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Abstract—We propose an algorithm for adaptive efficient acqui-
sition of fluorescence microscopy data sets using a multirate (MR)
approach. We simulate acquisition as part of a larger system for
protein classification based on their subcellular location patterns
and, thus, strive to maintain the achieved level of classification
accuracy as much as possible. This problem is similar to image
compression but unique due to additional restrictions, namely
causality; we have access only to the information scanned up to
that point. While we do want to acquire fewer samples with as
low distortion as possible to achieve compression, our goal is to
do so while affecting the overall classification accuracy as little
as possible. We achieve this by using an adaptive MR scanning
scheme which samples the regions of the image area that hold the
most pertinent information. Our results show that we can achieve
significant compression which we can then use to aquire faster or
to increase space resolution of our data set, all while minimally
affecting the classification accuracy of the entire system.

I. INTRODUCTION

THE motivation for finding an efficient way of acquiring
cellular data sets is great. In fluorescence microscopy, the

confocal laser scanning microscope is one of the most often used
and it scans the field line-by-line, pixel-by-pixel [1], [2]. Pho-
tobleaching occurs each time the laser used to excite the region
being imaged focuses on a pixel. The exposure time and laser
intensity both play a major part in photobleaching. By reducing
the number of samples we need to scan, we avoid the unneces-
sary exposure of the specimen to light, as well as save time and,
thus, speed up the acquisition process [3]. One could reduce the
number of samples acquired by using traditional sampling al-
gorithms but effects of aliasing would distort the approximation
data sets [4]. We aim here for an adaptive, efficient algorithm
that would scan fewer pixel locations, while limiting the distor-
tion and maintaining as much information as possible about the
distribution of fluorescence in the sample. This requires some
means of evaluation, and for this we build on prior work demon-
strating that machine classifiers can recognize all major subcel-
lular patterns in three-dimensional (3-D) data sets of cultured
cells with high accuracy as shown by Murphy and his group
[5]–[8]. We can, thus, compare the classification accuracy for
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adaptively sampled data sets to that for the original data sets to
assess the degree of preservation of image information content.

The bulk of previous work in this area focused on the process
of recovery rather than data acquisition [11]–[13]. There exist
some examples of undersampling of cellular fields by simple
approaches such as scanning every other line or every fourth
line in a line-by-line scanning pattern [9]. This approach could
be described as efficient but most certainly not adaptive as it
does not change with the input of the field. Trying to efficiently
acquire cellular data sets using adaptive sampling methods is
new.

We will work both with two-dimensional (2-D) data sets
(slices of cell volumes) and 3-D data sets (cell volumes) of max-
imum resolution [6] in each of the three dimensions and will run
our multirate (MR) data acquisition algorithm using different
input parameters on each of these data sets to simulate the real
acquisition process. MR in this paper refers to processing at
different sampling rates specific to the content present in those
regions. We will then compare our adaptively sampled data
sets to the original data sets and examine their rate-distortion
curves to find where the algorithm works optimally. We will
do the same with standard downsampling (regular sampling
in each dimension) using bilinear interpolation. Although this
rate-distortion measure will give a general insight into the per-
formance of the algorithm, our goal is to eventually reduce the
number of samples while minimally affecting the classification
accuracy of the system. We will, thus, measure the compression
ratio with respect to the classification accuracy. Eventually, our
algorithm should serve as a model for guiding the microscope’s
scanning protocol.

II. MOLECULAR IMAGING

For each pixel in the cellular field, a length of time is required
to excite the fluorophores present in order to emit light. The ex-
posure time is dependent on the intensity of the laser. As illus-
trated in Fig. 1, the laser passes through an objective and is con-
centrated in the focal plane. Although the energy of the laser
converges in the focal plane, the laser must still pass through
the planes neighboring the focus plane. This exposure to the
laser causes photobleaching effects in the neighboring planes.
By acquiring fewer samples, we could reduce the intensity of
the laser, thereby reducing the effects of photobleaching. The
reduced number of samples could also be used to speed up the
acquisition of cellular data sets when implemented on a con-
focal scanning microscope.

Fig. 2 gives a representative image from our data sets.
Observe how the image is predominantly dark with mostly
low pixel intensities. We, thus, assume the following: High
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Fig. 1. Laser concentrated on the focal plane. Laser intensity increases near
the focal plane.

frequencies (rapid changes in pixel intensities among neigh-
boring pixels) will only occur in a small percentage of the area
contained within the image boundaries. Observe also how the
neighboring slices share similar shape patterns and locations in
the 3-D image of actin given in Fig. 3.

With these observations in mind, we can make a strong ar-
gument for a MR approach. When standard downsampling is
used and the data set is then interpolated back to the maximum
resolution using bilinear interpolation, all of the high-frequency
content is lost. In the dark regions of the data sets, only low
frequencies are present, which can be captured with only a few
samples. In contrast, in the areas where high-intensity values
are located, high frequencies reside that need to be represented
using a greater number of samples. Thus, using different sam-
pling rates in different areas of the image is warranted. We call
this MR sampling.

III. ALGORITHM FOR MR ACQUISITION

OF CELLULAR DATA SETS

An intuitive way to describe the algorithm is to consider
the board game Battleship. The player’s goal is to locate the
exact locations of his/her opponent’s ships in the most efficient
manner possible. We draw a parallel between the game board
grid and the unknown cellular field. Each consists of discrete
locations and the pertinent information location is not known
upon beginning the search. It would be foolish to play the
game in a nonadaptive approach, that is, knowing all of the
locations where you will probe a priori. For example, if a ship
has been hit, one would not continue with predetermined probe
locations; rather, one would keep on probing in the area around
the hit. Similarly, when acquiring our data sets, we keep on
probing around those locations deemed significant. Thus, an

Fig. 2. Image of a mitochondrial protein pattern.

Fig. 3. Images from a 3-D sequence of actin protein pattern.

adaptive MR sampling approach mimics the strategy used in
the game.

We denote our 3-D data set as where
and denote the image size in the

three spatial dimensions. The block diagram of our adaptive
MR algorithm is shown in Fig. 4, and repeated for each slice
of the 3-D image. This is the major component of the overall
system that constructs an approximation to the original cellular
data set. We now explain the algorithm in more detail.
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In our simulations, a probe is represented by taking a sample
from the maximum resolution original image at a specific pixel
location. Probe locations are initialized in one of two ways: The
first is to set up probe locations throughout the entire cellular
field rectangularly at primary units apart (primary unit refers
to the basic element of the maximum resolution), as in Fig. 5.
For our experiments, we set or . These probe locations
belong to the following index set :

This index set corresponds to the probing image, .
Method (a) is described as

otherwise

Thus, would be equal to 1 in black box locations in Fig. 5,
and 0 everywhere else. The method described above is identical
to how the probing locations are set up using standard down-
sampling.

The second way in which the probe locations are initialized
uses cellular location knowledge that has already been acquired
from previous slices in the 3-D sequence. For example, Fig. 3,
shows that cell locations in adjacent slices are very similar.
When stepping through the sampling process, it is efficient to
rule out areas unlikely to contain any pertinent information.
Fig. 6 shows an illustration of how to initialize the probe
locations if we know approximately where the cell is located.
We will elaborate on this in what follows. The initialization of
these probe locations is identical to the method (a) with one
added step—the application of a mask from the previous slice
as shown here (the computation of the mask is given later in
this section). Thus, the probing image for method (b),
is given by

mask

We can, thus, express the probing image as

method

method

These two methods for initializing the probe locations are used
in two different situations: The first method is used when there
is no information available about the location of the cell, while
the second one is used when such information is available (for
example, when slices at either previous time instants or previous
locations along the third spatial dimension have already been ac-
quired). To add more robustness to the system, the first method
can also be used periodically even when knowledge about the
location is available. Probing occurs until there are no more lo-
cations left to be examined.

After a location is probed and an intensity value is returned,
it is compared to a threshold . The threshold is set by the
user and determines the sensitivity of the algorithm. A lower
threshold will raise the sensitivity and take more samples while
a higher threshold will consider more locations to be uninter-

Fig. 4. Block diagram for the MR sampling algorithm.

Fig. 5. Initial sampling grid for both the method (a), and the standard
downsampling algorithm. Each block represents a possible probe location
while the black blocks represent where a probe location has been initialized.

Fig. 6. Initial sampling grid for method (b). Each block represents a possible
probe location. Black blocks represent where a probe location has been
initialized. Gray blocks represent the locations where we assume important
information is located. The probe locations are only set up in the area where
the cell is believed to be located.

esting. When a pixel’s intensity is examined, one of two things
occurs: If the value is greater than the threshold, then the value is
stored in what is called a foreground image, . The foreground
image contains all of the intensity values gathered from probes
where the intensity exceeds the threshold

&
otherwise
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With this image, we associate the binary image where 1 sig-
nifies where the foreground image has positive intensities and 0
signifies no intensity

otherwise

After the current value exceeding the threshold is stored, new
probes are added as shown in Fig. 7. The examined pixel can
be thought to have a depth, . The extended neighborhood is

from the current location. For our experiments, .
In the figure, the distance between probe locations (black pixels)
is . In part (a), the gray pixels rep-
resent the probe locations added when the circled probe location
reveals a value that is greater than or equal to the threshold. This
is a recursive process and its next step is shown in part (b) of the
same figure. This operation can also be thought of as the fol-
lowing convolution:

where and

otherwise

For example, with and , we have
and it equals 1 only for .

This process iterates until all of the probe locations identified
by are probed. The index set is also updated at this time

We then set and in preparation for a new
iteration.

Each time a value is returned from a probe it is stored in
what is called the background image . This occurs regardless
of whether or not the value exceeded the threshold. The back-
ground image consists of all the probed locations which have
then been interpolated to the dimensions of the original image.
When a location is probed, the value is placed in a temporary
image of the same dimensions as the original and initialized
to all zeros. The probed value is then replicated to fill its prox-
imity. The proximity is a subset of that surrounds the probe
location in the neighborhood of where is once again the
depth of the particular index value in . All the locations in this
subset take on the value of the probed location

Once all probing is completed, we can now construct the back-
ground image , given by

where is a lowpass filter. In our experiments, we used a simple
averaging filter where everywhere.

Fig. 7. (a) Grid obtained when the circled probe location returns a value greater
than the threshold. When this happens, the probe locations in gray are added.
(b) When one of the gray locations from (a) returns an intensity greater than the
threshold, the process continues recursively.

Now, we can construct the approximated image equal to the
background image where the foreground image is without an
intensity value

otherwise

To create a more efficient algorithm and save even more probes,
we can use the information about the cell location from the pre-
vious slice that has been approximated. This is done by creating
a mask. The mask examines the foreground image of the neigh-
boring/previous slice.

This image is expanded by the morphological operation of
dilation to create a mask that is larger than the area where the
structure was located in the neighboring slice

mask
otherwise

where everywhere. This com-
pensates for any growth, movement or displacement of the cell.
In the subsequent slice, we will only initialize the probe loca-
tions that lie in the region where the mask is located. If we con-
sider our board game example again, it becomes clear how the
masking operation works. Let us modify the game so that mul-
tiple rounds of the game are allowed. In the subsequent rounds,
the opponent’s pieces are limited to how far they can travel from
the prior round. With this restriction, an efficient search would
begin in only those neighborhoods where the opponent’s pieces
were located in the earlier round. For 2-D cellular data sets,
the masking step is omitted. With those data sets, the algorithm
never assumes to have knowledge of the cell location and always
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initializes the probe locations using the first method of initial-
ization described earlier in this section.

IV. DISCUSSION

A. Acquisition Time

A 2-D data field having dimensionality has total
probe locations. Our MR approach reduces the number of
probed locations to , where is an approximate
number of probe locations that exceed the threshold . Since

, the amount of compression depends on
(determined by ), and the data set being acquired.

Typically, indicating that the majority of probes
in the MR algorithm are spent acquiring data that exceeds the
threshold, in which case, the number of probe locations depends
more on the number of samples exceeding the threshold and
less on the dimensions of the acquisition field. The number of
probes for MR will be between (when all samples exceed
threshold) and (when approaches ). Each
pixel probed in a data set requires an excitation time for the
fluorescence to be detected by the microscope. The excitation
time cost is proportional to the percentage of samples kept, that
is, to .

Excitation time will be faster for the data set proportional
to the number of samples kept, a factor of .
The time associated with adding additional probes is of , a
negligible amount. The increased acquisition time cost depends
solely on the confocal scanning microscope’s ability to change
laser spot.

B. Data Storage

The data storage requirement of this system is similar to
that of the normal, line-by-line, pixel-by-pixel acquisition.
The output of the MR system is a data set that matches the
dimensions of the total cellular field being captured. This ap-
proximated data set has the same dimensionality as the original
data set. Since the MR algorithm approximates the original
data set, there is no further saving in terms of storage.

C. Distortion of Input

The distortion of input is an important topic and is discussed
in greater detail in Section V. We compare our simulated acqui-
sition to the simulations of nonadaptive approaches and observe
the distortion in both a mean-squared error (MSE) and classifi-
cation sense.

D. Robustness to Noisy Input

The MR acquisition is not impervious to noise. If the cellular
field being imaged is noisy, then the MR algorithm will use ad-
ditional samples to capture noisy areas. The amount of noise
captured will depend on the noise distribution, intensity of noise
and the threshold of acquisition. Thus, the algorithm will adapt
itself to a noisy input, probing more samples and resulting in
lower overall compression.

E. Implementation

Confocal scanning microscopes have the precision to capture
any pixel in the cellular field. The cost of implementing this

Fig. 8. Compression ratios and MSE for four 3-D data sets. The results are
given for the MR algorithm and the standard algorithm.

Fig. 9. Rate-distortion curves for MR downsampling compared to standard
downsampling with bilinear interpolation.

system is the reprogramming of the microscope to follow a dif-
ferent protocol as explained in Section III, as well as the time
needed to move from pixel to pixel. These issues will be ad-
dressed in detail during the implementation stage of this project.

V. EXPERIMENTAL RESULTS

A. Effect of Sampling on MSE

We synthesized the cellular field by using four data sets.
Each of the sequences is of size 1024 1280 30. After
processing each of the sequences we compared them to the
original sequences. We found the MSE for different thresholds
which affect the number of samples taken. We also repeated the
process with standard downsampling and bilinear interpolation
and compared the results. Fig. 8 gives the optimal compression
ratio and MSE for the four 3-D data sets we tested. Due to the
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Fig. 10. Rate-distortion curves for MR downsampling compared to standard
downsampling with bilinear interpolation.

Fig. 11. Classification accuracy of the original system (no sampling), MR
algorithm, and standard algorithm, using statistical features and SVM classifier
[14].

nature of the two algorithms, we cannot obtain exactly the same
compression ratios. Therefore, we find the closest compression
ratios we can for the MR algorithm and the standard one and
then compare the distortions. This comparison yields a consis-
tently higher distortion for the standard algorithm. The MSE is
given by

where is the original sequence and is the approximated se-
quence whose values range from 0 to 255. Figs. 9 and 10 show
the rate-distortion curves of two of the 3-D image sets from
Fig. 8. MR downsampling clearly outperforms standard down-
sampling with bilinear interpolation.

TABLE I
DETAILED CLASSIFICATION ACCURACY FOR (a) NO SAMPLING, (b) MR

SAMPLING ALGORITHM, AND (c) SD ALGORITHM, USING

STATISTICAL FEATURES AND SVM CLASSIFIER [14]

B. Effect of Sampling on Classification Accuracy

What we look into now is how the classification accuracy is
affected by these two algorithms with two separate classifiers.
We do these experiments on 2-D data sets only. We use a bank of
500 2-D data sets of size 512 512 [7], which represent ten dis-
tinct classes of proteins. The first classifier uses statistical fea-
tures classified by a support vector machine (SVM) [14]. The
second classifier uses the 13 texture features proposed by Har-
alick [15] classified using neural networks.

1) Statistical Features and SVM Classifier: We now begin
the statistical classification mentioned above by calculating the
statistical features for each of the approximated data sets. A
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Fig. 12. Illustration of the errors created with each of the sampling schemes.
(a) MR approximated image. (b) Standard downsampling approximated image.
(c) Differences between the original data sets and the MR sampled image
within blue square from (a). (d) Difference between the original data sets and
the standard downsampled image within blue square from (b). The errors in (c)
and (d) are shown by bright pixels. Note the significant reduction of errors with
the MR sampled image.

Fig. 13. Classification accuracy of the original system (no sampling), MR
algorithm, and standard algorithm, using Haralick features and neural network
classifier.

SVM was used to classify these features from approximated
data sets. The training for this process are the features derived
from the original data sets that have not undergone any down-
sampling or approximation. Fig. 11 shows that the accuracy de-
cline with standard downsampling is more drastic than that of
the MR downsampling and the overall accuracy decline is min-
imal. Table I(a) gives the accuracy for each pattern class using
the original data sets. Table I(b) shows the same detailed ac-
curacy for MR downsampling with a compression ratio of 9:1,
while Table I(c) shows the accuracy result with a compression
ratio of 4:1. Note that the overall accuracy is identical for parts
(b) and (c); however, the standard downsampling achieves this
measure with more than twice the number of samples used by
the MR approach.

TABLE II
DETAILED CLASSIFICATION ACCURACY FOR (a) NO SAMPLING, (b) MR

SAMPLING ALGORITHM, AND (c) SD ALGORITHM, USING

HARALICK FEATURES AND NEURAL NETWORK CLASSIFIER

2) Haralick Texture Features and Neural Network Classi-
fier: Now, we examine the results using Haralick texture fea-
tures and the neural network classifier. We repeat the process
of downsampling and feature calculation as above substituting
the statistical features with texture features. We believe texture
features to favor our algorithm based on the nature of the down-
sampling schemes. Standard downsampling does not yield any
additional resolution in areas where there are high frequencies,
while MR sampling does preserve these frequencies (these high
frequencies play a significant role in the determination of the
texture features). Fig. 12 shows difference data sets for the two
sampling schemes.
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The preservation of high frequencies is further emphasized
by the classification results. Fig. 13 shows that the level of sus-
tained accuracy is much higher with our MR sampling algorithm
and, in fact, is not affected by compression up to a ratio of 8.
Table II shows the classification of the original data sets as well
as downsampled data sets of using both sampling methods at
similar compression ratios.

VI. CONCLUSION

We presented a scheme for adaptive MR acquisition of fluo-
rescence microscopy data sets in the context of classification of
proteins based on their subcellular locations. We found that the
MR downsampling outperforms standard downsampling due to
an intelligent acquisition scheme. In a rate-distortion sense, our
algorithm outperforms the standard one because it retains the
high frequencies and saves samples where low frequencies are
present. In terms of classification accuracy, our algorithm shows
great promise as it significantly reduces the number of samples
acquired while minimally affecting the classification accuracy.
Future work includes implementing our algorithm as the micro-
scope’s scanning protocol.
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Dr. Kovac̆ević received the Belgrade October Prize, the highest Belgrade
prize for student scientific achievements awarded for the Engineering Diploma
Thesis in October 1986, and the E. I. Jury Award at Columbia University for
outstanding achievement as a graduate student in the areas of systems, com-
munication, or signal processing. She is also a coauthor of the paper for which
A. Mojsilovic received the Young Author Best Paper Award. She is the Ed-
itor-in-Chief of the IEEE TRANSACTIONS ON IMAGE PROCESSING. She served as
an Associate Editor of the IEEE TRANSACTIONS ON SIGNAL PROCESSING and
as a Guest Co-Editor (with I. Daubechies) of the Special Issue on Wavelets of
the PROCEEDINGS OF THE IEEE. She was on the Editorial Board of the IEEE
Signal Processing Magazine. She was Guest Co-Editor (with M. Vetterli) of the
Special Issue on Transform Coding of the IEEE Signal Processing Magazine
and Guest Co-Editor (with R. F. Murphy) of the Special Issue on Molecular
and Cellular Bioimaging of the IEEE Signal Processing Magazine. She was a
Member-at-Large of the IEEE Signal Processing Society Board of Governors
and serves on the Bioimage and Signal Processing Technical Committee, as well
as the Image and Multidimensional Signal Processing Technical Committee of
the IEEE Signal Processing Society. She is the General Chair of the 2006 Inter-
national Symposium on Biomedical Imaging, was the Co-Chair (with V. Goyal)
of the DIMACS Workshop on Source Coding and Harmonic Analysis, and a
General Co-Chair (with J. Allebach) of the 9th Workshop on Image and Multi-
dimensional Signal Processing. She is a keynote speaker at ICIAR05 and was a
plenary speaker at DCC98 and SPIE98.


	toc
	An Adaptive Multirate Algorithm for Acquisition of Fluorescence 
	Thomas E. Merryman, Student Member, IEEE, and Jelena Kova evi, F
	I. I NTRODUCTION
	II. M OLECULAR I MAGING

	Fig.€1. Laser concentrated on the focal plane. Laser intensity i
	III. A LGORITHM FOR MR A CQUISITION OF C ELLULAR D ATA S ETS

	Fig.€2. Image of a mitochondrial protein pattern.
	Fig.€3. Images from a 3-D sequence of actin protein pattern.
	Fig.€4. Block diagram for the MR sampling algorithm.
	Fig.€5. Initial sampling grid for both the method (a), and the s
	Fig.€6. Initial sampling grid for method (b). Each block represe
	Fig.€7. (a) Grid obtained when the circled probe location return
	IV. D ISCUSSION
	A. Acquisition Time
	B. Data Storage
	C. Distortion of Input
	D. Robustness to Noisy Input
	E. Implementation


	Fig.€8. Compression ratios and MSE for four 3-D data sets. The r
	Fig.€9. Rate-distortion curves for MR downsampling compared to s
	V. E XPERIMENTAL R ESULTS
	A. Effect of Sampling on MSE


	Fig.€10. Rate-distortion curves for MR downsampling compared to 
	Fig.€11. Classification accuracy of the original system (no samp
	TABLE I D ETAILED C LASSIFICATION A CCURACY FOR (a) NO S AMPLING
	B. Effect of Sampling on Classification Accuracy
	1) Statistical Features and SVM Classifier: We now begin the sta


	Fig.€12. Illustration of the errors created with each of the sam
	Fig.€13. Classification accuracy of the original system (no samp
	TABLE II D ETAILED C LASSIFICATION A CCURACY FOR (a) NO S AMPLIN
	2) Haralick Texture Features and Neural Network Classifier: Now,
	VI. C ONCLUSION

	J. Pawley, Ed., Handbook of Biological Confocal Microscopy . Mad
	A. V. Oppenheim and R. W. Schafer, Sampling of continuous-time s
	K. Huang and R. F. Murphy, From quantitative microscopy to autom
	M. Velliste and R. F. Murphy, Automated determination of protein
	M. V. Boland and R. F. Murphy, A neural network classifier capab
	X. Chen and R. F. Murphy, Robust classification of subcellular l

	J. Pawley, Ed., Handbook of Biological Confocal Microscopy . Mad
	C. J. Cogswell and K. Carlsson, Three-Dimensional Microscopy: Im
	J. C. Bulinski, D. J. Odde, Bo. J. Howell, T. D. Salmon, and C. 
	K. Gonda, J. Fowler, N. Katoku-Kikyo, J. Haroldson, J. Wudel, an
	E. A. J. Reits and J. J. Neefjes, From fixed to FRAP: Measuring 
	T. Zhao, private communication, 2004.
	R. M. Haralick, Statistical and structural approaches to texture



