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Abstract—We characterize and design multidimensional (MD)
orthogonal filter banks using special paraunitary matrices and
the Cayley transform. Orthogonal filter banks are represented by
paraunitary matrices in the polyphase domain. We define special
paraunitary matrices as paraunitary matrices with unit determi-
nant. We show that every paraunitary matrix can be characterized
by a special paraunitary matrix and a phase factor. Therefore,
the design of paraunitary matrices (and thus of orthogonal filter
banks) becomes the design of special paraunitary matrices, which
requires a smaller set of nonlinear equations. Moreover, we pro-
vide a complete characterization of special paraunitary matrices
in the Cayley domain, which converts nonlinear constraints into
linear constraints. Our method greatly simplifies the design of MD
orthogonal filter banks and leads to complete characterizations of
such filter banks.

Index Terms—Cayley transform, filter banks, multidimensional
(MD) filter banks, nonseparable filter design, orthogonal filter
banks, paraunitary, polyphase, special paraunitary.

I. INTRODUCTION

MULTIDIMENSIONAL (MD) filter banks have gained
particular attention in the last decade [1]–[9]. Nonsep-

arable filter banks can capture geometric structures in MD data
and offer more freedom and better frequency selectivity than
traditional separable filter banks constructed from one-dimen-
sional (1-D) filter banks. Nonseparable filter banks also provide
flexible directional decomposition of MD data [10]. Therefore,
nonseparable filter banks are more suited to image and video
applications.

Orthogonal filter banks are special critically sampled perfect
reconstruction filter banks where the synthesis filters are time-
reversals of the analysis filters. Orthogonal filter banks can be
used to construct orthonormal wavelet bases [11], [12]. Because
of orthogonality, orthogonal filter banks offer certain conve-
niences; for example, the best -term approximation is simply
done by keeping those coefficients with largest magnitude.
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Designing nonseparable MD orthogonal filter banks is a chal-
lenging task. Traditional design methods for 1-D orthogonal
filter banks cannot be extended to higher dimensions directly
due to the lack of an MD factorization theorem. In the infinite
impulse response (IIR) case, Fettweis et al. applied wave digital
filters and designed a class of orthogonal filter banks [13]. In the
finite impulse response (FIR) case, there are only a few design
examples (for example, [3]).

In the polyphase domain, the polyphase synthesis matrix of
an orthogonal filter bank is a paraunitary matrix, , that
satisfies

(1)

A paraunitary matrix is an extension of a unitary matrix when
the matrix entries are Laurent polynomials. Paraunitary matrices
are unitary on the unit circle. For simplicity, we consider only
filter banks with real coefficients. The paraunitary condition
(1) requires solving a set of nonlinear equations—a difficult
problem. Vaidyanathan and Hoang provided a complete charac-
terization of paraunitary FIR matrices for 1-D orthogonal filter
banks via a lattice factorization [8, pp. 302–322]. However, in
multiple dimensions, the lattice structure is not a complete char-
acterization.

Recently, we proposed a complete characterization of MD
orthogonal filter banks using the Cayley transform and designed
some orthogonal filter banks for both IIR and FIR cases [14].
The Cayley transform maps a paraunitary matrix to a para-skew-
Hermitian matrix that satisfies

(2)

Conversely, the inverse Cayley transform maps a para-skew-
Hermitian matrix to a paraunitary matrix. Therefore, the Cayley
transform establishes a one-to-one mapping between parauni-
tary matrices and para-skew-Hermitian matrices. A para-skew-
Hermitian matrix is an extension of a skew-Hermitian matrix
when the matrix entries are Laurent polynomials. Para-skew-
Hermitian matrices are skew-Hermitian on the unit circle. In
contrast to solving for the nonlinear paraunitary condition in
(1), the para-skew-Hermitian condition amounts to linear con-
straints on the matrix entries in (2), leading to an easier design
problem.

The new contribution of this paper is the introduction of the
special paraunitary (SPU) matrix that leads to a simplified and
complete characterization of MD orthogonal filter banks. A pa-
raunitary matrix is said to be special paraunitary if its de-
terminant equals 1. We will show that any paraunitary matrix
can be characterized by an SPU matrix and a phase factor that
applies to one column, as illustrated in Fig. 1. This leads to an
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Fig. 1. Relationship among orthogonal filter banks, paraunitary matrices,
and special paraunitary matrices: Orthogonal filter banks are characterized
by paraunitary matrices in the polyphase domain. Paraunitary matrices are
characterized by special paraunitary matrices and phase factors.

important signal processing result that any -channel orthog-
onal filter bank is completely determined by its synthesis
filters and a phase factor in the last synthesis filter. Although this
result was shown for 1-D two-channel orthogonal filter banks
[15] and MD two-channel orthogonal filter banks [3], to the best
of our knowledge, this is the first time it is proved for general or-
thogonal filter banks of any dimension and any number of chan-
nels. Moreover, the design problem of orthogonal filter banks
can be converted into that of SPU matrices, leading to solving a
smaller set of nonlinear equations. In other words, the SPU con-
dition provides the core of the orthogonal condition for a filter
bank. Finally, since the characterization of SPU matrices in the
Cayley domain is also simpler than that of the general parauni-
tary matrices, SPU matrices also simplify the characterization
of MD orthogonal filter banks in the Cayley domain.

The rest of the paper is organized as follows. In Section II,
we study the link between MD orthogonal filter banks and spe-
cial paraunitary matrices. In Section III, we study the Cayley
transform of special paraunitary matrices. The characterization
of two-channel special paraunitary matrices in the Cayley do-
main and the design of two-channel orthogonal filter banks are
given in Section IV. We conclude in Section V. The glossary of
abbreviations is given as follows.
CT Cayley Transform.
FCT FIR-Cayley Transform.
FIR Finite Impulse Response.
IIR Infinite Impulse Response.
MD Multidimensional.
PSH Para-Skew-Hermitian.
SPSH Special Para-Skew-Hermitian.
SPU Special Paraunitary.

II. MULTIDIMENSIONAL ORTHOGONAL FILTER BANKS

AND SPECIAL PARAUNITARY MATRICES

A. Multidimensional Orthogonal Filter Banks

We start with notations. Throughout the paper, we will
always refer to as the number of dimensions, and as
the number of channels. In MD, stands for an -dimen-
sional variable and stands for

. Raising to an -dimensional integer
vector power yields .
For a matrix , we use for its entry at . We use to
denote the identity matrix, and omit the subscript when
it is clear from the context. For a matrix , the entry of its adju-
gate (denoted by ) at is defined as ,
where is the submatrix of obtained by deleting its th
row and th column.

Consider an MD -channel filter bank as shown in Fig. 2(a).
For implementation purposes, we only consider filter banks with
rational filters. We are interested in the critically sampled filter
bank in which the sampling rate is equal to the number of chan-
nels, that is, . In the polyphase domain, the anal-
ysis and synthesis parts can be represented by polyphase
matrices and respectively, as shown in Fig. 2(b).
In particular, IIR filter banks lead to IIR polyphase matrices,
entries of which are rational functions, while FIR filter banks
lead to FIR polyphase matrices, entries of which are polyno-
mials. The analysis and synthesis filters are related to the corre-
sponding polyphase matrices as

for (3)

where with is the th column of
, and is the set of integer vectors of the form , such

that [8, pp. 561–566].
In the polyphase domain, the perfect reconstruction condi-

tion is equivalent to . Orthog-
onal filter banks additionally require , and
thus and are paraunitary matrices. Therefore, de-
signing an orthogonal filter bank boils down to designing a pa-
raunitary matrix. From now on, we denote by for
convenience.

B. Special Paraunitary Matrices

We define special paraunitary (SPU) matrices as paraunitary
matrices with unit determinant. The concept of the special pa-
raunitary matrix is similar to that of the special orthogonal ma-
trix. An orthogonal matrix is said to be special orthogonal if its
determinant equals 1. SPU matrices satisfy all the properties of
paraunitary matrices. In addition, the product of two SPU ma-
trices is also SPU. Because of the additional condition on the
determinant, it would now seem as if we had one more equation
to solve for the SPU matrix than for the paraunitary matrix. On
the contrary, we will show that the “normalized” determinant
allows us to reduce the number of nonlinear equations and thus
simplify the design problem.

Theorem 1: Suppose is an matrix and
is its submatrix obtained by deleting its last column. Then
is special paraunitary if and only if

(4)

and

(5)

where is the submatrix of obtained
by deleting its th row.

Proof: See Appendix A.
By Theorem 1, to design an SPU matrix , we first choose

its first columns satisfying (4), independent of the last
column. After that, we can simply compute the last column of

from its first columns using (5). In other words, to
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Fig. 2. Multidimensional filter banks and polyphase representation. (a) Multidimensional N -channel filter bank: H and G are analysis and synthesis filters,
respectively;D is an M �M sampling matrix. (b) Polyphase representation:H andG are N �N analysis and synthesis polyphase matrices, respectively;
flll g is the set of integer vectors of the formDttt, such that ttt 2 [0; 1) .

solve the SPU condition, we only need solve the condition (4)
instead of the paraunitary condition (1). A direct expansion of
(1) generates equations. Among them, there are
equivalent pairs. Therefore, the paraunitary condition (1) leads
to equations with unknowns. The condition (4)
leads to equations with unknowns. More-
over, it can be seen that the set of nonlinear equations generated
by (4) is a subset of that generated by (1). Therefore, solving
the SPU condition instead of the paraunitary condition saves
us nonlinear equations and unknowns, leading to a sim-
pler design problem. To illustrate this simplification, we con-
sider two-channel and three-channel cases.

Example 1: Let be a 2 2 matrix with

Then, the paraunitary condition is equiva-
lent to

(6)

Solving the system involves solving three nonlinear equations
with four unknowns , , , .

In contrast, if is SPU, then (4) becomes

(7)

After solving (7), by Theorem 1 the second column of can
be computed as

and

In other words, the complete characterization of a 2 2 SPU
matrix is

where and satisfy the power complementary
property given in (7). Therefore, for 2 2 SPU matrices, we
need solve only one nonlinear equation with two unknowns, in-
stead of three nonlinear equations with four unknowns required
for general 2 2 paraunitary matrices.

Example 2: Let be a 3 3 matrix with

Then the paraunitary condition leads to 6
nonlinear equations with nine unknowns.

In contrast, if is SPU, then (4) becomes

(8)
which amounts to three nonlinear equations with six unknowns
in the first two columns of . After solving (8), by Theorem
1, the third column of can be computed as

Therefore, for 3 3 SPU matrices, we need solve three non-
linear equations with six unknowns, instead of six nonlinear
equations with nine unknowns required for general 3 3 pa-
raunitary matrices.

C. Connection Between Orthogonal Filter Banks and Special
Paraunitary Matrices

We just showed that designing SPU matrices is easier than
designing paraunitary matrices. In this subsection, we will
characterize paraunitary matrices via SPU matrices and use this
characterization to simplify the design of MD orthogonal filter
banks.

Proposition 1: A matrix is paraunitary if and only if
it can be written as such that is a
special paraunitary matrix, and

(9)

where is an allpass filter, that is,
.

Proof: Suppose that is a paraunitary matrix. From
(1), we have
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which implies that is an allpass filter. There-
fore, the diagonal matrix defined as in (9) is paraunitary.
Let . Then is also paraunitary, and

which means that is SPU.
The sufficient condition is straightforward to verify.
For paraunitary FIR matrices, the characterization using SPU

matrices can be simplified further.
Corollary 1: A matrix is a paraunitary FIR matrix if

and only if it can be written as such that
is a special paraunitary FIR matrix, and

(10)

where , and and is an integer vector.
Proof: Suppose is a paraunitary FIR matrix. Then,

is an FIR filter, and by Proposition 1,
is an allpass filter. Therefore, must be a monomial, that is,

, where and is an integer vector.
By Proposition 1, any paraunitary matrix can be con-

verted into an SPU matrix, where the first columns of the
matrix are kept the same and the last column is multiplied with
the allpass filter . Now, we can directly apply the
characterization of SPU matrices in Theorem 1 to paraunitary
matrices.

Theorem 2: Suppose is an matrix and
is its submatrix obtained by deleting its last column. Then
is paraunitary if and only if

and

(11)

where is an allpass filter, and
is the submatrix of obtained by deleting its th row.

Proof: The proof directly follows from Theorem 1 and
Proposition 1.

By Theorem 2, an paraunitary matrix is completely
determined by its first columns and an allpass filter. This
result can be seen as the extension of that of the unitary matrix:
an unitary matrix is completely determined by its
columns (up to a unit-norm factor). To illustrate Theorem 2, we
consider the two-channel case.

Example 3: By Theorem 2, a 2 2 paraunitary matrix
can be written as

where and satisfy the power complementary
property in (7), and is an allpass filter. For
the 1-D case, Herley and Vetterli showed a similar result in
[15]. For the FIR case, , and Kovaĉević and Vetterli
showed a similar result in [3]. Theorem 2 generalizes these
results to any dimensions and any number of channels.

Multidimensional orthogonal filter banks are characterized
by paraunitary matrices in the polyphase domain. By (3), the
last synthesis filter can be written as

(12)

where is the sampling matrix used in the orthogonal filter
bank. Combining (12) with (11), we have

(13)
which means that is completely determined by

and . Moreover, is also a phase
factor since is a phase factor. Since an allpass filter has
magnitude gain of unity, passing an allpass system just changes
the phase [16, pp. 234–240]. Therefore, connecting orthogonal
filter banks with paraunitary polyphase matrices using (13), we
obtain the following result.

Corollary 2: Any MD -channel orthogonal filter bank is
characterized by either of the following:

1) special paraunitary matrix and a phase factor;
2) synthesis filters and a phase factor.

For an orthogonal FIR filter bank, this phase factor is a pure
delay.

Corollary 2 has an intuitive geometric interpretation. The
synthesis filters can be seen as orthonormal vectors in an

-dimensional vector space. Once the first orthonormal
vectors are given, the last orthonormal vector will be completely
determined (up to a unit-norm factor).

III. CAYLEY TRANSFORM ANDSPECIAL

PARAUNITARY MATRICES

A. Cayley Transform of Paraunitary Matrices

In this subsection, we briefly review the main results on the
characterization of paraunitary matrices via the Cayley trans-
form [14] that will be used later in the paper.

The Cayley transform (CT) of a matrix is defined as

(14)

The inverse CT is itself, that is

(15)

The CT maps a paraunitary matrix to a para-skew-Hermitian
(PSH) matrix [14], [17]. Conversely, the CT maps a PSH matrix
to a paraunitary matrix. Since the PSH condition (2) amounts to
linear constraints on the matrix entries, while the paraunitary
condition (1) amounts to nonlinear ones, designing PSH ma-
trices is easier than designing paraunitary matrices.

The CT greatly simplifies the design of general orthogonal
filter banks, especially IIR filter banks with rational filters. How-
ever, the CT cannot be directly used to design orthogonal FIR
filter banks since the FIR property is destroyed in the transform.
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Assume that is a paraunitary FIR matrix and is the
CT of . In general, is IIR. Let and be

(16)

(17)

Then, can be represented as the quotient of the FIR matrix
and the FIR filter .

Theorem 3 [14]: The Cayley transform of a matrix is
a paraunitary FIR matrix if and only if can be written as

, where is an FIR filter and is
an FIR matrix, and they satisfy the following four conditions:

1) ;
2) ;
3) ;
4) is a common factor of all minors of

.
Moreover, the Cayley transform of can be written as

(18)

and the determinant of equals .

B. Cayley Transform of Special Paraunitary Matrices

The Cayley transform of paraunitary matrices are PSH ma-
trices. Now, we consider the Cayley transform of SPU matrices.
We define a special PSH (SPSH) matrix as the Cayley transform
of a SPU matrix. The following proposition characterizes SPSH
matrices.

Proposition 2: A PSH matrix is special PSH if and
only if it satisfies

(19)

Proof: Let be the CT of . Since is PSH,
is paraunitary. The paraunitary matrix is SPU if and

only if its determinant equals 1. By (15)

The characterization of SPU FIR matrices in the Cayley do-
main can be obtained from Theorem 3 by noting that

in Theorem 3 when is SPU. In other words,
for the characterization of SPU FIR matrices, Conditions (1) and
(2) in Theorem 3 become

(20)

(21)

Therefore, is a symmetric FIR filter and is a PSH
FIR matrix.

IV. TWO-CHANNEL SPECIAL PARAUNITARY MATRICES

A. Complete Characterization

Proposition 2 gives the complete characterization of SPSH
matrices, which are the CTs of SPU matrices. In general, this
characterization is hard to use. Among MD orthogonal filter
banks, the two-channel ones are the simplest and most popular.

Fig. 3. One-to-one mapping between 2 � 2 special paraunitary matrices and
2� 2 special PSH matrices. Here, the rectangle stands for a linear set, while the
ellipse stands for a nonlinear set.

In this case, we can greatly simplify the characterization and de-
sign of SPU matrices.

Proposition 3: A 2 2 para-skew-Hermitian matrix is spe-
cial para-skew-Hermitian if and only if its trace equals 0.

Proof: We first point out a simple but useful result, which
will be used later. For a 2 2 matrix and a scalar , it is easy
to verify that

(22)

In the two-channel case, condition (19) is equivalent to

which leads to .
Let be a 2 2 PSH matrix with

Then, the PSH condition (that is, the characterization of the pa-
raunitary matrix in the Cayley domain)
becomes

(23)

Here, we do not need to solve any nonlinear equations in the
design as in (6) or (7). Instead, we only need design two anti-
symmetric filters, and , independently and then
choose one arbitrary filter leading to as in the
last equation of (23). Then, the problem of designing con-
verts to that of designing two antisymmetric filters and one ar-
bitrary filter. Antisymmetric filters can be formulated in the fol-
lowing proposition.

Proposition 4: ([14]) Suppose is a MD IIR filter given
by , where and are coprime
polynomials. Then if and only if

and

where is an arbitrary integer vector, and .
By Proposition 3, the characterization of the SPU matrix in

the Cayley domain (that is, SPSH matrix) is even simpler

(24)

where . Here we only need design one
antisymmetric filter, , and one arbitrary filter, .
As for PSH matrices, the set of 2 2 SPSH matrices is a linear
space [that is, if and are 2 2 SPSH matrices, then

is also a 2 2 SPSH matrix for any real num-
bers and ]. Therefore, the CT maps the nonlinear set of 2
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Fig. 4. Frequency responses of one orthogonal lowpass filter with second-order vanishing moment, obtained by the special paraunitary matrix and the Cayley
transform. The design process is given in Example 4. (a) Magnitude. (b) Phase.

2 SPU matrices to the linear space of 2 2 SPSH matrices as
shown in Fig. 3.

The design process of two-channel orthogonal filter banks
using the SPU and the CT is given as follows.

1) Parameterize one antisymmetric filter by
Proposition 4, and one arbitrary filter .

2) Compute the CT of the SPSH matrix generated by these
two filters as given in (24) and then compute two syn-
thesis filters from the polyphase matrix in terms of (3).

3) Impose some conditions (for example, the vanishing-mo-
ment condition in Section IV-C) on the filters and solve
for the parameters.

B. FIR Characterization

As mentioned in Section III, the CT of an SPU FIR matrix is
generally IIR since the CT destroys the FIR property. The CT of
an SPU FIR matrix is an SPSH IIR matrix, which is the quotient
of a PSH FIR matrix as defined in (17) and a symmetric
FIR filter as defined in (16). In the two-channel case, we
can simplify this characterization. In particular, since ,
Condition (4) in Theorem 3 is always satisfied. Moreover, we
find a modified version of the CT that maps an SPU FIR matrix
into an SPSH FIR matrix; that means it preserves the FIR prop-
erty in both domains.

Definition 1: The FIR-Cayley transform (FCT) of a matrix
is defined as

(25)

The FCT not only preserves the FIR property, but also maps an
SPU matrix into an SPSH matrix.

Propositon 5: Suppose is a 2 2 special paraunitary
matrix and is its FIR-Cayley transform. Then is
special para-skew-Hermitian.

Proof: By (21), is PSH. To prove is SPSH,
by Proposition 3 we only need prove that the trace of
equals 0.

Let be the CT of . Then is an SPSH matrix
and its trace equals 0. By Theorem 3, can be written as

, where is a filter as defined in (16). Thus,
, which implies that the trace of also

equals 0.

Using the FCT, we map an SPU FIR matrix to an SPSH FIR
matrix. As for SPSH IIR matrices, the set of SPSH FIR matrices
is a linear space and its characterization is given in (24). The
design of SPSH FIR matrices is easier than that of SPU FIR
matrices. To use the FCT in the design of SPU FIR matrix, we
need compute the inverse FCT.

Proposition 6: Suppose is a 2 2 special para-skew-
Hermitian FIR matrix. Then, its FIR-Cayley transform is spe-
cial paraunitary FIR if and only if is FIR.
Moreover, the FIR-Cayley transform of can be written as

Proof: See Appendix B.
According to Proposition 6, the complete characterization of

2 2 SPU FIR matrices in the FCT domain is a subset of SPSH
FIR matrices and they satisfy the condition given in Proposition
6. Generally, it is difficult to apply Proposition 6 in the design.
To design an orthogonal FIR filter bank, we use Theorem 3 with
simplifications by (20) and (21). For design details and exam-
ples, please see [14].

C. Vanishing-Moment Condition and Quincunx Orthogonal
Filter Bank Design

Quincunx sampling is two-dimensional (2-D) density-2 sam-
pling, leading to the two-channel case. Of all MD sampling pat-
terns, the quincunx one is the most common. However, since the
sampling is nonseparable, the design offers challenges. In the
following, we consider the design of quincunx orthogonal IIR
filter banks. It is straightforward to extend the design method
to higher dimensions. For the 2-D quincunx sampling, its sam-
pling matrix and the integer vectors in (3) can be written as

and

In the context of wavelet design, the vanishing-moment con-
dition plays an essential role. This condition requires the high-
pass filter to have th order zero derivatives at .
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For the two-channel case, this condition is equivalent to re-
quiring the lowpass filter to have th order zero derivatives at

(26)

Moreover, for rational filters, requiring to have th order
zero derivatives is equivalent to requiring its numerator to have

th order zero derivatives.
In terms of (3), the lowpass filter becomes

(27)

By (15) and (27), we can relate (and thus its numer-
ator) to the entries of . By (24), the vanishing-moment con-
dition imposes certain constraints on the derivatives of
and at . If we parameterize these two fil-
ters, then the vanishing-moment condition amounts to a set of
quadratic equations.

Example 4: To illustrate the design, we design an orthogonal
IIR filter with second-order vanishing moment. In terms of (26),
the number of vanishing moments is 3 and hence the number of
free variables in the parametrization for is also 3. In this
example, we choose to be FIR. The design procedure
is as follows.

1) Parameterize as given in (24) with
, and .

2) Take the CT of to obtain and im-
pose the second-order vanishing-moment condition on
the lowpass filter as in (26), which leads to

3) Obtain the solutions

The resulting lowpass filter is given as

This is a new orthogonal filter, to the best of our knowledge. The
filter has diamond-like support of frequency response as shown
in Fig. 4. It is easy to verify numerically that for

and hence the filter is stable [18] (pp. 189–197).
Implementing this filter using a difference equation requires 13
additions and eight multiplications per output sample.

V. CONCLUSION

Designing MD orthogonal filter banks amounts to designing
paraunitary matrices. The paraunitary condition amounts to a set
of nonlinear equations involving all matrix entries. We introduce
special paraunitary matrices—paraunitary matrices with deter-
minant 1. Since the last column of an special parauni-
tary matrix is completely determined by its first columns,
the special paraunitary condition yields a smaller set of non-
linear equations. Thus, special paraunitary matrices have sim-
pler structure than paraunitary matrices and are easier to design.
Furthermore, since any paraunitary matrix can be characterized
by a special paraunitary matrix and a phase factor, we can use
special paraunitary matrices to simplify the design of parauni-
tary matrices and thus of MD orthogonal filter banks.

The Cayley transform establishes a one-to-one mapping
between special paraunitary matrices and special para-skew-
Hermitian matrices and converts the nonlinear special para-
unitary condition to the linear special para-skew-Hermitian
condition. Using the Cayley transform to characterize special
paraunitary matrices, we further simplify the characterization
and design of MD two-channel orthogonal filter banks. We
propose the design process to impose vanishing moments on
two-channel orthogonal filter banks. In our future work we will
try to simplify characterization for orthogonal filter banks with
more than two channels.

APPENDIX

A. Proof of Theorem 1

We first present a lemma before proving this theorem. In the
following, for a matrix , the cofactor of is defined as

, where is the submatrix of ob-
tained by deleting its th row and th column.

Lemma 1: Suppose is an SPU matrix. Then
equals the cofactor of .

Proof: Since is SPU, and
. Therefore

Since the entry of at is the cofactor of ,
equals the cofactor of for all and .

Now, we are ready to prove Theorem 1. In the proof, we de-
note the th column of by , while we denote its sub-
matrix consisting of first columns by .

For the necessary condition, suppose is SPU with the
following decomposition:

Then becomes

(28)
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Since , (28) implies (4). The condition on
comes from Lemma 1 directly.

For the sufficient condition, we need prove that the given
has determinant 1 and satisfies (1).

We first prove the determinant condition. For convenience,
denote the cofactor and unsigned cofactor of by
and respectively. Moreover

By assumption

for

The determinant of can be written as

(29)

The th compound matrix [19, pp. 19–20] of
matrix , is an matrix and can
be written as

Similarly, the th compound matrix of
matrix , is a matrix and
can be written as

Therefore

For any two matrices and ,
[19, p. 20]. Therefore

Now, we prove that satisfies (1). By (28), it suffices to
prove that

(30)

(31)

To prove (30), we have

and because of (29), the last sum equals .
To prove (31), it suffices to prove that

for (32)

For each , let be an matrix with

Since the columns of are linearly dependent, the deter-
minant of is 0. At the same time

yielding (31). This completes the proof.

B. Proof of Proposition 6

By Condition (3) in Theorem 3

Since is SPSH, . Then by (22)

which leads to

For the two-channel case, (18) in Theorem 3 becomes

Since is a 2 2 SPSH matrix, , and
thus . Therefore
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