-Heisenberg frames) are described by Heil and Walnut in
banks. [13] and by Casazza in [14], while the paper [15] and the book

[16] by Daubechies offer excellent introductions to frames and,
in particular, wavelet and Gabor frames.

Frames, or redundant representations, have been used in
ARON D. Wyner, to whom this issue and this paper ardifferent areas under different guises. Perfect reconstruction
dedicated, had a profound impact on information theoxyersampled filter banks are equivalent to frame</4(Z).

and on his colleagues—including the first and third author$he authors in [17]-[19] describe and analyze such frames.
Among Wyner’'s varied contributions were the conceptioRrames show resilience to additive noise as well as numerical
and development of source coding problems that generalizdbility of reconstruction [16]. They have also demonstrated
Shannon’s basic point-to-point communication problem [1]-[5tesilience to quantization [20], [21]. Several works exploit the

Network source coding problems inspired in part by Wynergreater freedom to capture significant signal characteristics
work currently occupy many theoreticians and compressiovhich frames provide [22]-[24]. Frames have been used to
practitioners. design unitary space—time constellations for multiple-antenna

This paper concerns the analysis of one framework for comireless systems [25]. Finally, although a well-known result by a

municating infinite sequences over a set of parallel channdiyssian mathematician M. A. Naimark-Naimark’s Theorem
each of which is either noiseless or does not work at all. Ti26]—has been widely used in frame theory in the past few
channel model gives a general form of multiple descriptioyears [8], [27], only recently have researchers recast certain
coding [6]. The transmitted information is generated with guantum measurement results in terms of frames [28], [29].
filter bank and scalar quantization, as shown in Fig. 1. The filter The bibliography on frames is vast; the list given above is
bank implements a frame expansion; thus, the structure itselt a sample. The reader is encouraged to check the references
and the techniques for analysis and design are generalizatiahsve and the ones within for more uses of frames and further
of results for finite-dimensional vectors in [7], [8]. technical details.

. INTRODUCTION

A. Frames B. Structure of the Proposed System

Frames have become ubiquitous. They started as a matheAs in previous work of two of the authors [8], our aim is to
matical theory by Duffin and Schaeffer [9], who provided a@xploit the resilience of frame expansions to coefficient losses.
abstract framework for the idea of time—frequency atomic déhis resilience is a result of the redundancy a frame represen-
composition by Gabor [10]. The theory then laid largely dotation brings. In the earlier work, the frame elements belong to
mant until 1986 with the publication of the work by Daubechie®” (or C*) and can be seen as filters in a block-transform filter
Grossman, and Meyer [11]. Since then, frames have evolved ih@k. Here, we investigate frames with element(iZ ); they
a state-of-the-art signal processing tool. can be seen as filters in a general, oversampled filter bank.

Consider the model depicted in Fig. 1. An input sequence

Manuscript received July 25, 2001, revised December 13, 2001. a:[n] is fed throth ad{-channel flnl_te-lmpulse response (FIR)

J. Kovaevicis with Bell Labs, Murray Hill, NJ 07974 USA (e-mail: jelena filter bank followed by downsampling byv (N < M). The
@bell-labs.com). M output sequences are then separately scalar quantized with

P. L. Dragottiis with EPFL, Lausanne, Switzerland (e-mail: Pierluigi.Dragot{niform scalar quantizers and sent owdrdifferent channels.

@epfl.ch). .
V. K Goyal is with Digital Fountain, Fremont, CA 94538 USA (e-mail: EACh channel either works perfectly or not at all. The decoder

v.goyal@ieee.org). receives onlyM — e of the quantized output sequences, where
Communicated by S. Shamai, Guest Editor.
Publisher Item Identifier S 0018-9448(02)04007-5. 1A common alternative spelling dlaimarkis Neumark

0018-9448/02$17.00 © 2002 IEEE



1440 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 48, NO. 6, JUNE 2002

analysis filter bank . synthesis filter bank

hy QN ) Q1 @_ [ef]

@ o —A |

Fig. 1. Abstraction of a lossy network with a frame expansion implemented by an oversampled finite-impulse response (FIR) filter bank. An inpeit-gelque

is fed through an\/-channel FIR filter bank that includes downsampling/8y(.N < M). The M output sequences are then separately scalar quantized with
uniform scalar quantizers and sent ovérdifferent channels. Each channel either works perfectly or not at all. The decoder receivé$ entyof the quantized
output sequences, whetas the number of erasures during the transmission. We assume there are no mare-thah erasures. The reconstruction process is
performed by the synthesis filter bank. The choice of synthesis filters depends on which channels are received.

there are no more tham/ — IV erasures. The reconstructior
process is linear. We wish to find properties of the filter bank
that minimize the mean square error (MSE) between the ing
and the reconstructed sequences.

To analyze cases with more th&#h— IV erasures requires a -
statistical model for the input sequence. In [30]-[32], the inp!
sequence is a stationary Gaussian source; in [30], [32]thec /.3 nT \
M = N = 2 and one erasure is considered, while in [31] th ®2 ~ ['7"5)
caseM =3 and N =2 and up to two erasures is analyzed. I
this work, we do not make any assumptions on the input sour
Rather, a statistical model for the quantization error makes the

reconstruction quality depend only on the characteristics of thi@. 2. Mercedes-Benz frame: A uniform tight frame with three vectors in two
fil dimensions. Itis a representative of the whole class of uniform tight frames with
ilter bank. N =2 Mz3

e is the number of erasures during the transmission. We assL t

We first go through the basics of frame expansion&lin
(whereHy denotes a finite-dimensional space suclR&sor
CV) and/»(Z). We introduce the notion of strongly uniformWwith linearly dependent vectorg; = —y2 —3). We can write
frames and discuss several examples. We then quantize ahgz € R? as
frame coefficients and find the MSE. Finally, we let some
coefficients be erased (mimicking the losses in a network) & = <$1>

and discuss the effect on both the structure of the frame and T2

the MSE. Although we could present only the results for 2 [0 2( 3 1 —V/3/2
H = /5(Z) and specialize them t&l = Hy when the filter — 32 <1> T3 <_7$1 - 5“) < ~1/2 )
length isN, we present the known results fil [8] and the

new ones foré(7) in parallel; the simple geometry dfl +2 @x _ lx <\/3/2>

makes results feel more intuitive. 3\ 2 27 -1/2)°

A few words about notation: superscripidenotes the Her-

mitian transpose (complex conjugation as well as transpositibfiS expression looks like it came out of the blue; however, |fwe.
in case of vectors and matrices). In the filter bank literature, /RO more closely, we note that it can be expressed as follows:

is customary to denote matrices by bold capital letters; we will 3
depart from this convention here to be consistent with the frame T = Z (@i, T (2)
notation. Py

[OCT I V]

The above equation looks suspiciously like the expansion for-

II. SIMPLE EXAMPLE mula using an orthonormal basis with basis vectprs That

We are given the following set of three vectordifu is, except for the terrg/3. However, even that seems to make
e o sense; we are normalizing our expansion by the factor that tells
© ={¢1, 3, p3} us what the “redundancy” of the system is, that is, how many

— {(07 1)", (_\/3/27 _1/2>* 7 (\/3/27 _1/2>*} (1) more vectors we have than what we would have needed to rep-
) _ ) _ - resent vectors ifk2. Moreover, the energy in thteansform co-
(see Fig. 2). This set is obviously not a basis, since it has m@icients X; with

vectors (three) than needed to represent vectoR®Ziritwo).
However, it can still be used to represent vectors fRigalbeit X; = {p;, ), i1=1,2,3 X=(X1, Xq, X3)*
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is with an orthonormal basisthe MSE= o2 (take the usual or-
thonormal basig; = (1, 0)*, ¢2=(0, 1)* and repeat the above
MSE calculations), while with our frame, the MSE2/3)o?,
a reduction of the error by one third.
Recall, however, that our intention was to use frames to pro-
that is, it is(3/2) times that in the input vector. Fairly intuitive. Vide robustness to losses. Assume, thus, that one of the quan-
Thus, it seems that what we obtained is slightly more pagized coefficients is lost, for exampl&,. Does our MB frame
ticular than just a random collection of three vectors. In fadhave further nice properties when it comes to losses? Note first,
what we have is drame and not just any frame, it is ani- that even withp, not present, we can still uge andyps to rep-
form tight frame(this particular frame is calledMercedes-Benz résent any vector ift*. The expansion formula is just not as
(MB) frame)? We can thus think of this frame as a generalizglegant
tion of an orthonormal basis. As we will see in Section 111-C3,
atight frame satisfie§™ F = AI whereF is the matrix having v= > (¢, )
elements of as its rows. Auniformframe contains all vectors
of norm1, as is the case in our example, aAds theredun- with

dancy ratio3/2. 5y = <1/1\/§>’ G = <2/8/§>,

3

3
X112 = 37 Wi )2 = 5 Jlal?
i=1

Pi 3)

i=1,3

Suppose now that we perturb our frame coefficients by adding
white noisew; to the channel, whereE[w;] = 0, E[w;wy] =
o268, fori, k=1, 2, 3. Using (2), we can find the error of the Repeating the same calculations as above for the MSE, we get

(4)

reconstruction that
2
2 & 2 & 1 1
ol _— .  — o o o _— J— Lol 2 e . ~4
L= = 3 £ (w, vi)pi 3 i§=1 ({z, i) +wi)pi MSE[?} 5 Ellz —z|° = 2 E i=§1 , WiPi
3
2 Z _1 2 Z =2 _ﬂ 2
:_5 i=1 e 2 ’ i=1,3 H%H - 30

that is, twice the MSE without erasures. However, the above
calculations do not tell us anything about whether there is an-
5 5 other frame with a lower MSE. In fact, given that one element
2 Z i is erased, does it really matter what the original frame was?
3 & iPi It turns out that it does. In fact, among all frames with three
T ) = ) norm-l frame vectors ifR?, the MSE averaged over all possible
_z 025 Z llo:||? = s 2.3 = - o2 erasures of one coefficientis minimized when the original frame
t=1

Then, the averaged MSE per component is

1 1
MSE=_E|z—z||?*= - E
2 2

2 is tight [8]. For a hint of the general result, as before, perturb

the first vector by (and as before, be aware that this does not
since all the frame vectors have noim give us the most general uniform frame). Erasing one element
The above result will show another particular property of that a time, compute the new inverse of the matrix formed by the
frame we chose so “randomly.” Namely, among all other framé&&maining vectors and compute the MSE in each case. We get

with three normt frame vectors iR?, this particular one (and 4,

the others in the same class, as will be shown later) minimizes MSE(}, = 37

the MSE. We can see this if we perturb the first vectorcby MS ) 4
. . _ . * _ =0

radians clockwise.lt then_becomes;;]L = (sin e, cos ) E De ) 9 + cos 20 + /3 sin 2

note the new frame matrix b} and find the new left inverse ) 4

of F,. Repeating the above calculation, we get that the MSE is MS =0 .
L peating v dlatl weg : E{g} 2+Cos2a—\/§sin2oc

1, 3 The average MSE with one erasure is then
MSE= -¢"————.

27 9/4 — (sinw)? 1

| - MSE; = 3 (MSE(y) +MSE(z) + MSE(y))
This MSE is minimized whem = 0; we are back to the MB _

frame! Moreover, our discussion justifies the statement in the _4 2 15+10cos2a + 2cosda
introduction that frames provide resilience to quantization; 9 (14 2cos2a)?

The above expression is minimized when= 0; back to the
2We will see later that this is true only for the so-called uniform tight framesyB frame once more!

3We call this frame a Mercedes-Benz frame since the geometric configuration
of its vectors brings to mind the Mercedes-Benz car logo. 5The orthonormal basis minimizes the MSE among all two-dimensional
40Of course, perturbing just the first vector does not give us the most gendakes; take, for example; = (cos «, sina@)*, 2 = (0, 1)*. The MSE is
frame inR?; we neglect this issue for simplicity and refer the reader to [8] fof202)/(1 + cos 2«). This expression is minimized fer = 0, that is, for an
a more general treatment. orthonormal basis.
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What we have done in this simple example is to show th aII frames
types of issues that arise when trying to use frames to provi
robustness. We have shown this when the frame elements |
long to a finite-dimensional space suchRgs since the demon-
strations are simple and the geometry intuitive. As mentione
previously, we extend these results to the frame elements frc
£5(Z); this simple example should serve as a guideline.

[ll. FRAME EXPANSIONS INHpn AND £2(Z)

We can now define frames more precisely. What we have se
in our simple example will generalize. We will find other frames
with properties similar to those the MB frame possesses (su

as conservation of energy). R memiane a;usz:gmes Uy
A set Of VeCtorSI) = {@i}ic[ Ina Hllbert SpaC&[ IS Ca-"ed * UTF1 mt\?o?r%r??glht frames Tone gratsheosnormal « UNTF Egng:::r:grsmallzed
aframeif with norm tight frames

Fig. 3. Frames at a glance. Note that here we denote by UF uniform frames
2 2 2 with the same norm, not necessaiilyWwhen the norm i, we say so explicitly,
< <
0< A||a:|| z; | Pir & | B||a:|| < oo (5) as in UF1, that is, uniform frames with nortm
S
elements in each vector). For the latter, we will examine a par-

for all z # 0, wherel! is the index set and the constants B
ticular class of frames with vectors which are shifted versions
are calledrame boundsin this paper, we concentrate only on
of M prototype ones. This will become clear in a moment.

the N-dimensional real or complex Hilbert spadeS andC™ The following theorem tells us that every tight frame can be
(which we denotdH 5) with the usual Euclidean inner product 9 ylg

and on the Hilbert space of square-summable sequdiices seen as a projection of an orthonormal basis from a larger space.
£2(Z) with the inner product Theorem 1 [26]: A family {¢;}.-7 in a Hilbert spaced is
a normalized tight frame foH if and only if there is a larger
_ Z oy Hilbert spaced C K and an orthonormal basig:; };cr for
e K so that the orthogonal projectiaf of K onto H satisfies
Pe; = ¢;, foralli € 1.

il

For the former® = {¢;}}, C Hy while for the latter® = : . , ,
A. Digression: Frame Interpretation of Filter Banks
{eiticz C £2(2). _ ) _ _ .

When A = B, the frame igight (TF). If A = B = 1, the Fig. 1 depicts a signal-processing structure callefilter
frame isnormalized tigh{NTF). A frame isuniform(UF) ifall bank It has been used extensively in compression as well as
its elements have norms ||¢;|| = 1. For a UTF, the frame communications (with analysis and synthesis banks reversed)
boundA gives theredundancy ratid(it is 3/2 in our example). [33]. Early work in filter banks concentrated on trying to pro-
A UTF which is also normalized, that is, with = 1, is an Vide perfect reconstruction, that is, ensure that the output signal
orthonormal basis (ONB). Fig. 3 helps to clarify the “alphabes only a shifted and possibly scaled version of the input signal.

soup” of frames. As the field matured, it was recognized that the filter bank
A frame operator” maps the Hilbert spacH into ¢2(1) implements a particular, structured linear transform [33]. Most
of the research concentrated aritically sampledfilter banks,
(Fz); = (¢, ), forie I (6) those withA/ = N, in which the filter impulse responses are

basis functions from an orthogonal or a biorthogonal basis of
. Some researchers, however, tried to overcome certain
cal sampling restrictions by oversampling, that is, by letting
M > N [34], [17], [18]. Which brings us to frames.
Have a look at Fig. 1 and assume that the filtess.], g;[n],
i = 1,..., M, are all of lengthN. The input into the filter

The frame operator can be represented by a matrix whose rg \&%
are the transposed frame vecteis WhenH = Hy, the frame
operator is am/ x N matrix

P PN bank is a square-summable infinite sequerjed € £(Z). Let
= . o . (7) Usnow understand what such a filter bank is doing. The analysis
' ' filters act onV samples at a time and then, due to downsampling
v Pun by N, the same filters act on the followin§ samples. In other

. . _ "This theorem has been rediscovered by several people in recent years: The
while with ' = £,(Z), the frame operator is an infinite ma- first author first heard it from I. Daubechies in the mid-1990s. Han and Larson

trix (infinite number of frame vectors and infinite number ofediscovered itin [27]; they came up with the idea that a frame could be obtained
by compressing a basis in a larger space and that the process is reversible. Fi-
nally, it was pointed out to the first author by oljanin [29] that this is, in fact,
6Actually, the definition of a UF is more general; the norm is allowed to bdlaimark’s Theorem, which has been widely known in operator theory and has
¢ # 1. In this work, however, we consider only UF with noidm been used in quantum theory. The theorem was also proved in [28].
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words, there is no overlap. On the synthesis side, the reversisibased on gathering together samples whose time indexes are
true. This process is described by the following matrix equatiooongruent moduldv. This allows the system to be analyzed as
time-invariant on vectors of lengti'.
Fori=1,..., M

v1[0] «[0] Hy(w) = [Ha(w), Hio(w), - ... Hiy(@)]
T ' is called thepolyphase representation of thi analysis filte?
ym (0] | Fooo [N — 1] @© where
: : sz(w) = Z hZ[TLN + k- 1]6—jnw (10)
yar[1] H 22N — 1]
are thepolyphase componenfer : = 1, ..., M andk =
: : 1, ..., N.TorelateH;;(w) to atime-domain object, note that it
_"y — _\;—’ is the discrete-time Fourier transform of the subsequénpjed
obtained by retaining only the indexes congruerittd modulo
with N.ThenH (w) is the corresponding/ x N analysis polyphase
matrix with elementd4;;, (w). In other words, a polyphase de-
hi[N =1 - hy[0] composition is a decomposition inf¥ subsequences modulo

N. When the filter length isV, then, each polyphase sequence

I= : : is of lengthl. The polyphase matrix reduces ljw) = F'J,
hat[N =11 -+ hpy[0] with ./ an antidiagonal matris¢ that is, H(w) becomes inde-
pendent ofu.

Since the infinite matrix has a block-diagonal structure, we needThe following result establishes the equivalence between
only pay attention to the block'—an M x N matrix with frames iné2(7) and polyphase matrices with certain properties.

time-reversed analysis filters’ impulse responses as its rOWSProposition 1 (Cvetkoviand Vetterli [17]): A filter bank

This rings a bell. In fact, the matriX' is exactly a frame op- . " . .
: Lo ' implements a frame decompositiondg(Z) if and only if its
erator as described earlier in (7) and, therefore, the filter ban . L L2

) L . 7 : . analysis polyphase matrix is of full rank on the unit circle.
as given in Fig. 1 implements a finite-dimensional frame expan-

sion as we explained earlier. (Actually, the form of mat¥ixs We now revisit briefly the definition of a UF. The frame is

not all that we need; we still require the filters within to satisfyiniform if ||2;[n]|| = 1 for< =1, ..., M. Applying Parseval's
certain conditions to be explored later.) In other words relation to this condition, we get that
AN — 1 =
#in = iV =] & 1= fnl? = 5 | 1Hi)P do.
2 J_,
fori =1,..., Mandn =1, ..., N (note that since: is the

time index, we number the elements/gffrom 0 to V — 1 and Si’?@ﬁ shifted ~ and ygsamp'ed polyphase ~ components
those ofg; from 1 to V). Recall, however, that we restricted® ~~ Hix(Nw) and ¢™“*Hy(Nw) are orthogonal (they
the filter length to belV, so there is no overlap Lifting this do not overlap in time domain), the above expression is equal to
restriction and allowing our filters to be of length larger than
N (though most of the time we will still require themtobeof 1 (™ 9 1
|Hi(w)? do =
™

~ N
2
finite length—FIR), brings us to the topic of this paper and ex- 2, Z | Hir(Nw)|” dw

plains why we restricted the frame vectors to be shifted versions - ’“:1

of M prototypes. Thel! prototypes areV! filters, and shifted 1" Z | Hyp(w)|2dw = 1
versions arise due to the sliding convolution window and down- 7 . Pt ok B
sampling. The frame operator matiikis infinite, and although B

it possesses block structure, the blocks overlap. This prevepys; — 1, ..., M [35, p. 52]. We used here the definition of a

us from looking at a single block and forces us to find a Simp'%rolyphase component (10) as well as periodicity.

analysis method than dealing with infinite matrices. Although many results generalize from finite dimensions to
We borrow the simpler method from the filter bank Ilteratur%(z)’ we need a more restricted definition of uniformity than

Instead of looking at the infinite, time-domain matrix, we [00k af 5t s available to us. This leads us to define strongly uniform
a so-callecpolyphase matrix{ (w) [33]. The polyphase matrix omas.

8This is called lock transformin the filter bank literature. A block transform ~ °In the filter bank literature [33], this is usually the definition for the
uses filters of lengtiV equal to the downsampling factor exactly as explaineRolyphase representation of the synthesis filter; we reverse the notation for
above. The whole procedure can be described by an infinite block-diagonal fR@nvenience.
trix as in (8). 10The matrixJ just reverses the order of columnsiof
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Definition 1 (Strongly Uniform Frame)A frame expansion

in Z2(Z) implemented by aid/ x N polyphase matri¥{ (w) is
strongly uniform? if

N
S Hu(w)? =1 (11)
k=1

fore =1, ..., M andw € [—w, «]. Thisis equivalent to all the

diagonal elements dff (w)H*(w) beingl.

Clearly, strongly uniform frames are a subset of unifo”@igenvalues of * F and by
frames. If H(w) = FJ and F is uniform, then the cor- H*(w)H (W)
responding frame is strongly uniform. Moreover, a Squafﬁgenvalue o * (wo) H(wo)

paraunitary matri® is automatically strongly uniform.

Further examples of strongly uniform frames will be show%[

later in this section.
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Note that for any matri¥" with rows ¢}

M
F'F=Y" g

=1

(19)

This identity will prove to be useful in many proofs.

C. The Role of Eigenvalues

The productd™ F andH*(w) H(w) will appear everywhere;
their eigenstructures play an important role. Denote By the
(w)'s the spectral eigenvalues of
, Where a spectral eigenvalue for a fixegl is the

wo)H (wp). We could, of course, just analyze
the infinite case and then specialize it to finite dimensions with
(w) = F'J when needed. However, we keep the discussions
separate for clarity. We now summarize important eigenvalue

In the remainder of this paper, we will use the frame Opeﬁ'roperties

ator I in finite dimensions and polyphase matiik(«) when
dealing with infinite sequences.

B. Back to Frames

After this filter bank interlude, let us go through certain im-

portant frame notions. Using the frame operakgr(5) can be
rewritten as

Al < F*F < BI. (12)

It follows that F* I is invertible [16, Lemma 3.2.2], and fur-

thermore
B (F*F)' <AL (13)

Then, in finite dimensions, theual frameof ¢ is a frame de-
fined as® = {¢;},, where

@i = (F*F) Lo, fori=1,..., M. (14)

Noting thatg} = ¢} (F*F)~* and stacking}, ¢5, ..., ¢}, in
a matrix, the frame operator associated vditiis

F=FFF), (15)

Since F* I = (F*F)~1, (13) shows thaB~! and A~ are
frame bounds for.

Another important concept is that ofpseudoinversé™. It
is the frame operator associated with the dual frame

1) General Frame:For any frame inHy, the sum of the
eigenvalues of ™ I' equals the sum of the lengths of the frame
vectors

(20)

N M
Do =D el
k=1 i=1

For H = £,(Z), the integral sum of the spectral eigenvalues
of H*(w)H(w) equals the sum of the filters’ norms

1 ~ N M
o D Akw)dw =" [lhfn]*.
i=1

T k=1

(21)

2) Uniform Frame: For a uniform frame, that is, when

N M
S =3 lleill? = M.
k=1 =1

Not surprisingly, the integral sum of spectral eigenvalues
equalsM as well

(22)

x N
> Mlw)dw =M.
T k=1

1

o (23)

3) Tight Frame: Since tightness means= B, fora TF, we
have from (5)

M

STUE el = AlfI1?

i=1

(24)

Similarly, for infinite sequences, the dual frame is representéat all f € Hx. Moreover, according to (13), a frame is a TF if

Ft=F~. (16)
by
H(w) = H(w)(H (@) H (W)™ 17
while the pseudoinverse is
HY(w) = H* (w). (18)

11As before, when we say “strongly uniform,” we will mean “strongly uni-

form with norm1.”
12p square matrixH (w) is calledparaunitaryif

H*(w)H(w) = H(w)H*(w) =, c#0.

and only if
F*F=A Iy. (25)

Thus, for a TF, all the eigenvalues Bf F" are equal tad. Then,
using (20), the sum of the eigenvaluesiofF is as follows:

N M
N-A=3 =) lleill®.
k=1 i=1

If we are dealing with infinite sequences, analogous results
can be formulated. The following is known.

(26)
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Proposition 2 (Cvetkoviand Vetterli [17]): A filter bank 5) Uniform Tight Frame: From (22) and (26), we see that
implements a tight frame expansion #p(Z) if and only if N M

H*"(w)H(w) = Aly. N-A=Y =Y lleill? =M. (30)
k=1 =1

Proposition 3 (Vaidyanathan [36]):An M x N polyphase
matrix H(w) represents a tight frame if and only if it has thelhen, from (24) and (26)

following decomposition: M M
> enl == I (31)
H(w)=U(w)F ~ N
whereU(w) is an M x M paraunitary matri® and F is an for all f € Hy. The redundancy ratio is then
M x N matrix such thatF*F" = Aly, that is,F is a tight A= % (32)
frame operator. N

Proposition 4 (CvetkoVif35, Theorem 7]): For a frame as- SiNCeL™F" = (M/N)I, the following is obvious:
sociated with an FIR filter bank, with the polyphase analysis M M
matrix H (w), its dual frame (17) consists of finite-length vec- Z lpa|? = N (33)
tors if and only if H*(w) H (w) is unimodulat4 i=1
{/ne same is true for sequences, thaHs${w)H (w) has eigen-
values constant over the unit circle and equalg/NV with mul-
tiplicity V. Similarly to (33), we see that

This result leads us to formulate the following useful proper
of TFs.

Corollary 1: Given an FIR analysis polyphase matfw) M
corresponding to a TF, the synthesis polyphase métfix) cor- Z |Hi(w)]? = % (34)
responding to the pseudoinverse as in (18) is FIR as well. P N

Using Proposition 2, we know thadi*(w)H(w) = Al.
SinceH(w) is FIR, H(w)/v/A is FIR as well. Thus

that is, we also ask fad = B = 1, then
(H(w)/VA)' (Hw)/VA) = Iy

N M
o . _ N=Y =) leill*=M
is unimodular. By Proposition 4, the dual frame (synthesis k=1 =1
polyphase matrix) tdH (w)/v/A is FIR as well. Since scaling ang. thus. a UNTF is an orthonormal basis.
does not affect the FIR property, the dual frame (synthesis
polyphase matrix) tdf (w) is FIR. D. Examples of Uniform and Strongly Uniform Frames

As for the eigenvalues]* (w)H (w) has eigenvalues constant Oversampled filter banks are sometimes preferred to classical
over the unit circle and equal té with multiplicity IV, that is, critically sampled filter banks for their greater design freedom.
fork=1,....,N However, this freedom makes the actual design difficult.

One of the most used families of oversampled filter banks are
Ap(w) = A nondownsampled filter banks. They are obtained by eliminating
) ) ) _ the downsampling in the filter bank scheme. If the analysis and
4) Normalized Tight Frameif a frame is an NTF, that is, gynthesis filters are power complementary (that is, with FIR fil-

6) Uniform Normalized Tight Frameif a frame is a UNTF,

A= DB =1, then ters, up to a scaling factor, the synthesis filters are the time-re-
M versed versions of the analysis ones) then the corresponding
Z I o> = 11112 (27) frame is tight and uniform but not strongly uniform.
i=1 It will be shown in the following sections that strongly uni-

for all f € Hy. In operator notation, a frame is an NTF if an(]orm tight frames constitute an important class of frames. We
' propose the following factorization to design polyphase ma-

only if
y trices corresponding to strongly uniform tight frames
FF=1Iy. (28) H(w) = FU(w) (35)
For an NTF, all the eigenvalues &t F' are equal td. whereF is anM x N uniform tight frame irH andU(w) is an
Then, using (20), the sum of the eigenvalues'8ff" is as N x N paraunitary matrix. Itis easy to see that such a polyphase
follows: matrix corresponds to a strongly uniform tight frame.
N M Note the difference between this factorization and the one in
N = Z A, = Z [P (29) _Proposmon 3(H(w)_: U(w)F)._Thg order of the (_alements _
ot = is reversed, so in this last factorization, the paraunitary matrix

_ has sizeM x M, while in our factorization it has siz& x N
The same is, of course, true for an NTFih= /5(Z). (N < M). This is not surprising since the family of polyphase
13Moreover, any paraunitary matrix can be decomposed into a sequencé.Q)‘iflmceS with the faCthlzatIOH(w) = U(w)F repr_esents a
elementary matrices such as rotations and delays [36]. more general class of tight frames and not the restricted class of
14Hereunimodularmeans that the determinant B (w) H (w) is £1. strongly uniform tight frames.
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We cannot claim that our factorization includes all possible Another interesting property of an HTF is that it is the only
strongly uniform tight frames; however, the following is true. NTF with equal-norm elements which are generated by a group

Theorem 2:Define an equivalence relation by bundling a?f unitary operators with one generator, that is,

frame implemented with an FIR oversampled filter bank with O ={o M, ={Upo} M,
all frames that result from rigid rotations or reflections of the

entire frame as well as negations or shifts of some individual gy_hereU is a unitary operator [37], [38]. ) i
ements (thatishi[n] — —hi[n—k] k € Z). WhenM = N +1 Moreover, HTFs have a very convenient property when it

there is a single equivalence class for all strongly uniform tigﬁf)meS to erasures. We can erase @rﬁ/_ (M — N) elements
frames. from the original frame; what is left is still a frame [8, Theorem

. ; . 4.2]. This will be extended in Section V-Ato frames represented

Proof: See the Appendix, Subsection A. by H(w) — FU(w) whereF is an HTF (Theorem 6).

Since a UTFF in Hy can be seen as a strongly uniform tight
frame in¢>(Z) (thatis,H(w) = F'J), Theorem 2 basically says  |V. QUANTIZED FRAME EXPANSIONS INHy AND /5(Z)
that the factorization in (35) includes all the possible strongly
uniform tight frames whef = N +1 (up to a shift or negation
of some individual elements). Also, whdfi(w) = FJ, this
theorem reduces to [8, Theorem 2.6].

For example, the MB tight frame from our simple exampl
describes all possible UTFs with = 2 andAM = 3 in finite
dimensions; the same is true for sequences, that is, the fac

ization H =F with F' the MB fram ri I . . ) . .
p(?st;ble (STJ)TFS W?{éi,d): Ztand]t\/[e: 3 ame, describes a additive white noise with variancg® = A?/12, whereA rep-
Unfortunately, wher/ exceedsV +1, there are uncountably resents the step size of the quantizer and each quantizer has the
' ' same step size. We further assume that the noise sequences gen-

many equivalence classes of the type described above; thus,; Ve ed by two different channels ar Wi ncorrelated. Thi
cannot systematically obtain all uniform tight frames. Howevey' 21€d Dy two diTilerent channels are pairwise uncorrelated. This

at least forN = 2, UTFs still have a simple characterization. can be expressed as

In this section, we will analyze the effect of quantization
under a very simple model. For the moment we assume that
there are no erasures during transmission. We want the recon-
gtruction operator to be linear, that is, we want it to be imple-
mented by a synthesis filter bank. The reconstruction operator
{h?t we will use is the pseudoinverse (18).

or- . oo

We will assume that the quantization error can be treated as

Theorem 3 (Goyal, Kodvic and Kelner [8, Theorem Giln] = wiln] + wiln] (37)
2.7]): The following are equivalent: fori =1,..., M, and
1) {pk = (cos ay, sinay) L, is a uniform tight frame; Efw;[n]w![n — m]] = 626:;6,n. (38)
M 2, _ . e . . .
2) Y=y 21 = Owherez, = e?¥ fork =1,2, ..., M. Now comes the justification of a pseudoinverse. Under this as-

Thus, a simple combination of our factorization (35) togeth&tmption (input sequences corrupted by additive white noise),
with the complete characterization of UTFs for = 2 given the pseudoinverse in (16) is the best linear reconstruction oper-

by the above theorem, produces a useful (although probably A8 in the mean-square sense [16]. The same could be shown

the MSE due to quantization is

2 ™
E. Harmonic Frames MSE = 2ZN / tr((H*(W)H(w)) Hdw  (39)
We now turn our attention to an important family of frames— o2
harmonic tight frame{HTF). These frames are obtained by =5 N / Z (@) dw (40)
keeping the firstV coordinates of a/ x M discrete Fourier T k=1
transform basis. They will prove to be useful for our applicationvhereA,(w), k = 1, ..., N denote the spectral eigenvalues of
A complex HTF is given by H*(w)H(w). We will be using the above two expressions in-

terchangeably. Recall that the integral sum of the eigenvalues is
constant and if we are encoding with a uniform frame, itis equal
to M. Thus, we want to minimize the MSE given the constraint
that the integral sum of the eigenvalues is constant. This occurs
fork =1, ... Nandi=1, ... M, whereWy = ci2/M. Wher_l the eigen_values are equal an_d (_:onstant owehich is
P T true if and only if the original frame is tight. We can then state

Areal HTF could be defined similarly [8]. A more general def|-the following thearem
nition of the harmonic frame (general harmonic frame) is given '
in [37]. Theorem 4: When encoding with a filter bank implementing

As a direct consequence of Theorem 2, we see that any uapgniform frame and decoding with the pseudoinverse under the
with M = N + 1 is equivalent to the HTF witd/ = N + 1. noise model (37) and (38), the MSE is minimum if and only if
This is a very useful result since we have HTFs for ahyand the frame is tight. Then

M; thus, ford = N + 1, we always have an expression for all N
UTFs. MSE, = o 41)

1

Wik = \/N Wﬁ;_l)(k_l) (36)
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This optimality of TFs among UFs holds also fBr = Hy Theorem 5: An oversampled filter bank which implements a

[8]. This makes sense, since the only difference in the expressioriform tight frame is robust to one erasure if and only if
for the MSE given by (40) is that the eigenvalues depend.on N M
Since the proof of the theorem is essentially the same as the Z |Hin(w)|? < —

. . . N
corresponding proof in [8], we omit it here. k=1

_ _ fori =1, ..., M and for allw.

A. A Note on Linear Reconstruction Proof: See the Appendix, Subsection C . O

We have assumed the use of a linear reconstruction algorithmgacall that with an SUTF
In the implausible case that the input and output of each quan-

N
tizer are jointly Gaussian, linear reconstruction is necessarily Z |Hin(w)? =1

optimal. Otherwise, some nonlinear estimate will generally be 1

better, but determining such an estimate requires knowledg&&f; — 1 a7 and for allw. In finite dimensions. a UTF

the input signal distribution and is computationally difficult. Ofg aiways robust to one erasure [8, Theorem 4.1]. This is easily

particular present concern is that a simple and explicit reCofsen from the above theorem if we substitHtes) = F.J, that
struction algorithm facilitates the analysis and optimization ¢f Hiw(w) = hi[k — 1] and

the system. N N
One alternative to linear reconstruction is calbedsistent re- Z |H<k(w)|2 _ Z \hil — 1”2 1<
k — T -
k=1 k=1

=&

construction Consistent reconstruction is based on viewing the

encoder (analysis filter bank and quantization) as paruuomrgc\;rce it is a uniform frame ang#:|| = 1.

the input S|gpal space. Any estimate in the same partition CedA consequence of the previous theorem is as follows.
as the true signal will produce the same quantized output an

hence is said to be “consistent” with the true signal. ConsistentCorollary 2: Any oversampled filter bank which implements
estimates depend on the filter bank and quantizers, but not on@girongly uniform tight frame is robust to one erasure.

input signal distribution. Nevertheless, in many scenarios, CONTheorem 5 does not reveal anything about the existence of
sistent reconstruction performs within a constant factor of OBfter banks that are robust to more than one erasure. However
timal reconstruction while linear reconstruction is much WOISEhas been shown that an HT by is robust tal/ — N erallsures '

[20], [39], [40], [8], [21]. Empirical evidence presented in [8]ig) This can be used to show the existence of a family of SUTFs
suggests that the MSE under the assumption of linear recWZQ(Z) that are robust te erasures foe < M — N.
struction is a reasonable objective function even if consistent -

reconstruction is used. Theorem 6:Consider an oversampled filter bank with a
polyphase matrifl (w) = FU(w), whereF is an HTF inH y,
V. INTRODUCING ERASURES andU(w) is an N x N polyphase matrix nonsingular on the

_ unit circle (det(U(w)) # 0). This filter bank is robust te
Here we consider the effect of erasures on the structure of @}%sureie < M —N).

frame and on the MSE. We denote bythe index set of erasures Proof: See the Appendix, Subsection D. O
and by Hg(w) the polyphase matrix after = |E| erasures. ) ) ) i
Hp(w) is an(M — ¢) x N matrix obtained by deleting the _ If U(w) is a paraunitary matrix, the resulting oversampled
E-numbered rows from thé/ x N polyphase matrisd (w). The filter bank H(w) = FU(w) represents an SUTF robust ¢o
first question to be answered is under which conditifing w) erasuregc < M — N).
still represents a frame. We then study the effect of erasures on
the MSE. B. Effect of Erasures on the MSE

It is interesting to note that there are families of frames for In the preceding section, it was shown that it is possible to
which the properties of the frame after erasures do not depetesign oversampled filter banks which are robust uplte- N
on the actual frame element removed. An example is the cl&gasures. We assume such filter banks for the rest of the paper.

of geometrically uniform frames [41]. Now, we want to compute the effect of the erasures on the
MSE. Call H(w) the polyphase matrix related to the original
A. Effect of Erasures on the Structure of a Frame frame andH g(w) the polyphase matrix after= | £| erasures.

The reconstruction uses the dual polyphase ma‘f@(w) and

II| e guantization model is the one proposed in (37) and (38).
nder these assumptions, the MSE is equivalent to that deter-

mined in (39) and (40)

o [ et @)

Our aim is to use the pseudoinversef(w) to reconstruct
aftere erasures. The pseudoinverse matrix is defined only if t
matrix Hg(w) still represents a frame, that is, if and only if it
is still of full rank on the unit circle. This leads to the following
definition. MSEp =

Definition 2: An oversampled filter bank which implements ~
a frame expansion represented by a polyphase mattix) is _ 0’_2 Z /ﬁ 1
said to berobust toe erasureswvhen for any erasure sét with mN = | . M(HEy (W) Hp(w))
|E| = e, Hg(w) is of full rank on the unit circle.

dw  (43)

where A, (Hip(w)Hp(w)), fork = 1, ..., N are the spectral
Let us consider first the case where there is only one eraswemenvalues of ,(w)Hg(w).



1448 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 48, NO. 6, JUNE 2002

However, our target is to express the MSE in terms of the VI. CONCLUDING REMARKS
original frame and to find properties that the original frame op-
erator has to satisfy to minimize the distortion. Consider first
strongly uniform frame and = 1:

Given the recent surge of interest in frames and their appli-

&tions, we continued the previous work of two of the authors,

where frames are elementsf” or C%. In this work, we al-
Theorem 7: Consider encoding with a strongly uniform framdowed our frame elements to be frofg(Z). Moreover, we re-

and decoding with linear reconstruction. The MSE averaged ovtire these frames to have a filter bank implementation.

all possible erasures of one channel is minimum if and only if We investigated the robustness of such frames to erasures after

the original frame is tight. Moreover, a tight frame minimizes thguantization. We found that any UTF is optimal when no erasures

maximum distortion caused by one erasure. The MSE is given Bje present (Theorem 4). Whenthere is one erasure, we know that

any oversampled filter bank which implements an SUTF is ro-
MSE; = ( 1+ MSEp (44) bust to one erasure (Theorem 5) and minimizes the MSE (The-
M—N .
L orem 7). Whenthere are> 1 erasures, depending on whether
where MSE is given by (41). _ is smaller or larger thedV, the minimum in (45) occurs when
Proof: See the Appendix, Subsection E. O

the erased elements are either orthogonal or form a tight frame.

It is hard to extend this theorem to cases with more than oneThe results in this paper thus present what is known to date

erasure. However, it is possib|e to Compute the MSE with1 about frames which have a filter bank implementation when
when the original frame is strongly uniform and tight subjected to erasures. Some related issues include classifica-

. tion of UTF robust to particular sets of erasures [37] and finding
Z _mw) dw | MSE, other frame families with properties similar to those HTFs such

M — Ny (w) as efficient computation and robustness to erasures. Moreover,
(45) we are investigating the use of frames in multiple-antenna wire-
less systems [42].

MSEg = <1 + i
2

T k=1

where 1, (w) are the spectral eigenvalues Bf (w)T(w) and
T(w)istheN x e polyphase matrix of erased components with

columns{H;(w)}.cr. The derivation of (45) follows closely AE’;‘;’:‘)?:';(
that for H = Hy in [8], so we omit it here.
Note first that with one erasure A. Proof of Theorem 2
T*(W)T(w) = Hf (W) H;(w) =1 Given a strongly uniform tight frame represented by the

polyphase matrixX(w), all the other polyphase matrices

and thus the single eigenvalp.) = 1, reducing (45) to (44). ﬁglated to the same equivalent class are obtained as follows:

Expression (45) is similar to (40), and the spectral sum of t

¢ eigenvalues of (w) is constrained to be a constant, that is, H(w) =YK(w)U(w) (46)
° . where U(w) is an N x N paraunitary matrix,> =

Z uk(w) = tI‘(T (UJ)T(UJ)) =6 diag(al,ag, . O]w), ando; = iG_]lw, leZ,i=1,...,M.

k=l . This equivalence class preserves tightness, uniformity, and
Thus, the minimum in (45) occurs when all the eigenvalues asgong uniformity. Thus, i (w) is strongly uniform and tight,
equal tol if possible. S0 isH (w).

If e < N, itis indeed possible to have,(w) = 1, for  Now, let H(w) be a polyphase matrix associated with an

i =1, ..., c. This occurs if and only if the erased vectors argyTF with M/ = N + 1. It can be shown that it consists of

pairwise orthogonal. Theh™ (w)T(w) = I, and (45) gives  the first N columns of a scaledV + 1) x (N + 1) parauni-

B e tary matrix H (w). Each row (or column) off (w) is of norm
MSEe orthogonal erasures — <1 + M — N) MSEO (N + 1)/N, that iSa
If e > N,itis no't possible to have eiger_walues qual to N+l s N+1
1 because there will be at moat nonzero eigenvalues in the Z |Hir(w)|” = N (47)
N x N matrix T*(w)T'(w). Denoting the nonzero eigenvalues k=1
{pr(w) o, fori =1,2, ..., N+ 1. Moreover, since our frame is strongly
L @) uniform we have
por(w N
MSEg = 1+—/ ——— dw | MSE,. _
< 2 J_, ; M — Ny (w) ) > |Hik(w)|2 =1 (48)
This MSE is minimized whemy(w) = ¢/N,i =1, ..., N, ‘ k=1 _ _
which occurs when the erased elements form a tight fran{@f ¢ =1, 2, ..., IV + 1. Subtracting (48) from (47) we obtain
When any erasure event is possible—meaning any combination T, 2 _ 1
. . . L . | 7,,N+1(w)| = .
of switches may be open in Fig. 1—it is not possible to make N

T(w) always correspond to a tight frame. There are situatioénceH (w) is realized with FIR filters, it is formed only of Lau-
in which the number of “physical” channels (separate transmint polynomial elements. This implies thdf .1 (w) mustbe
sion media) is less than the number of branches in the anal)es'monomialﬁi, Nt1(w) = +N~1/2¢=il [ e 7. Without loss
filter bank. In this case, there may be sets of channels that afegenerality we assume that; n.1(w) = +N~1/2 Thatis,
each completely lost or completely received and then it may tee last column of (w) is (£N Y2 £N~V2 . £N—1/2)
possible for the erased vectors to form a tight frame. for some choice of signs.
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Any given choice of signs it ;, y+1(w) determines a sub- for all w. The desired inequality now follows from the fact that
space. Thus, the span of the otliérsubspaces (each subspacthe frequency response of each filter is continuous (since we
is related to one of the channels) must be the orthogonal compee only considering FIR filters) and the frame is uniform. The
ment to this subspace. Since orthonormal bases for a subspam#inuity of the filters implies thaEk L [ Hin(w)]? < M/N,
are unitarily equivalent, the possible tight frames correspondify allworzk L [ Hi(w )| > M/N, for all w. However, since
to a single choice of signs are in the same equivalence clags frame is uniform, that is,

Flipping signs yields frames in the same equivalence cldss. N
Z [Hix(w)] =1

B. Derivation of (40) (1/2m) -
We now find the error of the reconstruction after the frame ) =t
coefficients have been quantized thenzf:‘:l |Hix(w)]? < M/N, for all w. a

MSE = E[Ilw [n] - w[ﬂ]ll ]

27rN / HX

— X(@)|?] d

B [(HT (@)W ()" (H (@)W ()] dw

27rN

- ZW ) B (@) () | do
o2 x M )

=N | ; H(w)H;(w) dw
o2 i . .

N | tr (H (w)H(w)) dw

=2 [T @ EE)
2N | W) H(w w
o2 = N 1

f— D
2r N /_7T kz_:_l Ap(w) ¢

C. Proof of Theorem 5

Assume that the erased channeHgw). Call H;;(w) the
polyphase matrix after one erasure. Using (19), we get
Hip (W) Hy(w) = H (W) H(w) — Hi(w)H ()
M
= N IN - Hz(w)HZ*(w)
Hy (w)isaframeif and only ity }( )H iy (w) is of full rank
on the unit circle. That means th@{[ y(w w)H ;3 (w))~" must
exist on the unit circle. The identity

(49)

(A-=BCD)™' = A" '+ A™'B(C™' = DA™'B)"'DA™!
(50)
with A = (M/N)Iy, B = Hi(w), C = 1, andD = H}(w)
yields
-1
(i (@) Hey (@)
N
N N -t N
—I—M INHZ‘(LU) <1 —H:(W)M INHZ‘(LU)> H:(W)M Iy
N N? N . -t .
Thus, the matrix is invertible if and only if

N

1= 0 H (@) Hi(w) 0

D. Proof of Theorem 6

First note that if a finite set of channels has a subset that is a
frame, then the original set of channels is also a frame. Thus, it
suffices to consider subsets with channels; since all of these
will be shown to be frames, larger subsets are also frames.

Letus callHg(w) the N x N polyphase matrix after = M —

N erasuresH p(w) isaframeifand only iflet(Hg(w)) # 0on
the unit circle. Now, we know thatet(Fr) # 0 for any subset
of e = (M — N) erasures [8] and sindd g (w) = FrlU(w)

= det(Fg)det(U(w)) #0

for all w. O

det(Hr(w))

E. Proof of Theorem 7

As in the proof of Theorem 5, assume that the erased channel
is H;(w). Call Hy;;(w) the polyphase matrix after one erasure.
Then (49) holds. According to (42), the average MSE with one
erasure is

MSE; = MN Z/_ < Hiy(w )H{i}(w)>_l> duw.

Call
v(w) =H"(w)H(w)
vi(w) = H (W) (H* (W) H (w)) " Hi(w).

Note thatv(w) is anN x N matrix, whilev;(w) is a scalar. With
that, (49) can be rewritten as

v (w) = Hij (w)Hiy(w) = v(w) — Hi(w)H] (w).
We now find
vy (w)
= v(w) ! +o(w) T Hi(w)(1 — ui(w) THH (w)u(w) !

where we used (50) witht = v(w), B = H;(w), C = 1, and
D = H}(w). Taking the trace of both sides gives

T H (W) H (w)o(w) ™)

+ (1= vi(w)) " o (H; (w)v(w) 2 Hi(w))
Hi (w)v(w) ™ Hi(w)
1— v(w)
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since bothH} (w)v(w)~?H;(w) and1 — v;(w) are scalars and [13]
the trace of a product is invariant to the cyclic permutation of
the factors. The average MSE becomes [14

. [15]
MSE; = 5N vlw) M) dw
(@) H() )
W
27rMN Z 1— v(w) dio-

The firstterm of the precedlng equation is minimized if and only[18]

if the frame is tight (sincér(v(w) 1) =tr((H*(w)H(w)) 1) =
fo:l 1/Ax(w)). We show now that the second term is mini- [19]
mized as well if and only if the frame is tight. We can say that

§° HE @) Hi(0) | §5 ule) “
; (1 — v (w)) - 1—wv(w)’
1=1

Here we used [8, Lemma A.1] which is valid for SUFs and al-
lows us to exploit the following inequality: [22]

H (w)o(w) 2 Hi(w) > (H (w)v(w)  Hi(w))? = vi(w)?.

2

(51)

=1

[21]

. . 23
Since we have the constraint 123}
M
> wlw) =N 24
7=1

the equality and minimization of (51) occur if and only if the [25]

original frame is an SUTF. This condition minimizes the max-

imum error as well. The arguments are identical to those in [8][26]
we refer the reader to [8] for more details. O 27
ACKNOWLEDGMENT (28]

The authors thank Emina Soljanin for pointing out Naimark’s[29]
Theorem. They are grateful to anonymous reviewers for theit30l
constructive comments.

[31]
REFERENCES
[1] R. M. Gray and A. D. Wyner, “Source coding for a simple network,” [32]

Bell Syst. Tech. Jvol. 53, no. 9, pp. 1681-1721, Nov. 1974.
[2] A.D.Wyner, “On source coding with side information at the decoder,”

IEEE Trans. Inform. Theoryol. IT-21, pp. 294-300, May 1975. [33]
[8] ——, “The rate-distortion function for source coding with side informa-

tion at the decoderEEE Trans. Inform. Theorwol. IT-22, pp. 1-10,  [34]

Jan. 1976.

[4] J.K.Wolf, A. D. Wyner, and J. Ziv, “Souce coding for multiple descrip-
tions,” Bell Syst. Tech. Jvol. 59, no. 8, pp. 1417-1426, Oct. 1980. [35]

[5] H. S. Witsenhausen and A. D. Wyner, “Souce coding for multiple de-
scriptions II: A binary source,Bell Syst. Tech. Jvol. 60, no. 10, pp.  [36]
2281-2292, Dec. 1981.

[6] V. K Goyal, “Multiple description coding: Compression meets the net- [37]
work,” IEEE Signal Processing Magvol. 18, pp. 74-93, Sept. 2001.

[7] V. K Goyal, J. Kova&evic and M. Vetterli, “Multiple description trans-
form coding: Robustness to erasures using tight frame expansions,” if38]
Proc. IEEE Int. Symp. Information Theg@ambridge, MA, Aug. 1998,
p. 408.

[8] V.KGoyal,J. Kova&evig and J. A. Kelner, “Quantized frame expansions
with erasures,’J. Appl. Comput. Harmonic Analvol. 10, no. 3, pp.  [39]
203-233, May 2001.

[9] R. J. Duffin and A. C. Schaeffer, “A class of nonharmonic Fourier se-

ries,” Trans. Amer. Math. Sacvol. 72, pp. 341-366, 1952. [40]
[10] D. Gabor, “Theory of communication,J. Inst. Elec. Eng.vol. 93, pp.

429-457, 1946. [41]
[11] 1. Daubechies, A. Grossman, and Y. Meyer, “Painless nonorthogonal ex-

pansions,’J. Math. Phys.vol. 27, pp. 1271-1283, Nov. 1986. [42]
[12] P. G. Casazza, “The art of frame theorJdiwanese J. Mathvol. 4, no.
2, pp. 129-202, 2000.

C. Heil and D. Walnut, “Continuous and discrete wavelet transforms,”
SIAM Rev.vol. 31, pp. 628666, 1989.

G. Casazza, “Modern tools for Weyl-Heisenberg (Gabor) frame
theory "Adv. Imag. Electron. Physvol. 115, pp. 1-127, 2000.
I. Daubechies, “The wavelet transform, time-frequency localization and
signal analysis,IEEE Trans. Inform. Theorwol. 36, pp. 961-1005,
Sept. 1990.
——, Ten Lectures on WaveletsPhiladelphia, PA: SIAM, 1992.
Z. Cvetkovicand M. Vetterli, “Oversampled filter banks,” Signal Pro-
cessing, vol. 46, no. 5, pp. 1245-1255, May 1998, submitted for publi-
cation.
H. Bolcskei, F. Hlawatsch, and H. G. Feichtinger, “Frametheoretic anal-
ysis of oversampled filter banks|EEE Trans. Signal Processingol.
46, pp. 3256-3269, Dec. 1998.
T. Strohmer,Modern Sampling Theory: Mathematics and Applica-
tions. Boston, MA: Birkhauser, 2000, ch. Finite and infinite-dimen-
sional models for oversampled filter banks, pp. 297-320.
V. K Goyal, M. Vetterli, and N. T. Thao, “Quantized overcomplete ex-
pansions in RN: Analysis, synthesis, and algorithnhf&EE Trans. In-
form. Theoryvol. 44, pp. 16-31, Jan. 1998.
Z. Cvetkovic “Resilience properties of redundant expansions under ad-
ditive noise and quantization|EEE Trans. Inform. Theoryto be pub-
lished.
J. J. Benedetto and D. Colella, “Wavelet analysis of spectogram seizure
chips,” inProc. SPIE Conf. Wavelet Applications in Signal and Image
ProcessingSan Diego, CA, July 1995, pp. 512-521.
J. J. Benedetto and G. E. Pfander, “Wavelet periodicity detection algo-
rithms,” in Proc. SPIE Conf. Wavelet Applications in Signal and Image
ProcessingSan Diego, CA, July 1998, pp. 48-55.
M. Unser, “Texture classification and segmentation using wavelet
frames,”|EEE Trans. Image Processingol. 4, pp. 1549-1560, Nov.
1995.
B. Hochwald, T. Marzetta, T. Richardson, W. Sweldens, and R. Urbanke,
“Systematic design of unitary space—time constellatioHsEE Trans.
Inform. Theory submitted for publication.
N. I. Akhiezer and |. M. Glazmar;heory of Linear Operators in Hilbert
Spaces New York: Frederick Ungar, 1966, vol. 1.
D.Han and D. R. Larson, “Frames, bases and group representations,” in
Memoirs AMS Providence, RI: Amer. Math. Soc., 2000.
Y. Eldar and G. D. Forney, Jr., “Optimal Tight Frames and Quantum
Measurement,” Preprint, 2001.
E. Soljanin, “Frames and Quantum Information Theory,” Preprint, 2000.
P. L. Dragotti, S. D. Servetto, and M. Vetterli, “Optimal filter banks for
multiple description coding: Analysis and synthesi€EE Trans. In-
form. Theoryto be published.
S. Mehrotra, “Optimal overcomplete subband expansions for multiple
description quantization,” iRroc. SPIE Conf. Wavelet Applications in
Signal and Image Processing§an Diego, CA, Aug. 2000.
X. Yang and K. Ramchandran, “Optimal subband filter banks for
multiple description coding,/EEE Trans. Inform. Theoryol. 46, pp.
2477-2490, Nov. 2000.
M. Vetterli and J. Kovaevig Wavelets and Subband Codling. Signal
Processing Englewood Cliffs, NJ: Prentice-Hall, 1995.
P. J. Burt and E. H. Adelson, “The Laplacian pyramid as a compact
image code,IEEE Trans. Communvol. COM-31, pp. 532-540, Apr.
1983.
Z. Cvetkovig “Overcomplete expansions for digital signal processing,”
Ph.D. dissertation, Univ. Calif., Berekely, 1995.
P. P. VaidyanatharMultirate Systems and Filter Banks Englewood
Cliffs, NJ: Prentice-Hall, 1992.
P. G. Casazza and J. Ka@evit, “Uniform tight frames with erasures,”
Advances in Computational Mathematics (Special Issue on Frames)
2002.
P. G. Casazza and J. K@evig “Uniform tight frames for signal pro-
cessing and communications,”roc. SPIE Conf. on Wavelet Applica-
tions in Signal and Image Processingan Diego, CA, July 2001, pp.
512-521.
S. Rangan and V. K Goyal, “Recursive consistent estimation with
bounded noise,IEEE Trans. Inform. Theoryvol. 47, pp. 457-464,
Jan/ 2001.
V. K Goyal, Single and Multiple Description Transform Coding With
Bases and Frames Philadelphia, PA: SIAM, 2002.
H. Bolcskei and Y. Eldar, “Geometrically Uniform Frames,” Preprint,
2001.
A. Lozano, J. Kovéevig and M. Andrews, “Quantized frame expan-
sions in a wireless environment,” iAroc. Data Compression Conf.
Snowbird, UT, Mar. 2001.



	Index: 
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index: 
	INDEX: 
	ind: 
	Intentional blank: This page is intentionally blank


