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Abstract—We present a complete characterization and design
of orthogonal infinite impulse response (IIR) and finite impulse
response (FIR) filter banks in any dimension using the Cayley
transform (CT). Traditional design methods for one-dimensional
orthogonal filter banks cannot be extended to higher dimensions
directly due to the lack of a multidimensional (MD) spectral factor-
ization theorem. In the polyphase domain, orthogonal filter banks
are equivalent to paraunitary matrices and lead to solving a set of
nonlinear equations. The CT establishes a one-to-one mapping be-
tween paraunitary matrices and para-skew-Hermitian matrices.
In contrast to the paraunitary condition, the para-skew-Hermitian
condition amounts to linear constraints on the matrix entries which
are much easier to solve. Based on this characterization, we pro-
pose efficient methods to design MD orthogonal filter banks and
present new design results for both IIR and FIR cases.

Index Terms—Cayley transform (CT), filter banks, multidimen-
sional (MD) filter banks, nonseparable filter design, orthogonal
filter banks, paraunitary, polyphase.

I. INTRODUCTION

OVER the last decade, the theory and applications of
filter banks have grown rapidly [1]–[6]. Among them,

orthogonal filter banks received particular attention due to their
useful properties. First, orthogonality implies energy preser-
vation, which guarantees that the energy of errors generated
by transmission or quantization will not be amplified. Second,
under certain conditions, orthogonal filter banks can be used to
construct orthonormal wavelet bases [7].

There are two types of orthogonal filter banks: infinite im-
pulse response (IIR) filter banks and finite impulse response
(FIR) filter banks. For simplicity, we consider only filter banks
with real coefficients. Orthogonal IIR filter banks have greater
design freedom and, thus, generally offer better frequency se-
lectivity. Herley and Vetterli considered the theory and design of
one-dimensional (1-D) two-channel orthogonal IIR filter banks
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[8]. Selesnick proposed explicit formulas for two classes of 1-D
two-channel orthogonal IIR filters [9]. However, their design
methods need spectral factorization and, hence, cannot be ex-
tended to higher dimensions directly.

Orthogonal FIR filter banks are easier to implement and,
hence, more popular. In the 1-D two-channel filter bank case,
there exist several filter design methods. Among them, designs
based on spectral factorizations [10] and designs based on lat-
tice factorizations [11] are the most effective and widely used.
The first method, which was proposed by Smith and Barnwell
[10], designs the autocorrelation sequence of a filter and then
obtains that filter via spectral factorization. This method was
used by Daubechies to construct the celebrated family of
orthogonal compactly supported wavelets [7]. However, as
the size of the filter grows, spectral factorization becomes
numerically ill conditioned. Moreover, this method is difficult
to extend to higher dimensions due to the lack of a multidimen-
sional (MD) factorization theorem.

The second method, which was proposed by Vaidyanathan
and Hoang [11], formulates the filter design problem as that of
a polyphase transform matrix which has to be a paraunitary1

matrix , such that

for real coefficients (1)

where is an identity matrix. These authors provided a complete
characterization of paraunitary FIR matrices for 1-D filter banks
via a lattice factorization. However, in multiple dimensions, the
lattice structure is not a complete characterization.

In multiple dimensions, there are two types of filter banks:
separable and nonseparable filter banks. Transfer functions of a
separable filter bank are products of multiple 1-D filters. There-
fore, tensor products can be used to construct separable filter
banks from 1-D filter banks. In contrast to separable filter banks,
nonseparable filter banks are designed based on the MD struc-
ture directly, resulting in more freedom and better frequency se-
lectivity. In addition, nonseparable filter banks lead to flexible
directional decomposition of MD data [12]. Therefore, nonsep-
arable filter banks have received more interest in recent years.

Due to complexity, it is a challenging task to design non-
separable MD orthogonal filter banks. In the IIR case, to the
best of our knowledge, there is no existing literature addressing
the design problem. In the FIR case, to avoid spectral factor-
ization, Kovačević and Vetterli used the lattice structure to pa-

1A paraunitary matrix is an extension of a unitary matrix when the matrix
entries are Laurent polynomials. Paraunitary matrices are unitary on the unit
circle.
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rameterize the paraunitary matrices in MD and successfully de-
signed specific two-dimensional (2-D) and three-dimensional
(3-D) nonseparable orthogonal FIR filter banks [13]. However,
their method could not find all solutions since the MD lattice
structure is not a complete characterization. Recently, Delgosha
and Fekri derived a complete factorization for 2-D orthogonal
FIR filter banks based on degree-one IIR building blocks [14].
Unlike our work, the focus of their work is to find a factorization
of a given orthogonal FIR filter bank.

In this work, we propose a complete characterization of MD
orthogonal filter banks and a novel design method for orthog-
onal IIR and FIR filter banks using the Cayley transform (CT)
[15]. The CT of a matrix is defined as

(2)

The inverse of the CT is

(3)

The CT is a matrix generalization of the bilinear transform
[16, pp. 415–417], which is defined as .
The bilinear transform maps the imaginary axis of the com-
plex plane onto the unit circle in the complex plane. It is
widely used in signal processing theory, for example, to map
continuous-time systems to discrete-time systems. The CT is a
powerful tool to convert a nonlinear problem into a linear one
and is widely used in control theory and Lie groups [17]. We
will show that the CT maps a paraunitary matrix to a para-
skew-Hermitian2 (PSH) matrix that satisfies

for real coefficients (4)

Conversely, the inverse CT maps a PSH matrix to a paraunitary
matrix. Therefore, the CT establishes a one-to-one mapping be-
tween a nonlinear Stiefel manifold of paraunitary matrices and
the linear space of PSH matrices, as shown in Fig. 1.

Our key observation is that, in contrast to solving for the non-
linear paraunitary condition in (1), the PSH condition amounts
to linear constraints on the matrix entries in (4), leading to an
easier design problem. The basic idea is that we first design a
PSH matrix and then map it back to a paraunitary matrix by the
CT. This approach simplifies the design problem of orthogonal
filter banks. However, there are three challenges in this design
approach due to the matrix inversion term in the CT. The first
challenge is how to guarantee that the matrix inverse exists. The
second challenge is that the CT destroys the FIR property be-
cause of this term; that is, the CT of an FIR matrix is, in general,
no longer FIR. Thus, for orthogonal FIR filter banks, we need to
find a complete characterization of the PSH matrices such that
their inverse CTs are FIR. The third challenge is how to impose
certain filter bank conditions (such as vanishing moments) in the
Cayley domain. In this paper, we address these issues, leading
to a complete characterization and a novel design method for
orthogonal IIR and FIR filter banks of any dimension and any
number of channels.

The rest of the paper is organized as follows. In Section II,
we study the link between orthogonal filter banks and the CT.

2A para-skew-Hermitian matrix is an extension of a skew-Hermitian matrix
when the matrix entries are Laurent polynomials. Para-skew-Hermitian matrices
are skew-Hermitian on the unit circle.

Fig. 1. One-to-one mapping between paraunitary matrices and para-skew-
Hermitian matrices via the CT.

Fig. 2. (a) MD N -channel filter bank: H and G are MD analysis and
synthesis filters, respectively.D is anM �M sampling matrix. (b) Polyphase
representation:H andG are MD N �N analysis and synthesis polyphase
transform matrices, respectively. flll g is the set of all integer vectors in
FPD(D).

The characterization and design of orthogonal IIR filter banks is
given in Section III. The characterization and design of orthog-
onal FIR filter banks, including the general multiple-channel
case and the particular two-channel case are given in Sections IV
and V, respectively. We conclude in Section VI.

II. ORTHOGONAL FILTER BANKS AND THE CT

We start with notations. Throughout the paper, we will
always refer to as the number of dimensions and

as the number of channels. In MD, stands for an
-dimensional variable and

stands for . Raising to an -di-
mensional integer vector yields

. Raising to an integer matrix
yields , where is the th column
of . In addition, stands for the fundamental par-
allelepiped generated by , which is the set of all vectors
with [11].

Consider an MD -channel filter bank, as shown in Fig. 2(a).
We are interested in critically sampled filter banks in which the
sampling rate is equal to the number of channels, i.e.,

. In the analysis and design of filter banks, polyphase repre-
sentation is often used as it allows for time-invariant analysis in
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the polyphase domain as shown in Fig. 2(b). In the polyphase
domain, the analysis and synthesis parts can be represented by

matrices and , respectively. The analysis
and synthesis filters are related to the corresponding polyphase
matrices as [11]

for (5)

where is the set of all integer vectors in , and
is the entry of the matrix .

In the polyphase domain, the perfect reconstruction condi-
tion is equivalent to . Orthog-
onal condition additionally require , and,
thus, and are paraunitary matrices. Therefore, de-
signing an orthogonal filter bank amounts to designing a para-
unitary matrix. From now on, we denote by for
convenience, and we assume that is an paraunitary
matrix, and is its CT.

As mentioned in Section I, the CT maps a paraunitary ma-
trix to a PSH matrix. To use the CT, we must make sure that

is invertible as required in (2). If is not in-
vertible, we can adjust the filter bank by multiplying some filters
with , to obtain an equivalent filter bank. Doing so is equiva-
lent to multiplying the corresponding rows of with to
obtain an equivalent paraunitary matrix. In this way, we can gen-
erate equivalent from one -channel orthogonal filter
bank. The following proposition guarantees that among those

equivalent matrices there exists at least one such that
is invertible.

Proposition 1: Suppose is an matrix and is
an diagonal matrix whose diagonal entries are either 1
or . Then, there exists at least one such that is
nonsingular.

Proof: See Appendix A.
By Proposition 1, we can always find an equivalent parauni-

tary polyphase matrix for any orthogonal filter bank such
that is invertible and, thus, its CT exists. To
obtain from by the inverse CT, we must make sure
that is also invertible as required in (3). The following
proposition shows and, hence, that
the condition for to be invertible is equivalent to the
condition for to be invertible.

Proposition 2: Suppose that is the CT of . Then

Proof: Using (2), we have

From Proposition 1 and Proposition 2, we can associate any
orthogonal filter bank with a paraunitary matrix and a PSH

matrix such that both and are invertible.
Therefore, in the rest of the paper, without loss of generality, we
can assume that the CT of the polyphase matrix and the
inverse CT of always exist. Now, we can prove that the
CT maps paraunitary matrices to PSH matrices and vice versa.

Theorem 1: The CT of a paraunitary matrix is a PSH matrix.
Conversely, the CT of a PSH matrix is a paraunitary matrix.

Proof: See Appendix B.

III. ORTHOGONAL IIR FILTER BANKS

A. Complete Characterization

By Theorem 1, the CT establishes a one-to-one mapping be-
tween paraunitary matrices and PSH matrices. For implementa-
tion purposes, we consider IIR filter banks with rational filters3

only. In the polyphase domain, IIR filter banks lead to IIR ma-
trices, entries of which are rational functions. Based on Theorem
1, we can obtain the complete characterization of orthogonal IIR
filter banks with rational filters.

Proposition 3: The complete characterization of orthogonal
IIR filter banks with rational filters in the Cayley domain is PSH
matrices with rational entries.

Proof: By Theorem 1 and the fact that the CT of a rational
matrix is still rational.

By Proposition 3, to design an orthogonal IIR filter bank, we
can first design a PSH matrix in the Cayley domain, and then
map it back to a paraunitary polyphase matrix.

This method simplifies our design problem, since the PSH
condition amounts to linear constraints on the matrix entries,
while the paraunitary condition amounts to nonlinear ones. Take
the two-channel case as an example; for multiple-channel cases,
the results are similar. Let be a 2 2 paraunitary matrix
with

Then, the paraunitary condition becomes

(6)

Solving the system (6) involves solving three nonlinear equa-
tions with respect to the entries of . In contrast, let
be a 2 2 PSH matrix with

Then, the PSH condition becomes

(7)

Here, solving the system (7) involves solving only three inde-
pendent linear equations with respect to the entries of .
Moreover, these equations are decoupled. Specifically, we
only need to design two antisymmetric filters, and

, independently and then choose one arbitrary filter
leading to as in the last equation of (7). Then,

3A filter is said to be rational if its z transform is a rational function.
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the problem of designing converts to that of designing
antisymmetric filters, which is a simple problem as shown by
the following proposition.

Proposition 4: Suppose is an IIR filter with a rational
function: , where and are co-
prime polynomials. Then, if and only if

and

where is an arbitrary integer vector and .
Proof: See Appendix E.

B. Design Examples of 2-D Quincunx IIR Orthogonal Filter
Banks With Vanishing Moments

In this subsection, we consider the design of 2-D quincunx
orthogonal IIR filter banks as an illustration of the CT design
method. It is straightforward to extend it to the the higher di-
mensional and more channels cases.

Quincunx sampling is density-2 sampling, leading to the two-
channel case. Of all MD sampling patterns, the quincunx one is
the most common. However, since the sampling is nonseparable,
it offers challenges. For the quincunx sampling, its sampling
matrix and the integer vectors in the fundamental parallelepiped
in (5) can be written as

and

From (5), the low-pass filter of the quincunx filter bank
can be written as

(8)

In the context of wavelet design, the vanishing-moment con-
dition plays an essential role. This condition requires the low-
pass filter to have th-order zero derivatives at

, i.e.

for (9)

where the number of equations equals to the number of van-
ishing moments.

The design process is as follows. First, we parameterize a
PSH matrix as shown in (7) with the help of Proposition
4. Second, we compute the CT of to get and obtain
the low-pass filter from the polyphase matrix as in (8).
Third, we impose the vanishing-moment condition on the low-
pass filter.

To illustrate our design process, we design two orthogonal
filters with the second-order vanishing moments. In terms of (9),
the number of vanishing moments is 3, and, hence, the number
of free variables in the parameterization for is also 3.

Example 1:

1) In this example, we choose and
to be zeros, and parameterize
as

Fig. 3. Magnitude frequency responses of two orthogonal low-pass filters
with second-order vanishing moments, obtained by the CT. (a) Example 1.
(b) Example 2.

2) Take the CT of to get
and impose the second-order vanishing-mo-
ment condition on the low-pass filter

as in (9), which leads to

3) Obtain the solutions

The magnitude frequency response of the resulting low-pass
filter in the quincunx filter bank is given in Fig. 3(a).

Example 2:

1) In this example, we choose to
be FIR, and parameterize antisymmetric
filters and as

and as

2) Take the CT of to get
and impose the second-order vanishing-mo-
ment condition on the low-pass filter

as in (9), which leads to

3) Obtain the solutions

The resulting low-pass filter in the quincunx filter bank has
good diamond-like shape of the magnitude frequency response,
as shown in Fig. 3(b).

IV. ORTHOGONAL FIR FILTER BANKS

In the polyphase domain, FIR filter banks lead to FIR ma-
trices, entries of which are polynomials. To design orthogonal
FIR filter banks, we need to design paraunitary FIR matrices.
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In this section, we assume that is an paraunitary
FIR matrix. From (1), . Therefore,

is an allpass FIR filter and, hence, a monomial [11].
Thus, we have

where , and is the McMillan degree of the orthogonal
filter bank derived from , which is defined as the minimum
number of delay units for each dimension [18].

As mentioned in Section I, although is an FIR matrix, in
general, is not because of the factor . Thus,
we need to find a complete characterization of PSH matrices
such that their CTs are FIR.

According to the Cramer’s rule, we have

(10)

where denotes the adjugate of . In other words,
can be represented as the quotient of an FIR matrix and an FIR
filter. Let and be the scaled denominator and nu-
merator of (10), respectively

(11)

(12)

where the scale factor is introduced for later conve-
nience. Then, can be expressed as

From Proposition 2, we have

Substitute this into (11), and we get

(13)

Now, our task is to obtain a characterization of both and
, since they will characterize .

Lemma 1: Suppose is a paraunitary FIR matrix of
McMillan degree . Then, its CT can be written as

, where is an FIR filter and is an FIR
matrix, and they satisfy the following conditions:

Moreover, if and are coprime, then they are unique
for each paraunitary FIR matrix .

Proof: See Appendix C.
Now, we formulate the complete characterization of parauni-

tary FIR matrices in the Cayley domain.
Theorem 2: The CT of a matrix is a paraunitary FIR

matrix if and only if it can be written as ,
where is an FIR filter and is an FIR matrix, and they
satisfy the following four conditions:

1) ;
2) ;

3) ;
4) is a common factor of all minors of

.
Moreover, the CT of can be written as

(14)

Proof: By Lemma 1, we know that the first three condi-
tions are necessary for the CT of to be a paraunitary FIR
matrix. Furthermore, conditions 1) and 2) guarantee that
is a PSH matrix, and, thus, its CT is a paraunitary matrix. Now,
we only need to prove that condition 4) is the necessary and suf-
ficient condition for the CT of to be FIR. By Proposition
2, the CT of is given by

From condition 3)

To guarantee that is FIR, the necessary and sufficient con-
dition is that is a factor of . This
completes the proof.

Therefore, our problem of designing a paraunitary FIR ma-
trix is converted to a problem of designing a PSH matrix

, where and satisfy the con-
ditions given in Theorem 2.

V. TWO-CHANNEL ORTHOGONAL FIR FILTER BANKS

A. Complete Characterization

Among MD orthogonal filter banks, the two-channel ones are
the simplest and most popular. In this case, and condition
4) in Theorem 2 is always satisfied. Our goal here is to express

directly as an FIR matrix using and the terms from
so that we can impose further conditions on them (e.g.,

vanishing-moment conditions).
Lemma 2: Suppose be a 2 2 FIR matrix with

Then, condition 3) in Theorem 2 amounts to the following two
conditions:

Proof: See Appendix D.
Now we formulate a complete characterization of general

2 2 paraunitary FIR matrices.
Theorem 3: Any 2 2 MD paraunitary FIR matrix can

be written as

(15)
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where is an FIR filter satisfying

and is an FIR matrix satisfying

and

(16)

(17)

Proof: Let be the CT of . Let and
be defined as before. By Theorem 2 and Lemma 2, it is easy to
verify that the CT of is a paraunitary
FIR matrix if, and only if, and satisfy the given
conditions in this theorem.

It remains to show that the CT of satisfies (15). In the
two-channel case, (14) becomes

and equals

This completes the proof.
In this characterization, the free parameters are the coeffi-

cients of the symmetric FIR filters and only. Al-
though the computation of in (16) amounts to a spectral
factorization problem, it is easier since the size of filters here is
half of that required in the design method of spectral factoriza-
tions by Smith and Barnwell [10]. In the actual design, we can
parameterize the coefficients of the , , and ,
and then solve equations with respect to these coefficients im-
posed by (16), and possibly additional conditions. This design
method is applicable for arbitrary dimensions. In the next sub-
section, we will detail the design process of 2-D orthogonal filter
banks with vanishing moments.

B. Design Examples of 2-D Quincunx Orthogonal FIR Filter
Banks With Vanishing Moments

As in the orthogonal IIR case, the vanishing-moment con-
dition plays an essential role in the context of wavelet design.
Using (8) and (15), the low-pass filter becomes

(18)

Therefore, the vanishing-moment condition imposes certain
constraints on the derivatives of , and at

. If we parameterize these three filters according
to Theorem 3, then the vanishing-moment condition amounts
to linear equations, which can be solved easily.

The design procedure is given as follows.

1) Parameterize FIR filters and
such that

(19)

(20)

2) Parameterize the FIR filter .
3) Compute the parameterization of the
low-pass filter using (18) and
impose the th-order vanishing moment as
in (9), resulting in linear equations.
4) Equation (16) in Theorem 3 becomes

(21)

Comparing the coefficients of results in
quadratic equations.
5) Solve the set of all resulting equa-
tions from steps 3) and 4) together,
and get all the filterbank filters from

using (15).

C. Parameter Analysis

We want to examine the effect of the size of the filters on
the number of equations to solve, and the maximum number of
vanishing moments that can be imposed using the above design
procedure.

1) The McMillan degree of an or-
thogonal filter bank is equal to the
size of the filters. By (19) and (20),
the size of both and are

. By (21), the size of
is also .
2) Because of the symmetric conditions
in (19) and (20), the total number of
parameters for and is

. Adding the number of pa-
rameters of , the total number of
unknowns is .
3) Let be the number of vanishing mo-
ments. Then, step 3) leads to equa-
tions. In step 4), we get

independent equations from (21).
Therefore, to guarantee a solution (i.e.,
the number of equations must be less than
or equal to the number of unknowns), the
number of vanishing moments has to obey

(22)

D. Design Examples

Example 3: In the first design example, we design orthog-
onal filters of minimum size, with the second-order vanishing
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TABLE I
SIX SOLUTIONS YIELDING ORTHOGONAL FILTERS

WITH SECOND-ORDER VANISHING MOMENTS

moments. According to (9), the second-order vanishing-mo-
ment condition (i.e., ) specifies three equations or three
vanishing moments. Therefore, using (22), a minimal McMillan
degree is . The design procedure is given as follows.

1) Parameterize and as

2) Parameterize as

3) Solve three linear equations as in (9)
and we get

4) Comparing the coefficients of in
(21), which generates five quadratic equa-
tions. Solve these equations.

The resulting six solutions, which make up three pairs and
each pair of filters are related by reversal, are given in Table I.
The first pair leads to the degenerated Daubechies’ D4 filter [7].
The second and third pairs are nonseparable filters same as those
found by Kovačević and Vetterli [13] using the lattice structure.

Example 4: In the second example, we design orthogonal fil-
ters of minimum size, with the third-order vanishing moments,
in which the number of vanishing moments is 6 in terms of (9).
Therefore, using (22), a minimal McMillan degree in this case
is . The algebraic solutions are difficult, but the numer-
ical solutions are possible. There are totally eight independent4

solutions, where two are degenerated Daubechies’ D6 filters.
The magnitude frequency responses of the rest six 2-D filters
are shown in Fig. 4. The two filters in Fig. 4(a) are the same
as those found by Kovačević and Vetterli [19] using the lattice
structure. Note that the lattice structure is not a complete charac-
terization in the MD case. In contrast, our design method finds
all solutions owing to the complete characterization. Among the
four new solutions given in Fig. 4(b), the top two have desir-
able diamond-like magnitude frequency response shape and the
resulting 2-D filters are given in Tables II and III.

4It is easy to verify that the reversal or modulation of an orthogonal FIR filter
with the third-order vanishing moment is still orthogonal with the third-order
vanishing moment.

Fig. 4. Magnitude frequency responses of 24-tap orthogonal low-pass filters
with third-order vanishing moments, obtained by the CT. (a) Two possible
solutions, also found by Kovačević and Vetterli. (b) Four possible solutions.
They are new filters.

TABLE II
COEFFICIENTS OF THE TOP LEFT FILTER IN FIG. 4(b) h[n ; n ]

TABLE III
COEFFICIENTS OF THE TOP RIGHT FILTER IN FIG. 4(b) h[n ; n ]

They can be used to construct wavelets bases via iterated filter-
banks [13]. After the tenth iteration, they have smooth surface
as shown in Fig. 5.

VI. CONCLUSION

Designing MD orthogonal filter banks amounts to designing
MD paraunitary matrices. The CT establishes a one-to-one map-
ping between MD paraunitary matrices and MD PSH matrices
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Fig. 5. Tenth iteration leading to quincunx wavelet bases of the top two filters
in Fig. 4(b), obtained by the CT.

and converts nonlinear paraunitary condition to linear PSH con-
dition. Based on this mapping, we find a uniform framework
for the characterization of MD multichannel orthogonal filter
banks.

The characterization of MD orthogonal IIR filter banks is
simple: the linear space of PSH IIR matrices. In contrast, since
the CT destroys the FIR property, the CT of an MD orthogonal
FIR filter bank is in general not FIR. Instead, we find the char-
acterization of a paraunitary FIR matrix in the Cayley domain is
the quotient of an FIR matrix and an FIR filter with some con-
straints. In addition, we propose the design process to impose
vanishing moments on orthogonal filters with illustrative exam-
ples. Our future work will be on the simplification of characteri-
zation for orthogonal FIR filter banks with more than two chan-
nels, and new filter designs for specific filter bank problems.

APPENDIX A
PROOF OF PROPOSITION 1

We prove it by induction.

1) When , then , or . Obviously, either
or must be nonsingular.

2) Suppose the proposition holds for . Now, consider
. Express the matrix as

By assumption, we can find a diagonal matrix
such that is nonsingular. Let and be two

diagonal matrices such that

and

We will show that either or must
be nonsingular. We have

where is a identity matrix.
Let be a matrix such that its first
rows are the same as those of both and

, and its last row is the sum of the last rows of
and . Then

(23)

and

By assumption, , and, thus, from (23), either
or must be nonsingular.

APPENDIX B
PROOF OF THEOREM 1

For the first part, suppose that is a paraunitary matrix
and is the CT of . Then, using (2)

It can be easily checked that and are
commutable. Therefore

For the second part, suppose that is a PSH matrix and
is the CT of . Then
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Similarly, and are commutable.
Therefore

APPENDIX C
PROOF OF LEMMA 1

For the first part, define and as in (11) and (12),
respectively. It is clear that both and are FIR. It
remains to show the symmetric property of and .
By (13)

which leads to

Thus, , and, hence

By (13)

The second part is obvious since .

APPENDIX D
PROOF OF LEMMA 2

By condition 3) in Theorem 2

(24)

It is easy to verify for the two-channel case that

Therefore

(25)

By replacing by in (25), after some simple manipulation,
we obtain

(26)
By combining (25) and (26) we obtain

This completes the proof for the first equation. The second
equation follows from (24) after some straightforward
manipulation.

APPENDIX E
PROOF OF PROPOSITION 4

The proof of the sufficient condition is obvious. For the
necessary condition, suppose . Then,

. Since and are
coprime polynomials, there exists an FIR filter , such that

(27)

By replacing by in (27), we obtain

(28)

By multiplying (27) and (28), we have

Therefore, is an allpass FIR filter, i.e., , which
completes the proof.
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Dr. Kovačević received the Belgrade October Prize, the highest Belgrade
prize for student scientific achievements, awarded for the Engineering Diploma
Thesis in October 1986, and the E. I. Jury Award at Columbia University for
outstanding achievement as a graduate student in the areas of systems, com-
munications, or signal processing. She is a coauthor of the paper for which
A. Mojsilovic received the Young Author Best Paper Award. She is the Ed-
itor-in-Chief of the IEEE TRANSACTIONS ON IMAGE PROCESSING. She served
as an Associate Editor of the IEEE TRANSACTIONS ON Signal PROCESSING, as
a Guest Co-Editor (with I. Daubechies) of the Special Issue on Wavelets of
the PROCEEDINGS OF THE IEEE, and a Guest Co-Editor (with M. Vetterli) of
the Special Issue on Transform Coding of the Signal Processing Magazine.
She is a Member-at-Large of the IEEE Signal Processing Society Board of
Governors and serves on the IMDSP Technical Committee of the IEEE Signal
Processing Society. She was the Co-Chair (with V. Goyal) of the DIMACS
Workshop on Source Coding and Harmonic Analysis and a General Co-Chair
(with J. Allebach) of the 9th Workshop on Image and Multidimensional Signal
Processing.


	toc
	Multidimensional Orthogonal Filter Bank Characterization and Des
	Jianping Zhou, Student Member, IEEE, Minh N. Do, Member, IEEE, a
	I. I NTRODUCTION

	Fig. 1. One-to-one mapping between paraunitary matrices and para
	Fig. 2. (a) MD $N$ -channel filter bank: $H_{i}$ and $G_{i}$ are
	II. O RTHOGONAL F ILTER B ANKS AND THE CT
	Proposition 1: Suppose $ {\bf U}( { \mbi { z}})$ is an $N \times
	Proof: See Appendix€A . $\blackboxfill $

	Proposition 2: Suppose that $ {\bf H}( { \mbi { z}})$ is the CT 
	Proof: Using (2), we have $$\eqalignno{{\bf I}+ {\bf H}( { \mbi 

	Theorem 1: The CT of a paraunitary matrix is a PSH matrix. Conve
	Proof: See Appendix€B . $\blackboxfill $


	III. O RTHOGONAL IIR F ILTER B ANKS
	A. Complete Characterization
	Proposition 3: The complete characterization of orthogonal IIR f
	Proof: By Theorem 1 and the fact that the CT of a rational matri

	Proposition 4: Suppose $W( { \mbi { z}})$ is an IIR filter with 
	Proof: See Appendix€E . $\blackboxfill $


	B. Design Examples of 2-D Quincunx IIR Orthogonal Filter Banks W
	Example 1:
	1) In this example, we choose $H_{00}(z_{1},z_{2})$ and $H_{11}(



	Fig. 3. Magnitude frequency responses of two orthogonal low-pass
	2) Take the CT of $ {\bf H}( { \mbi { z}})$ to get $ {\bf G}_{p}
	3) Obtain the solutions $$a_{2}=a_{3}=- {{ 1}\over { 2}}\pm {{ 1
	Example 2:
	1) In this example, we choose $ {\bf H}(z_{1}, z_{2})$ to be FIR
	2) Take the CT of $ {\bf H}( { \mbi { z}})$ to get $ {\bf G}_{p}
	3) Obtain the solutions $$a_{3}=-1\pm \sqrt {2},\quad a_{1}= {-a
	IV. O RTHOGONAL FIR F ILTER B ANKS
	Lemma 1: Suppose $ {\bf U}( { \mbi { z}})$ is a paraunitary FIR 
	Proof: See Appendix€C . $\blackboxfill $

	Theorem 2: The CT of a matrix $ {\bf H}( { \mbi { z}})$ is a par
	Proof: By Lemma 1, we know that the first three conditions are n


	V. T WO -C HANNEL O RTHOGONAL FIR F ILTER B ANKS
	A. Complete Characterization
	Lemma 2: Suppose $ {\bf H}^{\prime}( { \mbi { z}})$ be a 2 $\,\t
	Proof: See Appendix€D . $\blackboxfill $

	Theorem 3: Any 2 $\,\times\,$ 2 MD paraunitary FIR matrix $ {\bf
	Proof: Let $ {\bf H}( { \mbi { z}})$ be the CT of $ {\bf U}( { \


	B. Design Examples of 2-D Quincunx Orthogonal FIR Filter Banks W
	1) Parameterize FIR filters $D(z_{1},z_{2})$ and $H_{11}^{\prime
	2) Parameterize the FIR filter $H_{10}^{\prime}(z_{1},z_{2})$ .
	3) Compute the parameterization of the low-pass filter $G_{0}(z_
	4) Equation (16) in Theorem 3 becomes $$\displaylines{ H^{\prime
	5) Solve the set of all resulting equations from steps 3) and 4)
	C. Parameter Analysis
	1) The McMillan degree $[k_{1}, k_{2}]^{T}$ of an orthogonal fil
	2) Because of the symmetric conditions in (19) and (20), the tot
	3) Let $V$ be the number of vanishing moments. Then, step 3) lea
	D. Design Examples
	Example 3: In the first design example, we design orthogonal fil



	TABLE I S IX S OLUTIONS Y IELDING O RTHOGONAL F ILTERS W ITH S E
	1) Parameterize $D(z_{1},z_{2})$ and $H_{11}^{\prime}(z_{1},z_{2
	2) Parameterize $H_{10}^{\prime}(z_{1},z_{2})$ as $$H_{10}^{\pri
	3) Solve three linear equations as in (9) and we get $$\left \{\
	4) Comparing the coefficients of $z$ in (21), which generates fi
	Example 4: In the second example, we design orthogonal filters o
	Fig. 4. Magnitude frequency responses of 24-tap orthogonal low-p
	TABLE II C OEFFICIENTS OF THE T OP L EFT F ILTER IN F IG .€4(b) 
	TABLE III C OEFFICIENTS OF THE T OP R IGHT F ILTER IN F IG .€4(b

	VI. C ONCLUSION

	Fig. 5. Tenth iteration leading to quincunx wavelet bases of the
	P ROOF OF P ROPOSITION 1
	P ROOF OF T HEOREM 1
	P ROOF OF L EMMA 1
	P ROOF OF L EMMA 2
	P ROOF OF P ROPOSITION 4
	G. Karlsson and M. Vetterli, Theory of two-dimensional multirate
	E. Viscito and J. P. Allebach, The analysis and design of multid
	R. H. Bamberger and M. J. T. Smith, A filter bank for the direct
	T. Chen and P. P. Vaidyanathan, Recent developments in multidime
	D. B. H. Tay and N. G. Kingsbury, Flexible design of multidimens
	M. Vetterli and J. Kova evi, Wavelets and Subband Coding . Upper
	I. Daubechies, Orthonormal bases of compactly supported wavelets
	C. Herley and M. Vetterli, Wavelets and recursive filter banks, 
	I. W. Selesnick, Formulas for orthogonal IIR wavelet filters, IE
	M. J. T. Smith and T. P. Barnwell III, Exact reconstruction for 
	P. P. Vaidyanathan, Multirate Systems and Filter Banks . Upper S
	M. N. Do and M. Vetterli, The contourlet transform: An efficient
	J. Kova evi and M. Vetterli, Nonseparable multidimensional perfe
	F. Delgosha and F. Fekri, Results on the factorization of multid
	R. A. Horn and C. R. Johnson, Matrix Analysis . Cambridge, U.K.:
	A. V. Oppenheim, R. W. Schafer, and J. R. Buck, Discrete-Time Si
	B. Hassibi and B. M. Hochwald, Cayley differential unitary space
	S. Venkataraman and B. C. Levy, State space representations of 2
	J. Kova evi and M. Vetterli, Nonseparable two- and three-dimensi



