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We introduce wavelet packet correlation filter classifiers. Correlation filters are traditionally designed in the
image domain by minimization of some criterion function of the image training set. Instead, we perform
classification in wavelet spaces that have training set representations that provide better solutions to the
optimization problem in the filter design. We propose a pruning algorithm to find these wavelet spaces by
using a correlation energy cost function, and we describe a match score fusion algorithm for applying the
filters trained across the packet tree. The proposed classification algorithm is suitable for any object-
recognition task. We present results by implementing a biometric recognition system that uses the NIST 24
fingerprint database, and show that applying correlation filters in the wavelet domain results in consider-
able improvement of the standard correlation filter algorithm. © 2005 Optical Society of America
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1. Introduction

Correlation filter classifiers are typically designed
and applied in the image-intensity domain. In appli-
cations such as biometric recognition, the images of
interest (e.g., iris or fingerprint images) are often
characterized by localized high-frequency features.
The image domain may not be the most convenient
characterization of these images and may not repre-
sent the features that effectively distinguish one class
from another. In contrast, wavelet analysis provides
space–frequency localization that may be more effec-
tive for classification. The goal of this study is to find
the wavelet spaces for an image class that are most
conducive to correlation filter recognition.

The theory of wavelet analysis, which in the past
two decades has been extensively documented,1,2 de-
scribes how wavelet packet bases are used to repre-
sent signals effectively. This is achieved by
partitioning the time–frequency plane into regions
with different resolutions in frequency and time (or,
in the case of images, space) domains. Wavelet pack-
ets can be implemented efficiently and have therefore

proved to be practical in many different applications
in which a good time–frequency or space–frequency
resolution trade-off is needed. This is why we believe
that wavelet analysis can be advantageous to corre-
lation filter classifiers. The proposed algorithm uses a
pruning method to search for the best wavelet packet
subspaces and computes a set of subspace correlation
filters for each class. During testing, this set of filters
is applied to the corresponding subspaces of a test
image; each output subspace correlation plane is then
used to compute a final match score for this image.

Applying correlation filters in the wavelet domain
is a new technique recently used by Daniell et al.3 for
fast recognition of compressed imagery available in
the subband domain. We address a different problem
in this paper. Instead of aiming for efficiency in the
recognition of subband coefficients, we start with un-
compressed images and address the problem of in-
creasing recognition accuracy by finding optimal
wavelet spaces. In particular, we use the NIST 24
fingerprint database to show the improvements that
can be achieved by using this method instead of stan-
dard correlation filter algorithms. In the case of fin-
gerprint recognition, using the proposed wavelet-
domain algorithm is an attractive alternative to
previous studies that used standard correlation filter
algorithms.4

The paper is organized as follows. We first formu-
late the biometric problem (Section 2) and then
present an overview of correlation filter classifiers
and of wavelet transforms (Sections 3 and 4, respec-
tively). Next we describe the proposed algorithm (Sec-
tion 5), and, finally, the new classification scheme is
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evaluated and compared with standard correlation
filter techniques (Section 6).

2. Biometric Problem Formulation

To start the discussion, we first formulate the prob-
lem. We are given an image x � �N � �N, which goes
either through an identification or a verification sys-
tem, after which a decision needs to be made.

A. Identification System

Given p image-class templates yi, i � 1, . . . , p, that
correspond to p individuals stored in a database, we
need to find the closest match to our input x as fol-
lows:

y^ � yk if f (x, yk) � min
yi

f (x, yi), (1)

where f�x, y� is a suitably chosen cost function that is
dependent on the application.

B. Verification System

Given the input x that claims to belong to the class yk,
we need to verify whether this is true. The answer a
is a binary “yes” or “no”:

a ��yes if f (x, yk) � T
no otherwise , (2)

where T is a given threshold.

3. Review of Correlation Filters

Correlation filters have been successfully applied in
biometric recognition.5–7 In particular, correlation fil-
ters have been demonstrated to work well for finger-
print recognition.4

Filtering an image is equivalent to performing a
spatial cross correlation between the image and the
flipped impulse response of the filter. If the filter
matches the image (i.e., there is strong correlation
between the two), the output will contain a correla-
tion peak. Advanced correlation filters are designed
to produce correlation peaks when they are applied to
any image containing a specific pattern class (such as
fingerprints from the same finger).8

A correlation filter takes the form of a two-
dimensional complex-valued array in frequency and
is applied as shown in Fig. 1. The image is converted
into the frequency domain with a fast Fourier trans-
form (FFT), multiplied by the filter, and converted
back to the image domain by an inverse fast Fourier
transform; this produces a correlation plane. This
process is equivalent to, but much faster than, com-
puting the cross correlation in the original image
domain. This process, which produces a correlation
plane from a given image, can be modeled as

vi � (DFT)�1 Ci DFT x, (3)

where x is the vectorized form of the n image pixels,
DFT is an n � n matrix containing the basis of a

two-dimensional discrete Fourier transform, and Ci

is a diagonal matrix containing the correlation filter
values (designed for class i) in the Fourier domain
along the diagonal.

If the image belongs to the pattern class of the
filter, the correlation plane output contains a sharp
peak (as in Fig. 1); if not, no such peak exists. We
derive a match metric from the correlation plane by
measuring the peak-to-correlation energy (PCE), de-
fined as

PCE(vi) �
max(�vi�) � mean(�vi�)

stdev(|vi|) , (4)

which yields our cost function

f(vi) �
1

PCE(vi)
. (5)

Note that correlation filters are shift invariant (i.e.,
a shift in the input results in a corresponding shift in
the correlation plane); the PCE remains constant be-
cause it is computed after the correlation peak is
located.

When correlation filters are designed based on a set
of multiple training images, they are called composite
filters. The design options for composite filters have
been thoroughly studied.8,9 Each design satisfies a
different criterion for the correlation planes gener-
ated by the training images.

For the purpose of this paper, we consider the min-
imum average correlation energy (MACE) filter.10 In
the MACE filter design, the origin of each training-
image correlation-output plane is constrained to
equal some specific value (typically one for training
images that belong to the class of interest and zero for
training images that do not). The correlation filter
usually has many more degrees of freedom than are
needed to satisfy this set of constraints. Thus, in
addition, the MACE filter design minimizes the av-
erage correlation plane energy (ACE), which can be
expressed as

ACE � h�Dh, (6)

where h contains the correlation filter values in the

Fig. 1. Application of a correlation filter in the frequency do-
main.
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frequency domain, ordered into a column vector, and
D is a diagonal matrix with the average power spec-
trum of the training images along its diagonal. Figure
2 shows the constrained minimization problem that
the MACE filter design solves. The measure ACE is
minimized because lower correlation plane energy
means sharper correlation peaks and better PCE
scores for images belonging to the filter’s class. The
filter that meets these design criteria is given by

h � D�1 X(X� D�1 X)�1 u, (7)

where matrix X contains the Fourier transforms of
the training images, one in each column, and vector u
contains the correlation plane origin constraints.

Robustness to noise can be achieved instead by
minimization of the output variance of the correlation
peak. If the noise in the training set is additive zero
mean and stationary, with power spectral density
values arranged in a diagonal matrix P, then the
measure minimized is the output noise variance
(ONV),

ONV � h�Ph. (8)

This design is the minimum variance synthetic dis-
criminant function filter proposed by Kumar.11

In this paper we use the optimal trade-off synthetic
discriminant function (OTSDF) filter design.12–14 The
OTSDF can be considered to be a generalized form of
the MACE filter, with a parameter that allows for
within-class noise tolerance. Specifically, the OTSDF
filter finds a compromise in the minimization of the
ACE and the ONV measures by minimizing the en-
ergy function

E(h) � �(ONV) � �(ACE), (9)

where � � �1��2. Then the OTSDF filter is given by

h � (�I � �D)�1 X(X�(�I � �D)�1 X)�1 u, (10)

where I is the identity matrix. (We have modeled the
noise in the training set as additive and white.) The
advantage of this filter is that it allows for the min-
imization of the energy in the correlation plane while
adjusting for noise tolerance.

4. Review of Wavelet Transforms

The theory of wavelets and multirate signal process-
ing have become standard signal processing tools.
Iterated multirate filter banks perform decomposi-
tions of signals into wavelet coefficients. The main
characteristic of wavelet transforms is their capabil-
ity to represent a signal by achieving a convenient
partition of the time–frequency plane (or the space–
spatial frequency for images). These partitions pro-
vide us with features that have joint locality in space
and frequency, which can be valuable for biometric
image characterization.

Wavelets, filter banks, and wavelet packets. Filter
banks are signal processing devices used to imple-
ment wavelet transforms. With filter banks we can
construct orthonormal bases for the space of finite-
energy sequences. In particular, we can project a sig-
nal onto spaces of low-pass and bandpass signals.1

To achieve this, we start by filtering the signal by
using a low-pass filter that captures the coarse ap-
proximation and a complementary high-pass filter
that captures the details. The impulse responses of
these filters and their even translates (versions of the
filter that have been shifted by a multiple of 2) are
designed to form an orthonormal basis.1 The filter
outputs are downsampled by two to avoid redun-
dancy. The resulting device is called an orthogonal,
critically sampled, two-channel analysis filter bank,
depicted in Fig. 3(a). Conceptually, this filter bank
splits a space V0 into subspaces V1 and W1, where V1
contains the approximation of the signal and W1 con-
tains the detail information. The iteration of this fil-
ter bank on the low-pass channel, as shown in Fig.
3(b), computes the discrete wavelet transform (DWT)
coefficients.1,2

A generalized iterated filter bank algorithm that
allows the high-pass channel to be decomposed as
well is the discrete wavelet packet transform, intro-
duced by Coifman et al.16 With this generalization we

Fig. 2. MACE-constrained minimization problem: (a) correlation
filter to be designed; (b) transforms of the training images; (c)
correlation planes that result when the filter is applied to each
training image; (d) energy of each correlation plane. The filter in (a)
is designed to give specified correlation peaks at the origins of (c)
while minimizing the combined energies at (d). Simply stated, the
filter is designed to give the sharpest-possible correlation peaks for
the within-class training set.
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can design wavelet bases that achieve an almost-
arbitrary time–frequency tiling.

At iteration level i, the discrete wavelet packet
transform computes an orthonormal expansion in
each space Vi and Wi. Specifically, given an orthogo-
nal low-pass filter g and its complementary high-pass
filter h, both of finite support, the single-level expan-
sion of a signal x�i� at level i is given by

x(i)[n] � �
k��

xg
(i�1)[k]g[n � 2k] � �

k��
xh

(i�1)[k]h[n � 2k],

(11)

where

xg
(i�1)[n] � �

k��
x(i)[k]g[k � 2n], (12)

xh
(i�1)[n] � �

k��
x(i)[k]h[k � 2n]. (13)

We have used superscripts to indicate the level of
decomposition that the signals belong to and sub-
scripts to indicate whether a signal is generated
through the low-pass channel or the high-pass chan-
nel. This can also be expressed in matrix notation as

xl � WPl x, (14)

where x is the input image vector, WPl is the matrix
computing the wavelet packet coefficients in sub-
space l, and xl is the output image in subspace l.

We can use these equations iteratively to compute
all wavelet packet coefficients for a given wavelet
tree. All wavelet packet decompositions in this paper
are trees in which each node has either 0 or 2 children
(or 0 or 4 in the two-dimensional case); such trees are
called admissible trees,2 and their leaf subspaces con-
tain the complete information to reconstruct the orig-
inal signal. Note that a full decomposition tree is also
an admissible tree.

In the case of images, wavelet packet decomposi-
tions are implemented by iterating quadtrees, which
divide the two-dimensional frequency plane into
square regions of different sizes. The initial splitting
of space V0 is into four spaces, V1, W11, W12, and W13
[see Fig. 4(a)].

In this study we use only two-dimensional wavelet
packets whose basis functions are separable products
of one-dimensional wavelet packet basis functions2;
i.e., the quadtree filter bank implementation uses
one-dimensional filters applied along the rows and
along the columns of a two-channel orthogonal filter
bank structure as shown in Fig. 4(b). This generates
four subspaces from each parent space.

Our goal is to find the best admissible tree that
provides the subspaces for correlation filter–based
classification.

5. Wavelet-Domain Correlation Filters

Correlation filters are traditionally applied to im-
age intensities, but they may be applied to other
image features instead, provided the feature space
maintains a consistent spatial relationship. For
this reason, filters may be designed in individual
wavelet subspaces of an image. Instead of designing
a single correlation filter for a pattern class, we
propose to design a correlation filter for each leaf in
the best wavelet packet admissible tree that we can
find for that class. To do this, we define a measure
of performance for correlation filter classifiers as a
criterion for searching for the best set of subspaces;
this will help us to discriminate between subspaces
that are more useful for recognition than the orig-
inal image domain.

Fig. 3. (a) Two-channel analysis filter bank structure used for
wavelet analysis. (b) Multichannel filter bank algorithm that uses
two-channel filter bank blocks iteratively on the low-pass channel
(DWT with three levels).

Fig. 4. (a) Single-level splitting of an image space V0 into four
spaces V1, W11, W12, and W13 with quadtree implementation. (b)
Quadtree implementation of single-level wavelet packet decompo-
sition.
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A. The Fitness Metric

This metric provides a score for how well we expect a
correlation filter to perform in a given subspace. Be-
cause we achieve sharp correlation peaks by mini-
mizing the average correlation energy, we propose to
use the minimum average correlation plane energy
that a filter can achieve on a subspace as a perfor-
mance metric. This is derived by substituting Eq. (7)
into Eq. (6) and simplifying as follows:

E˜ � (D�1 X(X�D�1X)�1 u)� D(D�1 X(X�D�1X)�1 u)

� uT (X�D�1X)�1 u. (15)

In this case each column of matrix X holds the spec-
trum of one of the training images after projecting the
image onto the wavelet subspace. Because lower en-
ergy implies a better performance, we define the fit-
ness metric as

F � 1�E.˜ (16)

Intuitively, this is a good metric because it measures
how sharp we can make the correlation peaks in this
subspace. The higher the metric, the better the cor-
relation filter is expected to perform.

Note that the fitness metric is directly related to
the size of the space it is applied to. This means that
if we use a four-channel wavelet filter bank to decom-
pose space V0 into four spaces, V1, W11, W12, and W13,
and we wish to evaluate their relative fitness for
correlation filter classification, then we can evaluate
the inequality

F(V0) 	 F(V1) � F(W11) � F(W12) � F(W13), (17)

where operator F�·� computes the fitness metric of the
space. Here V1, W11, W12, and W13 are the spaces of
signals xgg

�i�1�, xgh
�i�1�, xhg

�i�1�, and xhh
�i�1�, respectively. The

sum of the subspace fitness metrics is used in this
comparison because the summed areas of the sub-
spaces equal the area of the original space V0.

If the left-hand side of inequality (17) is greater, we
consider V0 a better space for applying a correlation
filter; but if the right-hand side of inequality (17) is
greater, we consider the individual subspaces V1, W11,
W12, and W13 to be better suited for correlation filter
classification.

B. Wavelet Packet Tree Pruning

In the training stage we need to find the best admis-
sible wavelet packet tree to represent each pattern
class. Then we compute the set of subspace correla-
tion filters for each class by using the corresponding
tree.

The process of obtaining the tree for a given class
is as follows. We start with the full wavelet packet
decomposition of all the images in the class and
choose this tree as the best admissible wavelet
packet tree available so far. Because we are work-
ing with two-dimensional images, any four leaves
from the same parent node of the current admissi-
ble tree will be pruned unless the sum of the fitness
metrics of the leaves is greater than the fitness
metric from the parent node, as in inequality (17).
This generates a new admissible tree, and the pro-
cess continues iteratively across the tree until no
leaves can be pruned. The final admissible tree is
used as the wavelet packet tree for the class. Figure
5 shows samples of fingerprint images decomposed
by use of such trees.

After pruning the tree, we build a correlation
filter for each leaf subspace of the tree. This in-
volves decomposing all the training images of the
class by use of the tree just found. Then, for each
subspace, a correlation filter is computed by use of
the corresponding subspace images. For example,
assume that we found the best wavelet packet tree
for a class is a single quadtree, which decomposes
the image space V0 into subspaces V1, W11, W12, and
W13; i.e., we would train four subspace correlation
filters for this class. So we start with decomposing the
M images in the class training set with this quadtree
so that we have M subspace training images for each

Fig. 5. Samples of image decomposition into subspaces with the best wavelet packet for two different fingerprint classes.
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subspace V1, W11, W12, and W13. Then we train a cor-
relation filter for each subspace by using their corre-
sponding subspace images. A filter is not trained for
the parent image space V0.

The training stage thus generates a tree of corre-
lation filters for each class. As with any wavelet de-
composition into admissible trees, the size of the leaf
subspace filters add up to the size of the images in the
class. Table 1 outlines the pseudocode for training
correlation filters for each class.

C. Match Metric Computation

In the evaluation stage we require a rule to calculate
a match metric when wavelet-domain filters are ap-
plied to a new image. After decomposing an image by
using the filter’s packet tree, we compute the sub-
space correlation planes. We then compute PCE val-
ues for all subspaces and define our match metric for
the test image as the sum of all the PCE values.

This computation can be expressed as follows. For
a new image x and wavelet packet correlation filters
of class i contained in matrices Ci, l for every subspace
l, the subspace correlation planes are given by

vi, l � (DFT)�1 Ci, l DFT WPi, l x, (18)

and the cost function becomes

f(vi) �
1

�l PCE(vi, l)
. (19)

Table2outlines thepseudocode forapplyingwavelet-
domain correlation filters in the testing stage.

D. Maintaining Shift Invariance

Although correlation filters are shift invariant in the
image-intensity domain, they are not shift invariant
in the wavelet domain. This is because the wavelet
decomposition is not a shift-invariant operation. At

every level in a wavelet packet tree decomposition,
the subspaces are downsampled by a factor of 2 in
each dimension. As a result, a subspace at level i of a
wavelet packet tree is periodically shift invariant
with the factor 2i in each dimension.

If a fingerprint image is shifted an arbitrary dis-
tance before it is decomposed with a wavelet packet
tree, the result will not be perfect shifts of the wavelet
subspaces. Instead, a shift in the original image do-
main will only periodically correspond to a shift in the
wavelet subspaces. Then we can expect the shift in-
variance of correlation filters to erode somewhat
when they are applied in the wavelet domain (i.e.,
recognition performance peaks and decreases with
varying levels of image translation).

To solve this problem, we design one extra corre-
lation filter in the original image domain. This filter
is meant only for alignment preprocessing and does
not contribute to the match metric computation.
Before we decompose a test image, we apply this
filter and examine the correlation plane, which if
the image is authentic, will contain a correlation
peak. In this domain the correlation peaks may not
be sharp enough to yield a good discrimination, but
they do indicate shifts of the original image. We
simply find the location of the correlation peak and
correct for any translation. Then we may continue
with the decomposition and the use of subspace
filters, which allow for superior discrimination.
This technique maintains shift invariance without
adding to the computational complexity of the algo-
rithm.

To demonstrate the shift invariance of our pro-
posed algorithm, we selected a sample test image and
shifted it horizontally across a range of 20 pixels
(including interpolated subpixel shifts). We applied
wavelet-subspace correlation filters with and without
using prefiltering for alignment, and the resulting
match scores are plotted in Fig. 6. Without align-
ment, the PCE match scores are sensitive to the
amount of translation. The periodicity of the match
scores ranges over 23 � 8 pixels, corresponding to the
largest downsampling factor in our wavelet decom-
positions. However, with the aid of prefiltering, shift
invariance is clearly restored.

E. Computational Complexity

We consider the computational complexity of apply-
ing correlation filters in both the image and wavelet

Table 2. Algorithm for Applying Wavelet Packet Correlation Filters

Compute the wavelet packet decomposition of the image by
using the tree of the class of the filter.

Initialize the match metric M to zero.

FOR EACH subspace

Compute the PCE value and add it to the match metric.

END

Table 1. Training Algorithm for Each Class

FOR EACH image in the class

Compute the full wavelet packet decomposition of the
image.

END
FOR EACH level i, from the �I � 1�th level up to 0

FOR EACH parent node
(i) Compute the fitness metrics Fk for every space V1, W11,

W12, W13

(ii) Compute the fitness metric G for parent space V0

(iii) Prune the leaves of spaces V1, W11, W12, W13,
IF G 
 �k Fk

(iv) IF the children are not pruned, define the fitness
metric of the parent as G � �k Fk

END

END
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domains; these are the relevant comparisons because
the training stage is performed off-line. For simplic-
ity, we assume that our images are of size N � N,
where N is a power of 2.

The most expensive operations in applying an im-
age domain correlation filter are the FFTs, which
require an order of ��N2 log N� multiplications. Then
the entire filtering process is also ��N2 log N�.

To apply a wavelet-domain correlation filter set to
an image, we must first compute a wavelet packet
decomposition of the image and then apply the set of
filters on its subspaces. If we assume that the two-
dimensional wavelet filters used for the decomposi-
tion are separable, composed of one-dimensional
filters of length K, then the worst case of a full de-
composition (with log2 N levels) requires a computa-
tional complexity2 of ��KN2 log N�. Note that if we
prefilter the image for alignment before performing
the decomposition [an ��N2 log N� operation], the or-
der of complexity does not increase.

The wavelet packet divides the image space into a
set of smaller spaces, as illustrated in Fig. 5. Note
that the cost of computing a FFT of the entire N
� N space will always be greater than or equal to the
combined cost of computing the FFT of each sub-
space. As stated above, the complexity of filtering is
determined by the complexity of the FFTs. This
means that applying a set of subspace filters always
incurs less computational cost than applying a filter
to the full space; so, in the worst case, the computa-
tion is ��N2 log N�.

Combining the packet decomposition step with the
subspace filtering step gives an overall complexity of
��KN2 log N�. This is similar to the complexity of the
image-domain correlation filters, with the added fac-
tor of the filter length K, typically a small constant. In
summary, although the proposed technique does in-
cur a greater computational cost to generate the
wavelet subspaces that give better accuracy, it does
not increase the order of complexity.

6. Experiment Specifications and Results

A. Data Set

For testing, we used images from a subset of the
NIST 24 fingerprint database.17 Our data set consists
of 20 classes from 2 different fingers, each class con-
taining 100 images. When the images were captured,
the subjects were instructed to roll their thumbs con-
tinually; the resulting variation makes these data
more challenging but also more realistic for the rec-
ognition task. Because the image classes are influ-
enced by subject behavior (i.e., subjects roll their
fingers to varying extents), some classes are harder to
classify than others.

Figure 7 shows sample images from two different
classes of the data set. The upper images belong to a
class that is representative of most of the data set.
There is some variation in position and some defor-
mation of the ridge patterns, but for the most part,
the general fingerprint pattern remains. The lower
images in Fig. 7 are from a relatively difficult class, in
which the images show more extreme variations in
position and blurring artifacts that distort the ridge
patterns. In some images almost the entire print is
missing.

For the classes in our data set that fit the second
description, recognition with a single standard corre-
lation filter is problematic. It has been shown that
increasing the number of training images and using
multiple filters in the image domain can improve
performance.4 However, to make a fair comparison,
in our experiments we restrict our training data to a
fixed number of images and expect to see improve-
ment when the proposed algorithm is used.

B. Wavelet Filter Selection

To implement the wavelet-domain correlation filter
algorithm in our tests, we had to select the type of
wavelet filter to use in the decompositions. Ideally,
the training algorithm would select for each image
class the best wavelet filter from a full range of
known wavelet filters. However, it is not practical to
conduct such an exhaustive search. For simplicity, we
worked only with wavelets from the Daubechies fam-
ily.15 After trying Daubechies filters of different
lengths, the filter that performed best for all finger-

Fig. 6. PCE values for a range of possible horizontal shifts for a
sample authentic image. A solid curve is used for the wavelet
packet correlation filters with prefiltering, and a dashed curve for
those without prefiltering. Shift invariance improves separation
between the scores of authentic and impostor images.

Fig. 7. Samples of fingerprint images from two different classes:
a typical class (top row), and a class with particularly difficult
distortions (bottom row).

10 February 2005 � Vol. 44, No. 5 � APPLIED OPTICS 643



print classes was the shortest, length-two filter: the
Haar wavelet.

Short wavelets may extract more useful local
space–frequency features from fingerprint images be-
cause the ridges that characterize these images have
a narrow width. Employing other short-length wave-
let filters may improve the algorithm’s performance.
Also, if the restriction to separable wavelet filters is
relaxed (at increased computational cost), it may be
advantageous to use wavelets that are specifically
designed for curved structures, such as curvelets or
ridgelets.18,19 In our tests described in Subsection
6.C, we used the Haar wavelet for all fingerprint
classes.

C. Evaluation

We sequestered eight images from each fingerprint
class as training data. Using these images, we
trained the two types of classifiers: standard correla-
tion filters and wavelet-domain correlation filters, as
described in Subsection 6.B. In both cases we de-
signed OTSDF filters with the trade-off parameter
set to 10�6 (which has been shown to be a reasonable
value for fingerprint images4) and normalized the
energy of the training images. Figure 8 shows the
wavelet packet decompositions for each class.

The decompositions shown are dissimilar in struc-
ture and depth. Although for class 5 the tree further
decomposes only the first-level high-pass channel
W13, some other trees do not iterate in this space but
do iterate in V1, W11, and W12, as is the case in classes
6, 13, 17, and 20. It is interesting to note that the
decomposition found by the pruning algorithm for
class 13 is actually the discrete wavelet transform.
This dissimilarity is, of course, what will help us to
distinguish among the classes effectively.

To compare the performance of the two sets, we
conducted both verification and identification tests.
In the verification tests every filter is applied to every
test image to generate match scores. These scores are
thresholded to produce “yes” or “no” match decisions.
Depending on the threshold, the filter for each class
accepts some images belonging to other classes (false
acceptances) and rejects some images belonging to its
own class (false rejections). When the threshold is set
so that these error rates are the same, the resulting
error rate is called the equal error rate (EER) of that

filter. Figure 9 shows the EER of the filter that cor-
responds to each fingerprint class.

The results show a substantial overall improve-
ment when wavelet-domain correlation filters are
used. The average EER across all classes decreases
from 7.21% for standard correlation filters to 1.18%
for wavelet-domain correlation filters. Without the
proposed algorithm, only 1 out of 20 filters provides
complete score separation between authentic and im-
postor images (EER of 0); with the proposed algo-
rithm, 16 out of 20 classes provide complete score
separation. There is one class in which there is an
increase in the error in the wavelet domain (from
7.6% to 9.8%). This result is plausible if the training
set is not an adequate representation of the entire
class. In other words, if the test images deviate dra-
matically from the sort of images included in the
training set, learning a wavelet decomposition may
offer no advantage. However, the advantage clearly
exists for almost all of the test classes.

The variability in image quality from class to class
is reflected in the results, with some classes proving
much more difficult to recognize than others. The
largest improvement occurs for class 8, which is the
most difficult for the standard correlation filter. We
note that it is possible for standard correlation filters
to achieve much lower error rates (at or near zero),
even for difficult classes, if the number of training
images is increased and multiple correlation filters
are designed instead of single filters. However, the
purpose of our tests was to examine the relative im-
provement in accuracy with the proposed algorithm.
Therefore we made the recognition problem a suffi-
ciently challenging one by restricting the training set
to eight authentic images per class.

In identification tests, every test image must be
identified by estimating to which class it belongs.
This estimation is achieved by finding the highest
match score from all filters and selecting that class. If
the estimated class is incorrect, it is considered to be
an identification error. Figure 10 shows the identifi-
cation error rate for each class.

As expected from the verification results, a general
improvement in all classes is achieved by the wavelet
packet correlation filters, and the identification of
class 8 proved to be the most difficult for the standard
correlation filter algorithm. Again, using more train-

Fig. 8. Best decompositions for wavelet-domain correlation filters in each class, with classes 1–10 in the top row, and classes 11–20 in
the bottom row.
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ing images or correlation filters for this class would
improve that performance. For the classes that ex-
hibit especially poor identification results (e.g.,
classes 8 and 13), the score generated by applying the
correct correlation filter is often the second- or third-
highest score, instead of the maximum, which causes
the poor error rates. This is not the case for the wave-
let packet correlation filters, and zero error rates are
obtained for all but three classes.

7. Conclusion

The wavelet packet correlation filter method, unlike
the standard correlation filter method, makes use of
image features that have joint locality in space and
frequency. Although the wavelet-domain method re-
quires more computational effort in the form of wave-
let packet decompositions, it offers the flexibility to
find more suitable spaces for correlation filter classi-
fication. As a result, the proposed algorithm achieves
significantly better performance than standard filters
on this data set. This result suggests that these fin-
gerprint images have some features that remain
more consistent in the underlying wavelet subspaces
than in the spatial domain.

One of the components of the proposed algorithm is
the choice of the wavelet-domain spaces for building
and applying the filters. Apart from considering the
minimum average correlation energy, a fitness met-
ric may also be designed for the wavelet packet tree
pruning algorithm to account for other qualities of
correlation outputs, such as the maximum average
correlation peak.20 The fitness metric can be tailored
to a particular problem. This is left for future study.

This study was supported in part by CyLab at Car-
negie Mellon University, by the National Council of
Science and Technology (CONACYT) of Mexico, and
the Pennsylvania State Tobacco Settlement, Kamlet–
Smith Bioinformatics Grant.
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