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Abstract—This paper proposes an encoding method for
high-quality, low-delay audio communication that is robust to
losses in packetized transmission. Robustness is provided by a
multiple description vector quantization (MDVQ) technique that
is designed to minimize the mean-squared error (MSE). The key
to applying this technique effectively is the use of psycho-acousti-
cally controlled pre- and post-filters that make the mean-squared
quantization error perceptually relevant. Experiments show that
the MDVQ-based encoder yields better results—in both MSE and
subjective audio quality—than simple alternative coders with the
same low delay.

Index Terms—Audio coding, error robustness, LMS, low delay,
multiple descriptions, predictive coding, psycho-acoustics.

1. INTRODUCTION

ECHNOLOGICAL progress has made the public Internet
infrastructure faster and has given more users high-band-
width access to this infrastructure. Nevertheless, applications
requiring both high data rate and low delay remain largely
limited to private networks. Examples of such applications are
video conferencing with high quality for both the video and the
audio, musicians playing together remotely, wireless speakers
and wireless microphones. The reason is simply that packet
losses greatly impact the quality of streaming media, and elim-
inating packet losses introduces delay. We assert that now and
for the foreseeable future, packet losses are significant; thus,
media representations (encodings) for low delay applications
must be made more tolerant to losses. Packet losses occur in
wireless networks as a result of interference or noise, and in
wired networks they occur from interactions with other traffic.
Those who would argue that network loss rates are decreasing
must realize that most congestion control is achieved only as a
response to packet losses. Therefore, even moderate aggregate
link utilization by a set of network flows typically causes losses
for all of the flows unless all of the flows operate at constant rate.
The problem of packet losses could be alleviated with priority
labled packets, where the network discards mostly the lower pri-
ority packets. But this requires a network with this feature. For
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wireless connections this would not be a solution, because in-
terference and noise affects every packet with equal probability.

In this paper, we describe a technique for low-delay audio
coding that is robust to packet losses. Robustness without
added delay is obtained with multiple description coding [1].
Our requirements for the end terminals are threefold: First,
the encoding/decoding process should add little delay to the
signal path. A reasonable target for this delay is 10 ms or lower,
which is on the lower end of the encoding/decoding delay of
speech coders (see also [2] for a delay discussion). This is
sufficient even for the most demanding applications. Then,
both for delay and transmission reasons, the encoding/decoding
scheme should provide graceful degradation in the presence of
packet losses. Finally, the audio signal needs to be sufficiently
compressed to be suitable for transmission over bit-rate re-
stricted channels, as in wireless connections or over ISDN. We
consider two aspects of the above problem: The first is a source
(specifically audio) coding method with sufficient compression
ratio and low delay, and the second is a source/channel coding
scheme to treat transmission losses, again with low delay.

One of the simplest mechanisms to deal with packet losses is
to retransmit the lost packets until they are correctly received.
Such protocols require communication from the receiver to the
sender—either acknowledgment of received packets or nega-
tive acknowledgment of lost packets. However, this technique is
often not applicable in real-time systems because the acknowl-
edgment and retransmission process adds too much delay.

Another possibility is to try to conceal the losses by predicting
the lost samples from their neighbors. If one packet is lost, the
receiver tries to guess the value of the lost samples by using
the previous samples successfully transmitted. This technique
works reasonably well for speech signals but can be problematic
for nonspeech signals like music.

Multiple description coding (MDC) is used to provide robust-
ness to packet losses by introducing redundancy in the trans-
mitted streams, without adding delay or prohibitive complexity.
The price we pay is an increased bit rate. Instead of retrans-
mitting packets, redundancy is added to the source before trans-
mission by creating several descriptions of the source. MDC has
the advantage that no delay is added, and that it does not rely on
knowledge of the sound source.

II. AuDIO COMPRESSION

MDC techniques are generally developed to minimize the
mean squared error (MSE) of the reconstructed signal. But
for the playback of audio signals this error measure is not
optimal because of masking effects of the ear. The audibility
of distortions depends strongly on the underlying signal and
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the sensitivity of the ear across frequency and time. These
effects are described by the signal-dependent psycho-acoustic
masking threshold. Distortions which are smaller than this
masking threshold are not audible. To apply MSE-based MDC
techniques to audio coding, we desire a mapping of the audio
signal to a domain where MSE is approximately commensurate
with the audibility of distortions. To obtain this mapping, we
use a psycho-acoustically controlled adaptive prefilter. It has
the effect that it normalizes the signal to its masking threshold.
On the decoding side we use a post-filter, inverse to the prefilter.

Most present audio coders are based on subband coding. A
good compression ratio requires a high number of subbands,
typically 1024, at sampling rates of 32 to 48 kHz. However,
this high number of subbands leads to a high encoding/decoding
delay, on the order of 100 ms and more. The MPEG4 low-delay
coder achieves a lower delay by using a smaller number of
subbands, leading to a compromise in the compression perfor-
mance. But the obtained delay (ca. 960 samples, which is 20 ms
at 48 kHz sampling rate or 30 ms at 32 kHz sampling rate) is not
as low as desired (10 ms). Speech coders achieve lower delays
but do not perform well on nonspeech signals such as music or
room noise. Thus, to lower the delay without sacrificing perfor-
mance, we take a different approach.

Predictive coding introduces little or no delay and has the
same asymptotic coding gain as subband coding [3], [4].
However, predictive coding cannot easily be combined with
a psycho-acoustic model. Our approach separates irrelevance
reduction (quantization with a resolution that makes it imper-
ceptible, at least with no transmission losses) from redundancy
reduction (the exploitation of statistical relationships and
nonuniform probability densities in the quantized data).

A. Irrelevance Reduction

The pre- and post-filter are linear adaptive filters, im-
plemented in a structure like predictors, which provides
invertibility. Their uses are illustrated in Fig. 1. The prefilter
frequency response H ( f) is a normalization of the signal to the
masking threshold M ( f)

This means that after prefiltering, the masking threshold of the
signal is at unity across frequency. The uniform (white) noise
shape across frequency correponds to a constant variance noise
in the time-domain. The perceptual model is tuned in a way that
a simple rounding operation (unit step size) produces a suit-
able quantization noise at the masking threshold. Any distor-
tion above above this level becomes audible, whereas distor-
tions below it remain inaudible. The post-filter in the decoder is
the inverse of the prefilter. It has a frequency response like the
masking threshold. Assuming the quantization distortions after
the prefilter are flat across frequency and time, the post-filter
shapes the quantization distortions like the masking threshold,
as desired. The coefficients of the pre- and post-filter are ob-
tained by computing the linear predictive coefficients (LPC)
from the output of the psychoacoustic model [5], [6], such that
a frequency response according to the model is obtained. The
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Fig. 1. Audio coding scheme with separated irrelevance and redundancy

reduction, using a psychoacoustic pre- and post-filter and lossless compression.

masking threshold is parameterized using the prefilter coeffi-
cients, and transmitted as side information to the post-filter in
the decoder.

In the original formulation and application of this prefilter
[5], [6], the output of the prefilter was input to a uniform quan-
tizer. The uniform scalar quantizer is replaced with a multiple
description vector quantizer; this does not alter the spectral flat-
ness of the quantization error.

The quantizer produces the desired spectrally flat quantiza-
tion distortions. The prefilter together with the quantizer can
be viewed as a stage for the irrelevance reduction, because it
introduces distortions which are not audible (at least ideally),
and after the quantization the signal has a lower entropy.
This stage introduces some delay because the psycho-acoustic
model is still subband based. However, the requirements for the
time/frequency resolution for the psycho-acoustics are different
than the requirements for subband coding in traditional audio
coding. That is why the number of subbands can be chosen
much smaller. In our implementation we chose 128 subbands,
leading to a delay of about 128 samples.

B. Redundancy Reduction

The quantizer is followed by lossless coding, implemented
with a predictor and an entropy coder, such as an adaptive
Huffman coder. This stage can be viewed as redundancy re-
duction, because it uses only the statistical dependencies of the
signal.

The stage for the redundancy reduction does not introduce
much delay either. The prediction can be implemented with
backward adaptation, which is based on past signal samples,
and hence has no delay. Adaptive Huffman coding has a delay
of about 20 samples in our implementation [7], [6]. The decoder
does not introduce additional delay. This means that the overall
encoding/decoding delay is on the order of 200 samples or 6 ms
at 32 kHz sampling rate, which is below our targeted delay.

III. MULTIPLE DESCRIPTION BACKGROUND

Multiple description coding is a set of techniques that create
several descriptions of a signal to transmit. The descriptions are
self-contained but correlated. Each description can be viewed
as a coarse approximation of the input signal. The different de-
scriptions are transmitted separately to the receiver.

Descriptions can be lost on their way to the receiver if their
corresponding channels are broken. At the receiver, the quality
of the decoding is based on the number of descriptions correctly
received. If M descriptions of the input signal are created, the
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receiver has 2 —1 different decoding “behaviors,” one for each

nonempty set of descriptions received.

e If all descriptions are correctly received, the input signal
can be reconstructed at full quality.

e If only a subset of the descriptions is received, the
receiver can still reconstruct the signal and produce a
coarse approximation of the source.

In MDC, the higher the number of descriptions received, the
smaller the distortion between the input signal and its recon-
structed value. In contrast to a layered coding scheme—where
one channel is assumed to be received and there is an as-
sumed priority order among the descriptions—in MDC every
description is at the same priority level, and as soon as any of
the descriptions is correctly received the decoder can compute
an estimation of the original stream of data.

A basic two-description MD system is illustrated in Fig. 2.
Two descriptions of the source are created and transmitted over
two separate channels. The receiver uses one of three decoding
procedures, depending on which descriptions are received.
When both descriptions are received, the receiver uses the
“central decoder” Dj; when only one description is received,
the receiver uses one of the “side decoders” D and Ds. The
two side decoders have bigger distortions than the central
decoder, but their outputs are still coarse approximations of
the input signal. It is also possible that neither description is
received, but in this case the receiver can do nothing more than
approximate the signal by its mean. The overall goal of the
design of an MD coder is to make the distortion of all of the
2M _ 1 decoders as small as possible.

Two extreme cases of MDC are to 1) repeat exactly the same
description on all channels or 2) create completely independent
descriptions. In the first case, the reception of one description
already leads to full quality reconstruction. For a two-descrip-
tion system, this ensures complete robustness to the failure of
one channel, but the transmission overhead introduced is 100%.
In the second case, the descriptions are completely indepen-
dent and no redundancy is introduced. However, no robustness
is achieved either. If one description is lost, the information con-
tained in the other description cannot be used to reconstruct lost
information. Therefore, we see that there is a trade-off between
the redundancy introduced during the creation of the descrip-
tions and the robustness of the transmission. Good robustness
to losses can be achieved, but a price is paid in the increase of
the transmission rate. Next, we briefly review multiple descrip-
tion lattice vector quantization (MDLVQ), which will be used in
our system for robust audio transmission. More details on MDC
can be found in [1].

A. MD Lattice Vector Quantization

In a classical scalar quantization scheme, for each input
sample the nearest quantizer codebook index is transmitted.
In the MD case, the index of the scalar quantizer is not sent
directly over the channel. Rather, an index assignment table is
used to create two descriptions of every bin’s index [8]. Then,
each description is sent on a different channel, and there are
three possible decodings at the receiver. Even if one description
is lost, the other description can be used to produce a coarse
approximation of the original sample.

IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING, VOL. 13, NO. 5, SEPTEMBER 2005

Channel 1
Decoder D~
Source — Encoder Decoder Do~
Decoder Do~

Channel 2

Fig. 2. Multiple description system with two channels.

Just as we can form descriptions by using separate quantizers
on each scalar input sample, we can form descriptions on blocks
of K input samples. This has the advantage of reducing the
quantization error for a given bit rate (a property of vector quan-
tization) as well as obtaining more flexibility in the design of our
multiple description scheme, because we consider the quanti-
zation distortion cumulative over K samples, and not for each
individually.

Here we apply two-dimensional quantizers, i.e., we encode
with blocks of length K = 2. This allows us to use the ex-
ample quantizers based on the hexagonal A, lattice presented
explicitly in [9], which in turn are based on the optimizations
for the A, lattice presented in [10]. The choice of K = 2 pro-
vides a concrete proof of concept and facilitates pictorial rep-
resentations. It also has an audio inspiration: We do not want
to make the dimensionality too high to avoid having the quan-
tization error too unevenly distributed over the samples. Using
psychoacoustic prefiltering with moderate- to high-dimensional
vector quantization is an open research area that we cannot ad-
dress significantly within the scope of this work.

Even without the multiple description flavor, vector quan-
tizers suffer from great encoding complexity. A way to deal with
this problem is to impose structure on the quantizer, such as
forcing the points to belong to a lattice. In lattice vector quanti-
zation, every vector of data is quantized to one point of a given
lattice. Finding the nearest point from a lattice has much lower
complexity than finding the nearest point in an unstructured
codebook [11].

In Multiple Description Lattice Vector Quantization
(MDLVQ), instead of transmitting a label corresponding
to the closest lattice point, one associates with the lattice point
an ordered pair of points in a sublattice. The indices of these
sublattice points are the descriptions and the sublattice points
are the side decoder reconstructions. The association of lattice
points to ordered pairs of sublattice points is one-to-one so that
the central decoder reconstruction can be the original lattice
point.

MDLVQ was introduced by Servetto, Vaishampayan and
Sloane (SVS) [12], [10]. In addition to providing the basic
framework, they gave an algorithm for determining optimal
index assignments. Kelner et al. [13], [9] recognized that the
encoding procedure is inherently optimized for the central
decoder, meaning it minimizes the average distortions for the
case of no losses. They proposed an extension of MDLVQ in
which the encoder is optimized for a weighted combination of
the central and side distortions. We now provide details on the
original SVS technique and the KGK modification that is used
in our MD audio coder.
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Fig. 3. Example of MDLVQ of a pair of samples. Each fine lattice point is
labeled according to the SVS algorithm. The source vector P is quantized to
the closest lattice point ad; therefore, its descriptions are a and d. Illustration
of the coordinate indexing of the sublattice points.

Let A be a lattice, and let A’ C A be a geometrically similar
sublattice of A. This means A’ = cAA for some scalar ¢ and
some unitary matrix A with determinant 1, or that A’ is obtained
by scaling and rotating A. The index N = |A/A’|, which can be
seen as relative density of the lattices, ultimately determines the
redundancy of the system. Every point of the original fine lattice
A is labeled with a pair of points of the sublattice A’ by using a
one-to-one index assignment £ : A — A’ x A’. Fig. 3 shows
an example in which the original lattice is the two-dimensional
hexagonal lattice As and A’ is an index-7 sublattice.

Inthe SVS technique, a point is first encoded to the closest fine
lattice point A € A and then (A}, \y) = ¢()) is computed. This
lattice quantization uses the fast encoding algorithm described
by Conway and Sloane in [11], [14] for the A = A, example,
and creates hexagonal Voronoi regions. Recall that the Voronoi
region of a lattice point is defined as the set of points closer to
this lattice point than to any other. A{ and A} are transmitted
over channel 1 and 2, respectively. If only description ¢ is
received, the reconstruction is A;. If both descriptions are
received, the receiver can decode to the original lattice point A.
Therefore, the decoder provides coarse information if only one
description is received, and finer information if both descriptions
are transmitted successfully.

This approach suffers from the following drawback: Since
the decoding is made at the resolution of the fine lattice only
when both descriptions are received, it performs best for the
central decoder (for which no description is lost), and does not
consider the decoding performance of the side decoders based
on the reception of only one description.

Therefore, KGK propose in [13], [9] a new criterion for the
initial encoding step, applied before the index assignment. They
encode 2z € R to the lattice point A € A that minimizes

1—m
1+m

D
1+0p

e = M4 2 = Ml = el?) (1)
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Fig. 4. Shapes of the Voronoi cells, with respect to the MD objective function
(1), for different design parameters p;: (a) 0, (b) 0.02, (c) 0.05, (d) 0.1, (e) 0.2,
and (f) 0.5.

where (A1, A2) = £(A). This expression is a convex combination
of the squared error at the central decoder ||z — \||? and the
average squared error at the side decoders (1/2)(||z — A¢||* +
||z — X2||?), The parameter p; controls the trade-off between
central and side distortions. It can be considered the designed
loss probability because the expression that is minimized is the
expected squared error, conditioned on at least one description
being received, when descriptions are lost independently with
probability p;. This encoding partitions RY differently than
nearest-neighbor encoding with respect to A.

KGK further propose to alter the locations of points in A \ A’
to minimize (1). An iterative algorithm for this perturbation is
given in [9]. The shapes of the resulting partition cells are given
in Fig. 4 for a few values of p;. The evolution of the partition
as p; increases is interesting. When p; = 0, the partition is the
Voronoi partition used by SVS because the lattice is not per-
turbed and the side distortions are given no weight in (1). As p,
increases, the cells around the sublattice points become larger
than the ones around the points of A \ A’. The sublattice points
are preferred for encoding because when losses occur, these
points are decoded without error even in the side decoders. In
the extreme case where p; = 1, the cells around points in A \ A’
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Fig. 5. Block diagram of the MD encoder.

disappear.! The encoding with the perturbed lattice is similar to
the one with the regular (unperturbed) lattice, but requires more
computation. Assume again that we want to encode the point
P = (p1,p2).

* First, P is vector quantized to the closest sublattice
point A}, € A’, using the same fast encoding algorithm
described in the previous section. We cannot use this
algorithm for vector quantizing to the fine lattice A as
in the previous section, because (1) is not standard Eu-
clidean distance and the fine lattice has been perturbed.

e Then, using the difference P — )\;, find the A € A that
minimizes (1). For the hexagonal lattice, N = 7 case,
this is a search among 13 candidates.

e Once P — )\’p is determined, use the labeling ¢ to con-
struct the two descriptions and transmit them over their
respective channels. This labeling, determined with the
SVS algorithm, is the same as the one used with the reg-
ular lattice.

The decoding algorithm is exactly the same as the one used for
the regular lattice in the previous section.

IV. MD CODER

We now present the MD coder we implemented for the en-
coding of the prefiltered signal. Its block diagram is given in
Fig. 5. The audio signal is first prefiltered and then input into an
MDLVQ encoder. This coder pairs the samples and outputs two
descriptions for every vector created. Then, each description is
passed through a lossless coder to remove the redundancy con-
tained in the streams, before transmission over its channel. The
lossless coder consists of a predictor and an entropy coder.

A. MDLVQ Encoder

As described in Section II-A, the psycho-acoustically con-
trolled prefiltering results in a signal for which uniform scalar
quantizer step size A = 1 is at the threshold of perceptibility. So
that integer audio file formats allow sufficient resolution for our
manipulations and comparisons, we scale the prefilter output by
100. (Now A = 100 is at the threshold of perceptibility.) Obvi-
ously, the factor of 100 is arbitrary and has little impact on our
results.

We use an MDLVQ as a replacement for the uniform scalar
quantizer. Specifically, we apply the modified version of
MDLVQ from [9] with the A, lattice and an optimal index

! Animations of this evolution can be found at

http://lcavwww.epfl.ch/~goyal/MDVQY/.
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Fig. 6. Adaptive prediction filter.

assignment function for sublattice index N = 7. As a design
criterion, we want the central distortion with parameter p; =
0 to be at the threshold of perceptibility, i.e., the same as the
distortion obtained with a uniform quantizer with A = 100.
This simply requires an appropriate scaling for the A, lattice.
Let R be the radius of a circle inscribed in a hexagonal
Voronoi region of the desired lattice. Under the usual high-rate
analysis assumptions, the distortion for uniform scalar quan-
tization is A2?/12. This is the square of the scaling of the
underlying Z lattice (A?) times the normalized second moment
of the Z lattice (1/12). Making the corresponding calculation
for the two-dimensional quantizer gives distortion 5R?/24.

Thus we choose
2
R = gA =~ 63.24.

B. Lossless Predictive Coder

At the output of the MDLVQ encoder, on each MD channel,
the sublattice points have statistical dependencies. This is why
each description is passed into a lossless coder using a predictor
to reduce the bit rate needed for the transmission.

We describe each (sub-)lattice point by two integers or co-
ordinates (its projections onto a particular basis set) as shown
in Fig. 3. The two descriptions of the prefiltered signal are se-
quences of coordinates of sublattice points. An illustrative ex-
ample for a first description might be: (—1, 3), (0,—2),... and
the second description might be: (0, 3), (1, —2),. ...

We use prediction filters updated by the LMS algorithm [15],
[16]. The LMS algorithm uses the prediction error to update the
coefficients of the filter, as shown in Fig. 6. For example, assume
that Hy , is the filter used to predict the coordinate ', by using
the M previous coordinates X;, = (zx_1,...,Tk_n)". The
prediction Z of the current coordinate x, is given by

ir = XiL - Har g 2)

Observe that the predictor uses the coordinates of both bases.
The error ey, of the prediction is

er =xp — & =z — X - Hargee 3)
This prediction error is used to update the filter Hyy 1,
Hyr i1 = Harp + per X

where p is the step size of the LMS algorithm. The larger the
step size, the faster the convergence of the algorithm, but the
larger the asymptotic average mismatch between the adaptive
filter and the optimal filter. Therefore, there is a trade-off in the
choice of the step size y. A large o will converge faster in the be-
ginning, but after convergence the resulting filter will be worse
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than the filter obtained with a smaller step size. Under a stan-
dard but imprecise analysis, for stability and convergence, the
step size ;1 must obey [16]

1
0 i —
<K< ie{rlr,l.l.?l\l} A

where the ); are eigenvalues of F (X, X]'). Since max(}\;) <
M3, where 0% is the power of the input samples }, a suffi-
cient and simpler upper bound is given by

1
0<p<—s. “)
2
Mox,

Since the samples contained in the streams are integers, the
prediction must be an integer, too. Therefore, the prediction
given in (2) is rounded to the nearest integer,? and the predic-
tion error defined in (3) is now given by

€k = Tk — [X{ 'H]\I,k] .

These prediction errors ey, are the output of the predictive block.
They are passed to the entropy coder and then transmitted to
the receiver. The decoder uses them to exactly reconstruct the
stream of coordinates of the sublattice points. The decoder has
to use the same arithmetic (for instance the same precision) as
the encoder to obtain an exact reconstruction.

C. Coder Used in the Experiments

The coder uses two different prediction filters. One is used to
predict the odd indexed coordinates, which is only updated on
the odd indexed coordinates. Similarly, the other prediction filter
is used to predict the even indexed coordinates, and is updated
only on the even indexed coordinates. This structure is used for
both descriptions, for a total of four predictors.

We used two different audio signals for conducting most of
our experiments: “jazz” containing classical jazz music, and
“mixed,” which is a commercial containing a mix of speech and
music. Both signals have a duration of 10 s or 320 000 samples
at 32 kHz sampling rate. These signals are simply called “jazz
file” and “mixed file.” We first used these files to test the be-
havior of the coder for the encoding of the streams generated by
the MDLVQ encoder. For performance comparisons, we com-
puted the first-order entropy of the transmitted symbols.

Since the coordinates to transmit will be grouped into packets
and some of the packets will be lost, the prediction filter will be
periodically reset. This reset is needed to avoid any mismatch
between the adaptations in the decoder and in the encoder. We
decided to perform this reset every 4096 coordinates. This does
not imply that the size of a packet must be 4096 coordinates.
Actually, the number of coordinates contained in a packet can
be less or equal than 4096. A lower number is desirable to ob-
tain a lower delay. However, if one packet containing some of
the 4096 coordinates is lost, the corresponding description will
be declared lost even if some of the coordinates contained in an-
other packet are received.

This periodic reset favors the choice of a relatively large step
size in the predictor to achieve fast convergence.

2The notation [z] is used for the integer nearest to .
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The experiments we conducted with the predictive filters had
two goals: 1) to see the effect of the periodic reset and 2) to find
the optimal filter length and LMS step size to use for the filters.

Our simulations are conducted with two variables.

e M is the number of coordinates of the same type (that is,
along the same basis vector F;) used in the prediction.
Since there are 2 coordinates for each vector or pair of
prefiltered signal samples, the length of the prediction
filter is 2M.

*  [factor: This parameter is used in the computation of the
step size p. Using the simpler upper bound (4), the step
size u; used for the prediction filter applied to the coor-
dinates of description j is computed with the following
formula:

1
B 2M/1'factor0—‘2\’] ’

1 ®)

For experiments to determine good values for M and pigactors
we assumed a very noisy transmission channel, like in wire-
less communications, a 20% packet loss for the design of the
perturbed lattice. We used four different values for the param-
eter M (4, 8, 16, 32), and five different values for pigactor (5,
10, 15, 20, 25). For the prediction error we compute the first
order entropy for pairs of coordinates. At the output of the fil-
ters, one has to find a valid way to measure the performance of
the lossless coder. Because of the particular structure of the input
streams (alternating coordinates of sublattice points), the trans-
mitted symbols are again paired at the output of each filter, and
the two-dimensional first-order entropy of the consecutive vec-
tors is computed. The entropies of both descriptions are added
to get an approximation of the bit rate needed to transmit the
stream. We also considered two different cases for the reset of
the prediction filters. In the first series no reset is performed. In
the second series, a reset is performed every 4096 coordinates.
This helps us to estimate the influence of different reset periods
for different predictor operating points.

As results of our experiments we found that, when no reset
is performed the larger the value of M, the smaller the bit rate
(that is, the better the performance). This is due to two facts:
First, since the step size is computed with (5), the larger the
value of M, the smaller the step size, and the better the filter in
the steady-state. Moreover, for many signal parts the longer pre-
diction is better. However, this is not always exactly true in our
experiments. We see that for the “mixed” file, the performance
with M = 16 is better than the one obtained with a longer filter
(M = 32) for the large values of fiactor-

When areset is performed (lower plots), the best performance
is obtained with the smaller values of M, that is, with the short
filters. Because of (5), the smaller M, the larger the step size,
and the faster the convergence of the filter.

As an example, we set the value of M to 8 for the experiments
that follow. Since the plots show that with M = 8 the smallest
bit rate is achieved with pigactor = 10, we keep that value for the
remaining MDLVQ experiments.

The total signal delay of this system consists of the 128 sam-
ples of the psycho-acoustic prefilter plus the assembly delay for
the packets. The decoder does not add delay. If the packets have
a size of, say, 256 samples, this adds up to a total of 384 sam-
ples, or about 10 ms, which conforms to our goal.
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V. SIMPLE COMPARISON CODERS

To give an impression of the performance of our system, a
comparison to other MD schemes is useful. Since there are not
many well-known MD coders, we also designed three simple
comparison coders. Each one is introducing a different amount
of redundancy. They are denoted by BCO, BC2, and BC4 coders
(“BC” stands for “Basic Coders”).

Coder BCO0: The prefiltered signal is first quantized with a
scalar quantizer of bin width A = 100. The output of the scalar
quantizer is then passed into a lossless coder, consisting of a
predictor and an entropy coder. The output of the lossless coder
is split into two streams: packets of 2048 consecutive coded
samples are created and then transmitted alternately over each
channel.

This coder does not introduce any redundancy in the streams.
If one packet is lost, zeros will be input in the decoder before
post-filtering.

Coder BC2: As in the BCO coder, the prefiltered signal is
first quantized, still with the same scalar quantizer of bin width
A = 100. Then, consecutive samples are paired and input in a
integer-to-integer Hadamard transform (see, e.g., [17] App. 1]).
The outputs of the block correspond respectively to the low-pass
(sum) and high-pass (difference) values.

To introduce some redundancy and robustness in the transmis-
sion, the low-pass components are repeated on both channels,
and the high-pass components are split between the chan-
nels. The first packet contains all the low-pass samples output
by the integer-to-integer Hadamard transform, as well as half
of the bits of the high-pass stream. The second packet con-
tains again all the low-pass samples, and the other half of
the high-pass stream. On the receiving side, the decoder can
have three different behaviors, depending on the number of
packets received: 1) If both packets are successfully received,
the original samples can be retrieved by inverting the trans-
form. 2) If only one packet is received, only the low-pass
samples are available. These samples are used as input in the
inverse transform to get a coarse approximation of the original
samples before post-filtering. 3) If both packets are lost, zeros
are input in the post-filter.

We see that this scheme is actually a simple MD scheme,
where one packet carries a coarse approximation of the original
samples (the low-pass output of the transform in our case), and
both packets allow a perfect reconstruction of the original sam-
ples. For more details on forming an integer-to-integer trans-
form [17].

Coder BC4: This coder is similar to the BC2 coder, but now
with a 4 X 4 integer-to-integer Hadamard transform. Consecu-
tive samples are grouped into vectors of 4 samples and input in
the transform block. After the transform, the low-pass compo-
nent is, as in the BC2 coder, passed into a lossless coder and then
repeated over both channels. The three other high-pass com-
ponents are not repeated over both channels; their respective
streams are split between the two channels.

On the receiving side, the decoder behaves similar as the BC2
coder does: If both packets are received, the four streams can
be reconstructed and the inverse of the transform can be ex-
actly computed. If only one packet is received, only the low-pass
stream is entirely received and can be used to compute a coarse
approximation of the original samples before post-filtering.
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When compared to the BC2 coder, the BC4 coder introduces
less redundancy since only one of four outputs of the transform
is repeated on both channels. Therefore, its bit rate is smaller
than the bit rate of the BC2 coder. However, the disadvantage is
that the BC4 coder is less robust to losses, as we will see in the
experiments.

A. Lossless Predictive Coder

As in the MDLVQ coder we use lossless predictive coders in
the basic coders to reduce the redundancy of the streams and
therefore reduce the bit rate. In these basic coders, since the
streams to encode do not consist of pairs of coordinates, as in
the MDLVQ case (cf. Section IV-B), a predictor Hj; of length
M is used to predict the next sample. For each of these coders,
we have to choose the best filter length M and the best step size
1 to lower the bit rate as much a possible. The step size p is
computed as with (5), but with “M” instead of “2M.”

For each coder, we ran the filter for M € {4,8, 16,32} and
Ptactor € {5,10,15,20,25}. When the BCO coder is used, the
prediction filters are reset every 2048 samples, because we want
to be able to recover just one description with the 2048 samples.
The reset period for the BC2 and BC4 coders is 4096, like for the
MDVQ case. At the output of the coders, the first-order entropy
of the symbols is computed.

The results of our experiments show that M = 16 and
Itactor = 10 is best for the BCO coder. We use M = 32 for the
BC2 and BC4 coders.

VI. MODEL FOR THE NETWORK

In our experiments, we assumed that two descriptions are
created and transmitted over their respective channels to the
receiver. We optimistically made the assumption that one can
establish two different independent connections, and that each
description can be transmitted over one of these. This would
allow the packet losses over each channel to be independent.

However, it is a common misconception that MD coding
requires an independent path or transport mechanism for each
description. While such a situation does make MD coding
particularly attractive, as long as there is a chance that exactly
one of two descriptions is received it may be beneficial to use
MD coding. It is not a pre-requisite to have independent paths.

VII. EXPERIMENTAL RESULTS

We now compare performances of the MDLVQ and the basic
comparison coders. We first simulate the case that the descrip-
tions are lost independently. Then, we study the performance
when exactly one description is used for the decoding.

A. When Descriptions Are Lost Independently

Every packet can be lost independently over each channel
with probability p. Therefore, either both (with probability (1 —
p)?), one (with probability 2p(1 — p)) or no (with probability
p?) descriptions are received by the decoder. We ran the coder
for p € {0,0.1,0.2}, and for 10 different parameters p; of per-
turbations of the lattice in the MDLVQ coder. For an optimal
encoding, p; should be chosen as close as possible to the actual
probability of loss p.
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In each case we ran the coders five times, with different seeds
for the random generator to obtain different “error patterns.”
After the first experiments, we immediately saw that the MSE
of the decoded file is highly sensitive to the error pattern. This
could seem to be a major problem for the comparison of the
coders, but since the same errors patterns can be applied to the
four different coders, this problem can be partially eluded. Re-
call that the MSE is a good indication of the subjective quality
because of the psycho-acoustic prefilter.

The distortion is the same for all the BC and MDLVQ coders
when p = 0 and p; = 0. The latter is since our design criterion
for the original lattice was to equate the BC coder distortions
(see Section IV-A). As soon as p; > 0, the perturbation of the
lattice degrades the quality for p = 0, as one would expect.

For the MDLVQ coder, the experiments, which we only
describe qualitatively below for brevity, show that its overall
rate/distortion behavior is better than the performance of any
of the BC coders. The BC coders lie on a curve in the rate
distortion plane, and the MDLVQ coder is below that curve,
analog to Fig. 7. The MDLVQ coder outperforms the BC4
coder in both bit rate and distortion. When compared to the
BCO coder, the MDLVQ coder has a larger bit rate, since the
use of MDLVQ introduces redundancy in the streams, but
the decrease in distortion is significant for p > 0. Compared
to the BC2 coder, the distortion is slightly larger, but its bit
rate is significantly lower. Considering distortions at different
values of pl and p in MDLVQ case, the smallest distortion is
achieved when p; = p, as expected. But we also observed that
the differences in distortions resulting from different p; are less
than those resulting from different random seeds. This data
suggests that the perturbation is helpful only with high loss
probability. A rule of thumb can be: use no perturbation if the
loss will vary from 0% to 20%, and use p; = 0.1 perturbation
if the loss will vary from 10% to 30%.

B. When Only One Description Is Received

As further experiments with the coders, we assumed that
exactly one description is always successfully received. The
rate/distortion points obtained with the three coders are illus-
trated in Fig. 7. Again the BC coders can be seen as lying on a
curve in the rate-dostortion plane, and the MDLVQ coder lies
below that curve, which means it has the best rate/distortion
performance.

VIII. SUBJECTIVE COMPARISON

To obtain a more precise verification of our results, we con-
ducted a subjective comparison test. Because our bit rates are es-
timates intended for comparisons with similar schemes, but not
precise absolute numbers, we compared our MDLVQ scheme
with our BCO coder with its simple insertion of zeros for lost
packets. We assume an operating point where we have bit rate
available, which is high enough to obtain quantization noise at
the masking threshold for the MDLVQ coder, if both descrip-
tions are received. Further we assume similar bit rates for both,
the MDLVQ and the BCO coder. To obtain similar bit rates for
the MDLVQ and BCO coders in our comparison, the bin-width
of the BCO coder was set to A = 60. Table I shows the resulting
estimated bit rates for the 2 coders for our five test signals. The
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Fig. 7. Rate—distortion performances of the MDLVQ (MD), BCO, BC2, and
BC4 coders when one and only one description is successfully transmitted.

TABLE 1
BIT RATES (IN BIT/SAMPLE) FOR THE TEST SIGNALS FOR THE
MDLVQ AND BCO CODER

Signal MDLVQ | BCO
mspeech 2.79 2.80
sc03 2.83 2.73
esO1 2.89 2.83
mixed 2.90 2.94
jazz 3.13 3.01

different operating conditions are loss rates of p = 0,0.1, and
0.01, and packet sizes of 1024 and 4096. Table II show the re-
sulting mean squared error for the different loss rates and coders.
Recall that an MSE of 833.3 is at the masking threshold of the
psycho-acoustic model. Further observe that for the 10% loss
rate, and for some of the cases for the 1% loss rate, the MDLVQ
achieves a lower mean squared error than the BCO coder. We set
pr = 0 (no lattice perturbation), M = 8 for the MDLVQ, and
M = 16 for the BCO coder.

We chose 5 different signals such that they cover a wide
variety of signal statistics. Each has a length of 10 to 20 seconds
and 32 kHz sampling rate. We used the already mentioned
“mixed” and “jazz” signals (jazz is named “16cj” in the results
figures), and in addition “mspeech,” which is German male
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TABLE 11
RESULTING MEAN SQUARED ERROR FOR THE DIFFERENT LOSS RATES FOR
PACKET SIZES OF 4096 AND 1024 FOR THE MDLVQ CODER (ABOVE)
AND THE BCO CODER (BELOW)

4096 1024
Signal p=0[p=.01l|p=.1|p=.01|p=.1
mspeech | 824 1096 2853 1085 2428
sc03 794 1004 2916 1057 2639
es01 786 1012 3345 1074 2588
mixed 832 1081 3178 1136 3080
jazz 830 1087 3320 1142 3148
mspeech | 302 853 4881 785 4079
sc03 327 910 5441 931 4814
es01 331 515 5020 1124 4546
mixed 303 997 5432 1251 5915
jazz 301 1207 6640 1390 6865
Average and 95% Confidence Intervals
1 I
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Fig. 8. Listening comparison, no packet loss. There are five cases for each of
the five signals, in the order: 1) hidden reference, 2) lowpass filtered (3.5 kHz)
original, 3) low pass filtered (7 kHz) original, 4) BCO coder, and 5) MDLVQ
coder.

speech, “sc03,” which is music with trumpets, and “es01,” which
is Suzanne Vega a capella. We used a MUSHRA test [18] for
our comparison, where the test subjects were presented with
a series of sets of signals. Each set contains 2 coded/decoded
signals, from the MDLVQ and BC coder. In addition each set
contains the original signal, the original low pass filtered at
7 kHz and the original filtered at 3.5 kHz, as anchors. The
subjects evaluate each signal with sliders between 0 and 100,
corresponding to “bad” to “excellent.” We had seven listeners
with Stax headphones in an office environment.

A. Results

The results are presented in Figs. 8—12. The vertical axis
is the subjective grading, and the horizontal axis shows the
different signals. The vertical bars show the 95% confidence
intervals. They are an indication of the accuracy of our mea-
surement, which depends on the number of listeners and how
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Fig. 11. Listening comparison, 1% packet loss, packet size 4096.

similar they graded. Within each signal are (in that order)
the hidden reference, the 3.5 kHz filtered signal, the 7 kHz
filtered signal, the BCO coder (BC_1024 or BC_4096), and
the MDLVQ coder (MD_1024 or MD_4096). Fig. 8 shows the
results for zero packet loss. For the Multiple Description coders
this means that both descriptions are received. It can be seen
that in this case the BCO (BC_1024) and MDLVQ (MD_1024)
coder have indeed the same quality, as expected. There is no
significant difference in their quality because their confidence
intervals overlap. The further figures show that the MDLVQ
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Fig. 12. Listening comparison, 10% packet loss, packet size 4096.

coder is graded significantly better than the BCO coder (their
confidence intervals for “all items” don’t overlap) for the case
of packet losses, except for the case of packet length 4096
and 1% packet loss (Fig. 11), where the confidence intervals
overlap. For 10% packet loss (Figs. 10 and 12) it can be seen
that the MD coder is rated as good as the 7 kHz bandlimited
original (hidden_reference [7]), and the BCO coder as good as
the 3.5 kHz bandlimited original (hidden_[7]). The difference
for the 1% case with packet size 1024 (Fig. 9) has a similar
magnitude. This means there is a clearly audible advantage for
the MD coder.

IX. CONCLUSION

Many of the newer multiple description techniques are de-
signed for minimizing the mean squared error of the recon-
structed signal. The psycho-acoustically controlled prefilter is
used as a low delay conversion of audible difference into a mean
squared distance. This makes it possible to apply these multiple
description techniques to audio coding, with a distance measure
suitable for audio. Comparisons show that a better rate-distor-
tion operating point is achieved than with a coder with no added
redundancy (coder BCO), or a coder with the lower half band
repeated over two descriptions (coder BC2), or a coder with the
lower quarter band repeated over two descriptions (coder BC4).
Subjective comparisons of the MD and BCO coder show, that
the MD coder has a significantly better quality than the BCO
coder. Since both the psycho-acoustic prefilter and the multiple
description scheme add only very little delay, an overall delay
of the multi-descriptive audio encoder/decoder of 10 ms can be
obtained.

Together with the low complexity of the MD scheme, it makes
this approach attractive for applications like wireless micro-
phones, wireless speakers, or video conferencing.
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