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R
edundancy is a com-
mon tool in our daily lives. Before
we leave the house, we double- and triple-check
that we turned off gas and lights, took our keys,  and have
money (at least those worrywarts among us do). When an important date is

coming up, we drive our loved ones crazy by confirming “just once more” they are on top of it. Of
course, the reason we are doing that is to avoid a disaster by missing or forgetting something, not to drive our
loved ones crazy.

The same idea of removing doubt is present in signal representations. Given a signal, we represent it in anoth-
er system, typically a basis, where its characteristics are more readily apparent in the transform coefficients.
However, these representations are typically nonredundant, and thus corruption or loss of transform coefficients
can be serious. In comes redundancy; we build a safety net into our representation so that we can avoid those dis-
asters. The redundant counterpart of a basis is called a frame [no one seems to know why they are called frames,
perhaps because of the bounds in (25)?].

It is generally acknowledged (at least in the signal processing and harmonic analysis communities) that frames
were born in 1952 in the paper by Duffin and Schaeffer [32]. Despite being over half a century old, frames gained
popularity only in the last decade, due mostly to the work of the three wavelet pioneers—Daubechies, Grossman,
and Meyer [29]. Frame-like ideas, that is, building redundancy into a signal expansion, can be found in pyramid
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coding [14]; source coding [7], [8], [23], [27], [28], [37], [38],
[53]; denoising [20], [31], [35], [46], [68]; robust transmission
[9]–[12], [17], [36], [45], [54], [58], [63]; CDMA systems [52],
[59], [66], [67]; multiantenna code design [40], [44]; segmenta-
tion [30], [50], [60]; classification [18], [50], [60]; prediction of
epileptic seizures [5], [6]; restoration and enhancement [47];

motion estimation [51]; signal reconstruction [2]; coding
theory [41], [55]; operator theory [1]; and quantum

theory and computing [33], [57].
While frames are often associated with

wavelet frames, it is important to remember
that frames are more general than that.

Wavelet frames possess structure; frames are
redundant representations that only need to rep-

resent signals in a given space with a certain
amount of redundancy. The simplest frame, appro-

priately named Mercedes-Benz (MB), is given in
“The Mercedes-Benz Frame”; just have a peek at the

sidebar now as we will go into more details later.
The question now is this: Why and where would

one use frames? The answer is obvious: anywhere
where redundancy is a must. The host of the applica-

tions mentioned above and discussed in Part II of this
article [48] illustrate that richly.

Now a word about what you are reading: why an intro-
ductory article? The sources on frames are the beautiful

book by Daubechies (our wavelet Bible) [27], a recent book
by Christensen [19], as well as a number of classic papers

[15], [26], [39], [43], among others. Although excellent mate-
rial, none of the above sources offer an introduction to frames

geared primarily to engineering students and those who just
want an introduction into the area. Thus our emphasis in this
article; this is a tutorial, rather than a comprehensive survey of
the state of the field. The article comes in two parts: what you
are currently reading is Part I and will cover the theoretical
developments. In Part II [48], we will cover most of the known
frame families as well as look into a number of applications. We
will go slowly, whenever possible, using the simplest examples.
Generalizations will follow naturally. We will be selective and
give our personal view of frames. We will be rigorous when nec-
essary; however, we will not insist upon it at all times. As often
as possible, we will be living in the finite-dimensional world; it is
rich enough to give a flavor of the basic concepts. When we do
venture into the infinite-dimensional one, we will do so only
using filter banks–structured expansions used in many signal
processing applications.

WHAT’S WRONG WITH BASES?
The reason we try to represent our signals in a different domain,
typically, is because certain signal characteristics become obvi-
ous in that other domain facilitating various signal processing
tasks. For example, we perform Fourier analysis to uncover the
harmonic composition of a signal. If our signal happens to be a
sum of a finite number of tones, the Fourier-domain representa-
tion will be nonzero at exactly those tones and will be zero at all

other frequencies. However, if our signal is a sum of, say a pure
frequency and a pulse of very short duration (for example,
Dirac), the Fourier transform will be an inefficient representa-
tion; the signal energy will be, more or less, spread evenly across
all frequencies. Thus, the right representation is absolutely criti-
cal if we are to perform our signal processing task effectively and
efficiently.

To understand frames, it helps to go back to what we already
know: bases. In this section, we review essential concepts on
bases (we assume basic notions on vector spaces, inner prod-
ucts, norms). If you are familiar with those, you may skip this
section and go directly to the frame section, which comes next.
We stress that often we will forgo formal language in favor of
making the material as accessible as possible. An introductory
treatment is also given in [65].

When modeling a problem, one needs to identify a space of
objects on which certain operations will be performed. For
example, in image compression, our objects are images, while
in some other tasks, our objects can be audio signals, movies,
and many others. Initially, we will assume that these objects are
vectors in a vector space. In this article, we consider almost
exclusively finite-dimensional vector spaces Rn and Cn as well
as the infinite-dimensional vector space �2(Z) (commonly used
in discrete-time signal processing). By itself, a vector space will
not afford much, except for the ability to add two vectors to
form a new vector in the same vector space and to multiply by a
scalar. To do anything meaningful, we must equip such a space
with an inner product and a norm, which will allow us to
“measure” things. These functions turn the vector space into
an inner product space. By introducing the distance between
two vectors, as the norm of the difference between those two
vectors, we get a precise measurement tool and turn our inner
product space into a metric space. Finally, by considering the
question of completeness, that is, whether a representative set
of vectors can describe every other vector from our space, we
reach the Hilbert space stage, which we denote by H. This pro-
gression allows us to do things such as measure similarity
between two images by finding the distance between them, a
step present in compression algorithms, systems for retrieval
and matching, and many others.

We need even more: tools that will allow us to look at all the
vectors in a common representation system. These tools
already exist as bases in a Hilbert space. Bases are sets of vec-
tors used to uniquely represent any vector in a given Hilbert
space in terms of the basis vectors. An orthonormal basis
(ONB), in particular, will allow us not only to represent vectors
but to approximate them as well. This is useful when resources
do not allow us to deal with the object directly but rather with
its approximation only. For example, we might not have
enough bits to represent π to the tenth digit but only to the
fifth one yielding 3.14159. Obviously, 3.14159 is just an approx-
imation to 3.1415926535, which in turn is an approximation to
π . Another example is compression of images. An “instant”
approximation of a natural image is just its low-passed ver-
sion—we get a blurry image.



BASES
A subset � = {ϕi}i∈I of a finite-dimensional vector space V
(where I is some index set) is called a basis for V if
V = span(�) and the vectors in � are linearly independent.
(Given S ⊂ V, the span of S is the subspace of V consisting of
all finite linear combinations of vectors in S.) If I = {1, . . . , n},
we say that V has dimension n.

A vector space U is infinite dimensional if it contains an
infinite linearly independent set of vectors. If U is equipped
with a norm, then a subset � = {ϕ j } j∈ J of U is called a basis
(or a Schauder basis) if for every u in U, there exist unique
scalars uj such that u = ∑∞

j=1 uj ϕ j. (Note that here we need
a normed vector space because the definition implicitly uses
the notion of convergence: the series converges to the vector
u in the norm of U.)

SPACES WE CONSIDER
As we already mentioned, in this article, we consider exclusively
the finite-dimensional Hilbert spaces H = Rn,Cn with
I = {1, . . . , n}, as well as the infinite-dimensional space of
square-summable sequences H = �2(Z) with I = Z.

Rn and Cn are the most intuitive Hilbert spaces that we deal
with on a daily basis. Their dimension is n. For example, the
complex space Cn is the set of all n-tuples x = (x1, . . . , xn)

T,
with xi in C (similarly for Rn).

In discrete-time signal processing we deal almost exclusively
with sequences x having finite square sum or finite energy,
where x = (. . . , x−1, x0, x1, . . . ) is, in general, complex valued.
Such a sequence x is a vector in the Hilbert space �2(Z).

For the above spaces, the inner product is defined as

〈x, y〉 =
∑
i ∈I

x∗
i yi,

while the norm is

‖x‖ =
√

〈x, x〉 =
√∑

i ∈I

|xi|2 .

A note of caution: In the definition of a basis, we have to pay
attention to the use of terms “span” and “independence” when
we deal with infinite-dimensional spaces as both of these words
imply finite linear combinations. [Many subtleties arise in infi-
nite dimensions that are not present in finite dimensions. For
instance, the infinite set {δi−k}k∈Z (here, δi = 1 for i = 0 and is
0 otherwise) is a Schauder basis for �2(Z) but does not span
�2(Z) because we cannot write every square-summable
sequence as a finite linear combination of δis. For more details,
we refer the reader to [42].]

ORTHONORMAL BASES
A basis � = {ϕi}i ∈I where the vectors are orthonormal:

〈ϕi, ϕ j 〉 = δi− j ,

is called an orthonormal basis (ONB). In other words, an ortho-
normal system is called an ONB for H, if for every x in H,

x =
∑
i ∈I

Xi ϕi , (1)

for some scalars Xi. These scalars are called the transform or
expansion coefficients of x with respect to �, and it follows from
orthonormality that they are given by

Xi = 〈ϕi, x 〉 , (2)

for all i ∈ I.
We now discuss a few properties of ONBs.

PROJECTIONS
A characteristic of ONBs allowing us to approximate signals is that
an orthogonal projection onto a subspace spanned by a subset of
basis vectors, {ϕi}i∈ J, where J is the index set of that subset is

Px =
∑
i ∈ J

〈ϕi, x 〉ϕi , (3)

that is, it is a sum of projections onto individual one-dimensional
subspaces spanned by each ϕi. Beware that this is not true when
{ϕi}i∈ J do not form an orthonormal system.

BESSEL’S INEQUALITY
If we have an orthonormal system of vectors {ϕi}i∈ J in V, then,
for every x in V, the following inequality, known as Bessel’s
inequality, holds:

∑
i ∈ J

|〈ϕi, x 〉|2 ≤ ‖x‖2 .

PARSEVAL’S EQUALITY
If we have an orthonormal system that is complete in H, then
we have an ONB for H, and Bessel’s relation becomes an equali-
ty, often called Parseval’s equality (or Plancherel’s). This is sim-
ply the norm-preserving property of ONBs. In other words

‖x‖2 =
∑
i ∈I

|〈ϕi, x〉|2 . (4)

As an example, you might recognize this in the case of the
Fourier series as

‖x‖2 =
∑
k∈Z

|Xk|2 , (5)

where Xk are Fourier coefficients.

LEAST-SQUARES APPROXIMATION
Suppose that we want to approximate a vector from a Hilbert
space H by a vector lying in the (closed) subspace S = {ϕi}i ∈ J.
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The orthogonal projection of x ∈ H onto S is given by (3). The
difference vector d = x − x̂ satisfies d ⊥ S. This approximation
is best in the least-squares sense, that is, min ‖x − y‖ for y in S
is attained for y = ∑

i αi ϕi with αi = 〈ϕi, x 〉 being the expan-
sion coefficients. In other words, the best approximation is our
x̂ = Px previously defined in (3). An immediate consequence of
this result is the successive approximation property of orthogo-
nal expansions. Call x̂(k) the best approximation of x on the sub-
space spanned by {ϕ1, ϕ2, . . . , ϕk}. Then the approximation
x̂(k+1) is given by

x̂(k+1) = x̂(k) + 〈ϕk+1, x 〉ϕk+1 ,

that is, the previous approximation plus the projection along the
added vector ϕk+1.

A note of caution: The successive approximation property
does not hold for nonorthogonal bases. When calculating the
approximation x̂(k+1) , one cannot simply add one term to the
previous approximation but has to recalculate the whole
approximation.

GENERAL BASES
We are now going to relax the constraint of orthogonality and
see what happens. The reasons for doing that are numerous, the
most obvious one being that we have more freedom in choosing
our basis vectors. For example, in R2, once a vector is chosen,
to get an ONB, we basically have only one choice (within a sign);
on the other hand, for a general basis, it is enough not to choose
the second vector colinear to the first.

EXAMPLE
As a simple example, consider the following set in
R2 : � = {ϕ1, ϕ2} = {(1, 0)T, (

√
2/2,

√
2/2)T} . We have seen

how ONBs expand vectors. This is not an ONB but can we still
use these two vectors to represent any real vector x? The answer
is yes:

x = 〈ϕ̃1, x〉ϕ1 + 〈ϕ̃2, x〉ϕ2,

with ϕ̃1 = (1,−1) and ϕ̃2 = (0,
√

2). Thus, we can represent
any real vector with our initial pair of vectors � = {ϕ1, ϕ2};
however, they need helpers, an extra pair of vectors
�̃ = {ϕ̃1, ϕ̃2}.

So what can we say about these two couples? It is obvious
that they work in concert to represent x. Another interesting
observation is that, while not orthogonal within the couple,
they are orthogonal across couples; ϕ1 is orthogonal to ϕ̃2

while ϕ2 is orthogonal to ϕ̃1. Moreover, the inner products
between corresponding vectors in a couple are 〈ϕi, ϕ̃i〉 = 1
for i = 1, 2. �

In general, these biorthogonality relations can be compactly
represented as

〈ϕi, ϕ̃ j〉 = δi− j .

The representation expression can then be written as

x =
∑
i ∈I

〈ϕ̃i, x 〉ϕi =
∑
i ∈I

〈ϕi, x 〉ϕ̃i ,

that is, the roles of ϕi and ϕ̃i are interchangeable. These two sets
of vectors, � and �̃, are called biorthogonal bases and are said
to be dual to each other. If the dual basis �̃ is the same as �, we
get an ONB. Thus, ONBs are self dual.

While ONBs are norm preserving, that is, they satisfy
Parseval’s equality, this is not true in the biorthogonal case. This
is one of the reasons successive approximation does not work
here. In the orthonormal case, the norm of the original vector is
sliced up into pieces, each of which is the norm of the corre-
sponding expansion coefficient (and equal to the length of the
appropriate projection). Here, we know that does not work.

From the above discussion, we see that biorthogonal bases
offer a larger choice, since they are less constrained than the
orthonormal ones. However, this comes at the price of losing
the norm-preserving property as well as the successive approxi-
mation property. This trade-off is often tackled in practice, and,
depending on the problem at hand, you might decide to use
either orthonormal or biorthogonal basis.

FROM REPRESENTATIONS TO MATRICES
While we are great fans of equations, we like matrices even bet-
ter as equations can be hard to parse. We strongly believe that
visualizing our representations is more intuitive and helps us
understand the concepts better. Thus, we rephrase our basis
notions in matrix notation.

EXAMPLE
Suppose we are given an ONB � = {(1,−1)T/

√
2,

(1, 1)T/
√

2}. Given this basis and an arbitrary vector x in the
plane, we might want to ask ourselves, what is this point in
this new basis (new coordinate system)? We answer this ques-
tion by projecting x onto the new basis. Suppose that
x = (1, 0)T . Then, x�1 = 〈ϕ1, x 〉 = 1/

√
2 and x�2 = 〈ϕ2,

x〉 = 1/
√

2. Thus, in this new coordinate system, our point
(1, 0)T becomes x� = (x�1 , x�2) = (1, 1)T/

√
2. It is still the

same point in the plane; we only read its coordinates depend-
ing on which basis we are considering. We can express the
above process of figuring out the coordinates in the new coor-
dinate system a bit more elegantly:

X = x� =
(

x�1

x�2

)
=

( 〈ϕ1, x〉
〈ϕ2, x〉

)
=

(
ϕ11 x1 + ϕ12 x2

ϕ21 x1 + ϕ22 x2

)

=
(

ϕ11 ϕ12

ϕ21 ϕ22

)(
x1

x2

)
= 1√

2

(
1 −1
1 1

)(
x1

x2

)

= �∗x ,

where ∗ denotes Hermitian transposition. Observe that the
matrix � describes an ONB in the real plane. (By abuse of lan-
guage, we use � to denote both the set of vectors as well as the



matrix representing those vectors.) The columns of the matrix
are the basis vectors (the rows are as well), that is, the process of
finding coordinates of a vector in a different coordinate system
can be conveniently represented using a matrix � whose
columns are the new basis vectors, x� = �∗x. �

We now summarize what we learned in this example in a more
general case: Any Hilbert space basis (orthonormal or biorthogo-
nal) can be represented as a matrix having basis vectors as its
columns. If the matrix is singular, it does not represent a basis.

Given that we have X = �∗x, we can go back to x by invert-
ing �∗ (this is why we require � to be nonsingular),
x = (�∗)−1 X . If the original basis is orthonormal, then � is
unitary and �−1 = �∗. The representation formula can then be
written as

x =
∑
i ∈I

〈ϕi, x 〉ϕi = ��∗x = �∗�x . (6)

If, on the other hand, the original basis is biorthogonal, there is
not much more we can say about �. The representation formula
is (the two bases � and �̃ are interchangeable):

x =
∑

i

〈ϕ̃i, x 〉ϕi = ��̃∗x = �̃�∗x =
∑

i

〈ϕi, x 〉ϕ̃i .

SUMMARY
To summarize what we have done in this section:

■ We represented our signal in another domain to more eas-
ily extract its salient characteristics.
■ Given a pair of biorthogonal bases (�, �̃), the coordinates
of our signal in the new domain (or, with respect to the new
basis) are given by

X = �̃∗x , (7)

where �̃ is a linear operator describing the basis change and
it contains the dual basis vectors as its columns, while X col-
lects all the transform coefficients together. For H = Rn,Cn,
� is an n × n matrix; for H = �2(Z), � is an infinite matrix.
The above is called the analysis or decomposition expression.
■ The synthesis, or, reconstruction is given by

x = �X, (8)

where � is a linear operator as well, and it contains the basis
vectors as its columns.
■ If the expansion is into an ONB, then

�̃ = �, and ��∗ = I ,

that is, � is a unitary operator (matrix).
■ If the expansion is into a pair of biorthogonal bases, then

�̃∗ = �−1 .

EXAMPLE: DFT AS AN ONB EXPANSION
The discrete Fourier transform (DFT) is ubiquitous; however, it
is rarely looked upon as a signal expansion or written in matrix
form. The easiest way to do that is to look at how the recon-
struction is obtained:

xk = 1
n

n−1∑
i =0

XiW
ik
n , k = 0, . . . , n − 1, (9)

where Wn = e j2π/n is the nth root of unity. In matrix notation
we could write it as

x = 1
n




1 1 · · · 1
1 Wn · · · Wn−1

n
...

...
...

...

1 Wn−1
n · · · Wn




︸ ︷︷ ︸
�=DFTn




X0

X1
...

Xn−1




︸ ︷︷ ︸
X

.

Note that the DFT matrix defined as above is not normalized,
that is (1/n)(DFTn)(DFTn)

∗ = I . If we normalized the above
matrix by 1/

√
n, the DFT would exactly implement an ONB.

The decomposition formula is usually given as

Xi =
n−1∑
k=0

xkW−ik
n , i = 0, . . . , n − 1, (10)

and, in matrix notation,

X = DFT∗
nx .

Consider now the normalized version. In basis parlance, our
basis would be � = {ϕi}n−1

i =0 where the basis vectors are

ϕi = 1√
n

(
W 0

n , Wi
n, . . . , W i(n−1)

n

)T
, i = 0, . . . , n − 1. (11)

Then, the expansion formula (10) can be seen as

Xi = 〈ϕi, x 〉, i = 0, . . . , n − 1,

and the reconstruction formula (9) for x = (x0, . . . , xn−1)
T:

x =
n−1∑
i =0

Xi ϕi =
n−1∑
i =0

〈ϕi, x 〉ϕi

= 1√
n

DFTn

︸ ︷︷ ︸
�

1√
n

DFT∗
n

︸ ︷︷ ︸
�∗

x . (12)

INTRODUCTION TO FRAMES
The notion of bases in finite-dimensional spaces implies that the
number of representative vectors is the same as the dimension
of the space. When this number is larger, we can still have a rep-
resentative set of vectors, except that the vectors are no longer
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linearly independent and the resulting set is no longer called a
basis but a frame. Frames are signal representation tools that
are redundant, and since they are less constrained than bases,
they are used when more flexibility in choosing a representation
is needed.

In this section, we introduce frames through simple exam-
ples and consider H = Rn,Cn only. In the next section, we will
define frames more formally and discuss a number of their prop-
erties. In “Finite-Dimensional Frames,” we examine finite-
dimensional frames in some detail. Then, in the final section, we
look at the only instance of infinite-dimensional frames we dis-
cuss in this article, those in H = �2(Z) implemented using fil-
ter banks.

GENERAL FRAMES

EXAMPLE
Let us take an ONB, add a vector to it, and see what happens.
Suppose our system is as given in Figure 1(a), with
� = {ϕ1, ϕ2, ϕ3} = {(1, 0)T, (0, 1)T, (1,−1)T} . The first two
vectors ϕ1, ϕ2 are the ones forming the ONB and the third one
ϕ3 was added to the ONB. What can we say about such a system?

First, it is clear that by having three vectors in R2, those vec-
tors must necessarily be linearly dependent; indeed,
ϕ3 = ϕ1 − ϕ2. It is also clear that these three vectors must be
able to represent every vector in R2 since their subset is able to
do so (which also means that we could have added any other
vector ϕ3 to our ONB with the same result.) In other words, we
know that the following is true:

x = 〈ϕ1, x 〉ϕ1 + 〈ϕ2, x 〉ϕ2 .

Nothing stops us from adding a zero to the above expression:

x = 〈ϕ1, x 〉ϕ1 + 〈ϕ2, x 〉ϕ2 + (〈ϕ1, x 〉 − 〈ϕ1, x 〉)(ϕ1 − ϕ2)︸ ︷︷ ︸
0

.

We now rearrange the above expression slightly to read

x = 〈2ϕ1, x 〉ϕ1 + 〈(−ϕ1 + ϕ2), x 〉ϕ2 + 〈−ϕ1, x 〉(ϕ1 − ϕ2) .

In the above, we can recognize (−ϕ1 + ϕ2) as −ϕ3, and the vec-
tors inside the inner products we will call

ϕ̃1 = 2ϕ1, ϕ̃2 = −ϕ1 + ϕ2, ϕ̃3 = −ϕ1.

With this notation, we can rewrite the expansion as

x = 〈ϕ̃1, x 〉ϕ1 + 〈ϕ̃2, x 〉ϕ2 + 〈ϕ̃3, x 〉ϕ3 =
3∑

i =1

〈ϕ̃i, x 〉ϕi,

or, if we introduce matrix notation as before:

� =
(

1 0 1
0 1 −1

)
, �̃ =

(
2 −1 −1
0 1 0

)

and

x =
3∑

i =1

〈ϕ̃i, x 〉ϕi = ��̃∗x .

The only difference between the above expression and the one
for general bases is that matrices � and �̃ are now rectangular.
Figure 1 shows this example pictorially.                                  �

We have thus shown that starting with an ONB and adding a
vector, we obtained another expansion with three vectors. This
expansion is reminiscent of the one for general biorthogonal
bases we have seen earlier, except that the vectors involved in
the expansion are now linearly dependent. This redundant set of
vectors � = {ϕi}i ∈I is called a frame while �̃ = {ϕ̃i}i ∈I is
called the dual frame. As for biorthogonal bases, these two are
interchangeable, and thus, x = ��̃∗x = �̃�∗x.

TIGHT FRAMES 
Well, adding a vector worked but we ended up with an expansion
that does not look very elegant. Is it possible to have frames that
would somehow mimic ONBs? To do that, let us think for a
moment what characterizes ONBs. It is not linear independence
since that is true for biorthogonal bases as well. How about the
following two facts:

■ ONBs are self dual 
■ ONBs preserve the norm?

EXAMPLE
Consider now the system given in “The Mercedes-Benz Frame”
and the figure within, with vectors �PTF as in (16). We can easi-
ly compute �PTF�∗

PTF = I and thus, �PTF can represent any x
from R2 (real plane). Since the same set of vectors is used both
for expansion and reconstruction [see (17)], �PTF is self-dual.
We can think of the expansion in (17) as a generalization of an
ONB except that the vectors are not linearly independent any-
more. The frame of this type is called a tight frame (TF) and this
particular one is called the Mercedes-Benz (MB) frame. (We will
define all classes of frames in the next section.) We can normal-
ize the lengths of all the frame vectors to one, leading to the
unit-norm version of this frame given in (13). One can compare
the expansion into an ONB with the expansion into a unit-norm
version of the MB frame and see that the frame version has an
extra scaling of 2/3 [see (14)]. When the frame is tight and all

[FIG1] A pair of general frames. (a) Frame � = {ϕ1, ϕ2, ϕ3}. 
(b) Dual frame �̃ = {ϕ̃1, ϕ̃2, ϕ̃3}.
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THE MERCEDES-BENZ FRAME

The Mercedes-Benz (MB) frame is arguably the most famous
frame. (MB frames are also known as Peres-Wooters states in
quantum information theory [56].) It is a collection � of three
vectors in R2 and is an excellent representative for many class-
es of frames. For example, the MB frames is the simplest har-
monic TF (HTF) frame (we introduce those in Part II of this
article [48]), and as such, it is also unitarily equivalent to all
ENTFs in R2 with three vectors. Again, as an HTF frame, it can
be obtained by a group operation on a single element
(choose one frame vector and use rotations of 2π/3).

The two equivalent versions of the MB frame are:

UNTF Version
The unit-norm version of the MB frame is �UNTF = {ϕ1, ϕ2, ϕ3}
(see Figure 2):

�∗
UNTF =

( 0 1
−√

3/2 −1/2√
3/2 −1/2

)
=

(
ϕ∗

1
ϕ∗

2
ϕ∗

3,

)
, (13)

with the corresponding expansion

x = 2
3

3∑
i=1

〈ϕi, x〉ϕi = 2
3

�UNTF�
∗
UNTF x, (14)

and the norm

‖X‖2 =
3∑

i=1

|〈ϕi, x〉|2 = 3
2

‖x‖2. (15)

PTF Version
The PTF version of the MB frame is �PTF = {ϕ1, ϕ2, ϕ3}, where
the frame has been scaled so that �PTF�

∗
PTF = I

�∗
PTF =

√
2
3

�∗
UNTF =


 0

√
2/3

−1/
√

2 −1/
√

6
1/

√
2 −1/

√
6


 , (16)

and thus the expansion expression is

x =
3∑

i=1

〈ϕi, x〉ϕi = �PTF�
∗
PTFx, (17)

and the norm

‖X‖2 =
3∑

i=1

|〈ϕi, x〉|2 = ‖x‖2. (18)

Seeding
The PTF version of the MB frame can be obtained by project-
ing an ONB from a three-dimensional space (see Naimark
Theorem 1):

� =

 0

√
2/3 1/

√
3

−1/
√

2 −1/
√

6 1/
√

3
1/

√
2 −1/

√
6 1/

√
3


 , (19)

using the following projection operator P:

P = 1√
3

( 2/3 −1/3 −1/3
−1/3 2/3 −1/3
−1/3 −1/3 2/3

)
, (20)

that is, the MB frame seen as a collection of vectors in the
three-dimensional space is �3D = P�. The projection opera-
tor essentially “deletes” the last column of � to create the
frame operator �∗.

Resilience to Noise
In Part II of this article [48], we will look at the properties of
this frame in the presence of additive noise; we will find that
by using this frame, mean square error (MSE) per component
is reduced using the MB frame. That result shows another
particular property of the MB frame. Namely, among all other
frames with three norm-1 frame vectors in R2, this particular
one (and the others in the same class [36]) minimizes the MSE.
With an ONB, the MSE = σ 2, while with the MB frame frame,
the MSE = (2/3)σ 2.

Resilience to Losses
Assume now that one of the quantized coefficients is lost, for
example, X̂2. Does our MB frame have further nice properties
when it comes to losses? Note first, that even with ϕ2 not
present, we can still use ϕ1 and ϕ3 to represent any vector in
R

2. The expansion formula is just not as elegant:

x =
∑
i=1,3

〈ϕi, x〉ϕ̃i, (21)

with

ϕ̃1 =
(

1/
√

3
1

)
, ϕ̃3 =

(
2/

√
3

0

)
. (22)

Calculating the MSE, we get that

IEEE SIGNAL PROCESSING MAGAZINE [92] JULY 2007

[FIG2] Simplest unit-norm tight frame—MB frame. This is also
an example of a harmonic tight frame.
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the vectors have unit norm as in this case, the inverse of this
scaling factor denotes the redundancy of the system: we have 3/2
or 50% more vectors than needed to represent any vector in R2.

This discussion took care of the first question, whether we
can have a self-dual frame. To check the question about norms,
we compute the sum of the squared transform coefficients as in
(18). We see that, indeed, this frame preserves the norm. To
make the comparison to ONBs fair, again we take the unit-norm
(UTNF) version of the frame and compute the sum of the
squared transform coefficients as in (15). Now there is extra
scaling of 3/2; this is fairly intuitive, as in the transform domain,
where we have more coefficients than we started with, the ener-
gy is 3/2 times higher than in the original domain.

Thus, the TF we constructed is very similar to an ONB, with
a linearly dependent set of vectors. Actually, TFs are redundant
sets of vectors closest to ONBs (we will make this statement pre-
cise in “What Can Coulomb Teach Us?”).

One more interesting tidbit about this particular frame; note
how all its vectors have the same norm. This is not necessary for
tightness but if it is true, then the frame is called an equal-norm
TF (ENTF). �

SUMMARY
To summarize what we have done until now, assume that we are
dealing with a finite-dimensional space of dimension n and
m > n linearly dependent frame vectors:

■ We represented our signal in another domain to more eas-
ily extract its salient characteristics. We did that in a redun-
dant fashion.
■ Given a pair of dual frames (�, �̃), the coordinates of our
signal in the new domain (that is, with respect to the new
frame) are given by

X = �̃∗x , (23)

where �̃ is a rectangular n × m matrix describing the frame
change and it contains the dual frame vectors as its columns,

while X collects all the transform coefficients together. This is
called the analysis or decomposition expression.
■ The synthesis, or reconstruction is given by

x = �X , (24)

where � is again a rectangular n × m matrix, and it contains
frame vectors as its columns.
■ If the expansion is into a TF, then

�̃ = �, and ��∗ = In×n .

Note that, unlike for bases, �∗� is not identity (why?).
■ If the expansion is into a general frame, then

��̃∗ = I .

A note of caution: In frame theory, the frame change is usu-
ally denoted by �, not �̃∗. Given that � and �̃ are interchange-
able, we can use one or the other without risk of confusion.
Since 

∑
i ∈I Xi ϕi is really the expansion in terms of the

basis/frame �, it is natural to use � on the reconstruction side
and �̃∗ on the decomposition side.

FRAME DEFINITIONS AND PROPERTIES
In the last section, we introduced frames through examples and
developed some intuition. We now discuss frames more gener-
ally and examine a few of their properties. We formally define
frames as follows: A family � = {ϕi}i ∈I in a Hilbert space H is
called a frame if there exist two constants 0 < A ≤ B < ∞,
such that for all x in H,

A‖x‖2 ≤
∑

i ∈I

|〈ϕi, x 〉|2 ≤ B‖x‖2 . (25)

A, B are called frame bounds.
The frame bounds are intimately related to the issues of sta-

bility. To have stable reconstruction, the operator mapping
x ∈ �2(Z) into its transform coefficients |〈ϕi, x 〉| has to be
bounded, that is, 

∑
i ∈I |〈ϕi, x 〉|2 has to be finite, achieved by the

bound from above. On the other hand, no x with ‖x‖ > 0 should
be mapped to 0. In other words, ‖x‖2 and 

∑
i ∈I |〈ϕi, x 〉|2 should

be close. This further means that if 
∑

i ∈I |〈ϕi, x 〉|2 < 1, there
should exist an α < ∞ such that ‖x‖2 < α. For A = 1/α, the
bound from below is achieved. In summary, a numerically stable
reconstruction of any x from its transform coefficients is possible
only if (25) is satisfied. The closer the frame bounds are, the
faster and numerically better behaved reconstruction we have. In
the example given in “General Frames,” A � 0.8 and B � 6.2
and these can be computed as the smallest and largest eigenvalue
of �̃�̃∗, respectively.

Frame nomenclature is far from uniform and can result in
confusion. For example, frames with unit-norm frame (UNF)
vectors have been called normalized frames (normalized as in all
vectors normalized to norm 1, similarly to the meaning of

MSE{2} = 1
2

E‖x − x̂‖2 = 1
2

E
∥∥∥∥

∑

i=1,3

wiϕ̃i

∥∥∥∥
2

= 1
2

σ 2
∑

i=1,3

‖ϕ̃i‖2 = 4
3

σ 2,

that is, twice the MSE without erasures. However, the above
calculations do not tell us anything about whether there is
another frame with a lower MSE. In fact, given that one ele-
ment is erased, does it really matter what the original frame
was? It turns out that it does. In fact, among all frames with
three norm-1 frame vectors in R2, the MSE averaged over all
possible erasures of one coefficient is minimized when the
original frame is tight [36].



normalized in ONBs), uniform, as well as uniform frames with
norm 1. We now define various classes of frames. Their names,
as well as alternate names under which they have been used in
the literature, are given in Table 1. Figure 3 shows those same
classes of frames and their relationships.

TFs are frames with equal frame bounds, that is, A = B.
Equal-norm frames (ENFs) are those frames where all the ele-
ments have the same norm, ‖ϕi‖ = ‖ϕ j‖, for i, j ∈ I. Unit-norm
frames (UNFs) are those frames where all the elements have
norm 1, ‖ϕi‖ = 1, for i ∈ I. A-Tight Frames (A-TF) are TFs with
frame bound A. Parseval TFs (PTF) are TFs with frame bound
A = 1 and could also be denoted as 1-TFs.

From (25), in a TF (that is, when A = B), we have

∑
i ∈I

|〈ϕi, x 〉|2 = A‖x‖2 . (26)

By pulling 1/A into the sum, this is equivalent to

∑
i ∈I

∣∣∣∣
〈

1√
A
ϕi, x

〉∣∣∣∣
2

= ‖x‖2 , (27)

that is, the family � = {(1/
√

A)ϕi}i∈I is a 1-TF. In other words,
any TF can be rescaled to be a TF with frame bound 1, a PTF.
With A = 1, the above looks similar to (4), Parseval’s equality,
thus the name PTF.

In an A-TF, x ∈ H is expanded as follows:

x = 1
A

∑
i ∈I

〈ϕi, x 〉ϕi . (28)

While this last equation resembles the expansion formula in the
case of an ONB as in (1)–(2) (except for the factor 1/A), a frame
does not constitute an ONB in general. In particular, vectors
may be linearly dependent and thus not form a basis. If all the
vectors in a TF have unit norm, then the constant A gives the
redundancy ratio. For example, A = 2 means there are twice as
many vectors than needed to cover the space. For the MB frame
we discussed earlier, redundancy is 3/2, that is, we have 3/2
times more vectors than needed to represent vectors in a two-
dimensional space. Note that if A = B = 1 (PTF), and ‖ϕi‖ = 1
for all i (UTF), then � = {ϕi}i ∈I is an ONB (see Figure 3).

Because of the linear dependence that exists among the vec-
tors used in the expansion, the expansion is not unique any-
more. Consider � = {ϕi}i ∈I where 

∑
i ∈I αi ϕi = 0 (where not

all αi s are zero because of linear dependence). If x can be writ-
ten as x = ∑

i ∈I Xi ϕi, then one can add αi to each Xi without
changing the decomposition. The expansion (28) is unique in
the sense that it minimizes the norm of the expansion among
all valid expansions. Similarly, for general frames, there exists a
unique canonical dual frame, which is discussed later in this
section (in the TF case, the frame and its dual are equal).

Before we proceed, we settle on notation as given in Table 2.
Note that some of the concepts in the table have not been
defined yet.

FRAME OPERATORS
The analysis operator �∗ maps the Hilbert space H into �2(I):

Xi = (�∗x)i = 〈ϕi, x 〉 , i ∈ I .
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[FIG3] Frames at a glance. ENF: Equal-norm frames. TF: Tight
frames. ENTF: Equal-norm tight frames. UNF: Unit-norm frames.
PTF: Parseval tight frames. UNTF: Unit-norm tight frames. ENPTF:
Equal-norm Parseval tight frames. ONB: Orthonormal bases.

All Frames

ENF TF

ENTF

UNF PTF

UNTF ENPTF

ONB

NAME ABBREVIATION DESCRIPTION ALTERNATE NAMES
Equal-norm frame ENF ‖ϕi ‖ = ‖ϕj ‖, for all i , j Uniform frame [49]

Unit-norm frame UNF ‖ϕi ‖ = 1, for all i Uniform frame with norm 1 [49]
Uniform frame [36]
Normalized frame [4]

Tight frame TF A = B
A-tight frame A-TF A = B = A
Parseval tight frame PTF A = B = 1 Normalized frame [3]
Unit-norm tight frame UNTF A = B , ‖ϕi ‖ = 1, for all i Uniform tight frame with norm 1 [49]

Uniform tight frame [36]
Normalized tight frame [4]

[TABLE 1]  FRAME NOMENCLATURE.
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As a matrix, the analysis operator �∗ has rows which are the
Hermitian-transposed frame vectors ϕ∗

i :

�∗ =




ϕ∗
11 · · · ϕ∗

1n · · ·
ϕ∗

21 · · · ϕ∗
2n · · ·

...
. . .

. . . · · ·
ϕ∗

m1 · · · ϕ∗
mn · · ·

...
...

...
. . .




.

When H = Rn,Cn , the above is an m × n matrix. When
H = �2(Z), it is an infinite matrix.

The frame operator, defined as S = ��∗, plays an important
role. The product G = �∗� is called the Grammian.

USEFUL FRAME FACTS
When manipulating frame expressions, the frame facts given
below often come in handy. It is a useful exercise for you to try
to derive some of these on your own.

■ For any matrix �∗ with rows ϕ∗
i

S = ��∗ =
∑
i ∈I

ϕiϕ
∗
i .

■ If S is a frame operator, then

Sx = ��∗x =
∑
i ∈I

〈ϕi, x 〉ϕi ,

〈Sx, x 〉 = 〈��∗x, x 〉 = 〈�∗x,�∗x 〉
= ‖�∗x‖2 =

∑
i ∈I

|〈ϕi, x 〉|2,
∑
i ∈I

〈Sϕi, ϕi 〉 =
∑
i ∈I

〈�∗ϕi,�
∗ϕi 〉 =

∑
i, j∈I

|〈ϕi, ϕ j 〉|2 .

■ From (25), we have that

AI ≤ S = ��∗ ≤ BI

as well as

B−1 I ≤ S−1 ≤ A−1 I .

■ We say that two frames � and � for H are equivalent if
there is a bounded linear bijection L on H for which
Lϕi = ψi for i ∈ I. [This is a mathematically simple (albeit
possibly scarily sounding) way to translate the notion of
“invertibility” to an infinite-dimensional Hilbert space.] Two
frames � and � are unitarily equivalent if L can be chosen to
be a unitary operator. Any A-TF is equivalent to a PTF as
ϕPTF = (1/

√
A)ϕA−TF.

■ The nonzero eigenvalues {λi}i∈I , of S = ��∗ and
G = �∗� are the same. Thus

tr(��∗) = tr(�∗�) . (29)

■ A �∗ matrix of a TF has orthonormal columns. In finite
dimensions, this is equivalent to the Naimark Theorem (see
next section), which says that every TF is obtained by project-
ing an ONB from a larger space.

DUAL FRAME OPERATORS
The canonical dual frame of � is a frame defined as
�̃ = {ϕ̃i}i ∈I, where

ϕ̃i = S−1ϕi , i ∈ I . (30)

Noting that ϕ̃∗
i = ϕ∗

i S−1 and stacking ϕ̃∗
1 , ϕ̃∗

2 , . . . , in a matrix,
the analysis frame operator associated with �̃ is

�̃∗ = �∗S−1 ,

while its frame operator is S−1, with B−1 and A−1 its frame
bounds. Since

��̃∗ = ��∗︸︷︷︸
S

S−1 = I ,

then

x =
∑
i ∈I

〈ϕ̃i, x 〉ϕi = ��̃∗x = �̃�∗x .

FINITE-DIMENSIONAL FRAMES
We now consider finite-dimensional frames, that is, when
H = Rn,Cn, and examine few of their properties.

For example, for an ENTF with norm-a vectors, since
S = ��∗ = AIn×n,

tr(S ) =
n∑

j=1

λ j = nA , (31)

where λ j are the eigenvalues of S = ��∗. On the other hand,
because of (29)

SYMBOL EXPLANATION
H = Rn Real Hilbert space

Cn Complex Hilbert space
�2(Z) Space of square-summable 

sequences

I = {1, . . . , m} Index set for Rn, Cn

Z Index set for �2(Z)

When H = Rn, Cn n Dimension of the space
m Number of frame vectors

ϕi ∈ H Frame vector
� = {ϕi }i ∈ I Frame family
�∗ Analysis operator
S = ��∗ Frame operator
G = �∗� Grammian

ϕ̃i ∈ H S −1ϕi Dual frame vector
�̃ = {φ̃i }i ∈ I Dual frame family
�̃∗ = �∗S−1 Dual analysis operator
S̃ = S −1 Dual frame operator
G̃ = �∗S−2� Dual Grammian

[TABLE 2]  FRAME NOTATION.



tr(S ) = tr(G ) =
m∑

i =1

‖ϕi‖2 = ma2 . (32)

Combining (31) and (32), we get

A = m
n

a2 . (33)

Then, for a UNTF, that is, when a = 1, (23) yields the redun-
dancy ratio:

A = m
n

.

Recall that for the MB frame, A = 3/2.
These and other trace identities for all frames classes are

given in Table 3.

NAIMARK THEOREM
The following theorem tells us that every PTF can be realized as
a projection of an ONB from a larger space. The theorem has
been rediscovered by several people in the past decade: The first
author heard it from Daubechies in the mid 1990s. Han and
Larson rediscovered it in [39]; they came up with the idea that a
frame could be obtained by compressing a basis in a larger space
and that the process is reversible. Finally, it was Šoljanin [57]
who pointed out to the first author that this is, in fact,

Naimark’s theorem, which has been widely known in operator
algebra and used in quantum information theory. In this article,
we consider only the finite-dimensional instantiation of the the-
orem.

THEOREM 1 (NAIMARK [1], HAN AND LARSON [39])
A set � = {ϕi}i∈I in a Hilbert space H is a PTF for H if and
only if there is a larger Hilbert space K,H ⊂ K, and an ONB
{ei}i∈I for K so that the orthogonal projection P of K onto H
satisfies: Pei = ϕi, for all i ∈ I.

While the above theorem specifies how all TFs are obtained,
the same is true in general, that is, any frame can be obtained by
projecting a biorthogonal basis from a larger space [39] (we are
talking here about finite dimensions only). We will call this
process seeding and will say that a frame � is obtained by seed-
ing from a basis � by deleting a suitable set of columns of �
[54]. We denote this as

�∗ = �[ J ] ,

where J ⊂ {1, . . . , m} is the index set of the retained columns.
We can now reinterpret the PTF identity ��∗ = I (see Table

3): It says that the columns of �∗ are orthonormal. In view of
the above theorem, this makes a lot of sense as that frame was
obtained by deleting columns from an ONB from a larger space.
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FRAME CONSTRAINTS PROPERTIES
General {ϕi }i ∈ I A‖x‖2 ≤ ∑

i ∈ I |〈ϕi , x 〉|2 ≤ B‖x‖2

is a Riesz basis for H AI ≤ S ≤ BI
tr(S) = ∑n

j =1 λj = tr(G) = ∑m
i =1 ‖ϕi ‖2

ENF ‖ϕi ‖ = ‖ϕj ‖ = a A‖x‖2 ≤ ∑
i ∈ I |〈ϕi , x 〉|2 ≤ B‖x‖2

for all i and j AI ≤ S ≤ BI
tr(S) = ∑n

j =1 λj = tr(G) = ∑m
i =1 ‖ϕi ‖2 = ma2

TF A = B
∑

i ∈ I |〈ϕi , x 〉|2 = A‖x‖2

S = AI
tr(S) = ∑n

j =1 λj = nA = tr(G) = ∑m
i =1 ‖ϕi ‖2

PTF A = B = 1
∑

i ∈ I |〈ϕi , x 〉|2 = ‖x‖2

S = I
tr(S) = ∑n

j =1 λj = n = tr(G) = ∑m
i =1 ‖ϕi ‖2

ENTF A = B
∑

i ∈ I |〈ϕi , x 〉|2 = A‖x‖2

‖ϕi ‖ = ‖ϕj ‖ = a S = AI
for all i and j tr(S) = ∑n

j =1 λj = nA = tr(G) = ∑m
i =1 ‖ϕi ‖2 = ma2

A = (m/n)a2

UNTF A = B
∑

i ∈ I |〈ϕi , x 〉|2 = A‖x‖2

‖ϕi ‖ = 1 S = AI
for all i tr(S) = ∑n

j =1 λj = nA = tr(G) = ∑m
i =1 ‖ϕi ‖2 = m

A = m/n

ENPTF A = B = 1
∑

i ∈ I |〈ϕi , x 〉|2 = ‖x‖2

‖ϕi ‖ = ‖ϕj ‖ = a S = I
for all i and j tr(S) = ∑n

j =1 λj = n = tr(G) = ∑m
i =1 ‖ϕi ‖2 = ma2

a = √
n/m

UNPTF A = B = 1
∑

i ∈ I |〈ϕi , x 〉|2 = ‖x‖2

⇔ ‖ϕi ‖ = 1 S = I

ONB for all i tr(S) = ∑n
j =1 λj = n = tr(G) = ∑m

i =1 ‖ϕi ‖2 = m
n = m

[TABLE 3]  SUMMARY OF PROPERTIES FOR VARIOUS CLASSES OF FRAMES. ALL TRACE IDENTITIES ARE GIVEN FOR H = R
n, Cn.
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For example, for the MB frame given in the sidebar “The
Mercedes-Benz Frame,” the three-dimensional ONB from which
it is obtained is given in (19) and the projection operator in (20).
The MB frame obtained is in its PTF version given in (16).

WHAT CAN COULOMB TEACH US?
As the ONBs have specific characteristics highly prized among
bases, the same distinction belongs to TFs among all frames. As
such, they have been studied extensively but only recently have
Benedetto and Fickus [4] formally shown why TFs and ONBs
indeed belong together. In their work, they characterized all
UNTFs, while in [16], the authors did the same for nonequal
norm TFs.

To characterize UNTFs, as a starting point, the authors
looked at harmonic TFs (we will introduce those in Part II of
this article [48]), obtained by taking mth roots of unity in Rn.
These lead to regular arrangement of points on a circle. An
example is the MB frame from Figure 2. Trying to generalize the
notion of geometric regularity to three dimensions, they looked
at vertices of regular polyhedra but came short as there are only
five such Platonic solids. Considering other sets of high symme-
try such as the “soccer ball” (a truncated icosahedron), they
found that all these proved to be UNTFs.

As the geometric intuition could lead them only so far, the
authors in [4] refocused their attention on the equidistribution
properties of these highly symmetric objects and thought of the
notion of equilibrium. To formalize that notion, they turned to
classical physics and considered the example of m electrons on a
conductive spherical shell. In the absence of external forces,
electrons move according to the Coulomb force law until they
reach the state of minimum potential energy (though that mini-
mum might only be a local minimum leading to an unstable
equilibrium). The intuition developed through this example lead
them to the final result.

The authors tried to replicate the physical world for the
simplest UNTFs—ONBs and thought of what kind of equilibri-
um they possessed. Clearly, whichever “force” acts on the vec-
tors in an ONB, it tries to promote orthogonality. For
example, the Coulomb force would not keep the ONB in a
state of equilibrium. (Think n = 2, the Coulomb force would
position the two vectors to be colinear of opposite sign.) Thus,
the authors set to find another such force: the orthogonality-
promoting one. This force should be repulsive if vectors form
an acute angle, while it should be attractive if they form an
obtuse angle. Since points are restricted to move only on the
circle (unit-norm constraint), one can consider only the tan-
gential component of the force. Even if vectors do not all have
equal norm, ‖ϕi‖ = ai , for i ∈ I , one can define the frame
force FF on the whole space:

FF(ϕi, ϕ j ) = 2〈ϕi, ϕ j 〉(ϕi − ϕ j )

=
(

a2
i + a2

j − ‖ϕi − ϕ j‖2
)

(ϕi − ϕ j ) .

Following the physical trail, one can now define the potential
between two points as:

P(ϕi, ϕ j ) = p(‖ϕi − ϕ j ‖) .

This is found by using p′(x ) = −xf(x ), where f(x ) is the
scalar part of the frame force and p(x ) is obtained by integrat-
ing the above and evaluating at ‖ϕi − ϕ j‖2. After some manipu-
lations, the result is

P(ϕi, ϕ j ) = 〈ϕi, ϕ j 〉 2 − 1
4

(
a2

i + a2
j

)2
.

Then, the total potential contained within a sequence is

TP(� = {ϕi}i ∈I) =
∑

i, j∈I,i �= j

|〈ϕi, ϕ j 〉|2 − 1
4

∑
i, j

(
a2

i + a2
j

)2
.

Physically, we can interpret the total potential as follows:
Given two sequences of points, the difference in potentials
between these two sequences is the energy needed to move
the points from one configuration to the other. As potential
energy is defined in terms of differences, it is unique up to
additive constants and thus we can neglect the constants
and add the diagonal terms to obtain the final expression for
the frame potential:

FP(� = {ϕi}i ∈I) =
∑
i, j∈I

|〈ϕi, ϕ j〉|2 . (34)

Thus, what we are looking for are those sequences in equilibri-
um under the frame force, and these will be minimizers of the
frame potential.

For UNTFs, Benedetto and Fickus discovered the following:

THEOREM 2 [4]
Given � = {ϕi}m

i=1, with ϕi ∈ Hn, consider the frame potential
given in (34). Then:

1)  Every local minimizer of the frame potential is also a
global minimizer.
2)  If m ≤ n, the minimum value of the frame potential is

FP = n ,

and the minimizers are precisely the orthonormal sequences
in Rn.
3)  If m ≥ n, the minimum value of the frame potential is

FP = m2

n
,

and the minimizers are precisely the UNTFs for Rn.
This result tells us a few things:
1)  Minimizing the frame potential amounts to finding
sequences whose elements are “as orthogonal” to each other
as possible.
2)  UNTFs are a natural extension of ONBs, that is, the theo-
rem formalizes the intuitive notion that UNTFs are a general-
ization of ONBs.



3)  Both ONBs and UNTFs are results of the minimization of
the frame potential, with different parameters (number of ele-
ments equal/larger then the dimension of the space).

What happens if points live on different spheres, ϕi = ai (vectors
are not of equal norm)? Again, we can try to minimize the frame
potential. Since now points live on spheres of different radii, it is
intuitive that stronger points (with a larger norm) will be able to
be “more orthogonal” than the weaker ones. If the strongest
point is strong enough, it grabs a dimension to itself and leaves
the others to squabble over what is left. We start all over with the
second one and continue until those points left have to share.
This is governed by the Fundamental Inequality given in (36),
which says that if no point is stronger than the rest they immedi-
ately have to share, leading to TFs. In other words, when m
points in an n-dimensional space are in equilibrium, we can
divide those points into two sets: a) Those “stronger” than the
rest. These (i0 − 1) points get a dimension each and are thus
orthogonal to each other. b) Those “weaker” than the rest. These
points get the rest of the (n − i0 + 1) dimensions and form a TF
for their span. If no point is the “strongest,” they all have to share
the space leading to a TF, as per the Fundamental Inequality.
This discussion is summarized in Theorem 3.

THEOREM 3 ([16])
Given a sequence {ai = ‖ϕi‖}m

i=1 in R, such that
a1 ≥ · · · ≥ am ≥ 0, and any n ≤ m, let i0 denote the smallest
index i for which

(n − i)a2
i ≤

m∑

j=i+1

a2
j , (35)

holds. Then, any local minimizer of the frame potential is of
the form

� = {ϕi}m
i =1 = {ϕi}i0−1

i =1 ∪ {ϕi}m
i =i0 ,

where �o = {ϕi}i0−1
i =1 is an orthogonal set and �f = {ϕi}m

i =i0
forms a TF for the orthogonal complement of the span of �o.
The immediate corollary is the Fundamental Inequality we
talked about, which says that if no point is stronger than the
rest, the vectors have to share the space, leading to a TF when

max
i ∈I

a2
i ≤ 1

n

∑

i ∈I

a2
i . (36)

The frame potential defined in (34) is a concept introduced by
Benedetto and Fickus, and it proved immediately useful. For exam-
ple, it was used in [17] to show how to packetize coefficients in
transmission with erasures to minimize the error of reconstruc-
tion. A decade before [4], Massey and Mittelholzer [52] used the
frame potential (albeit not calling it the frame potential) as the total
user interference in code-division multiple access (CDMA) systems.
Minimizing that interference lead to the spreading sequences (of
length n) being a TF (minimum of the Welch’s bound). This will be
discussed in more detail in Part II of this article [48].

DESIGN CONSTRAINTS: 
WHAT MIGHT WE ASK OF A FRAME?
When designing a frame, particularly if we have a specific appli-
cation in mind, it is useful to list potential requirements we
might impose on our frame.

■ Tightness (T): This is a very common requirement.
Typically, tightness is imposed when we do need to recon-
struct. Since TFs do not require inversion of matrices, they
seem a natural choice.
■ Equal norm (EN): In the real world, the squared norm of a
vector is usually associated with power. Thus, in situations
where equal-power signals are desirable, equal norm is a must.
■ Maximum robustness (MR): We call a frame maximally
robust to erasures (MR), if every n × n submatrix of �∗ is
invertible. This requirement arose in using frames for
robust transmission [36] and will be discussed in more
detail in Part II of this article [48].
■ Equiangularity (EA): This is a geometrically intuitive
requirement. We ask for angles between any two vectors to be
the same. There are many more (tight) frames than those
which are equiangular, so this leads to a very particular class
of frames. These are discussed in more detail in Part II of this
article [48].
■ Symmetry (S): Symmetries in a frame are typically con-
nected to its geometric configuration. Harmonic and equian-
gular frames are good examples. See the work of Vale and
Waldron [62] for details.
Invariance of Frame Properties: When designing frames, it is

useful to know which transformations will not destroy proper-
ties our frame already possesses. For that reason, we list below a
number of frame invariance properties [54].

Let � be a frame. In all matrix products below, we assume
the sizes to be compatible.

■ A�B is a frame for any invertible matrices A, B.
■ If � is TF/UNTF, then aU �V is TF/UNTF for any unitary
matrices U, V and a �= 0.
■ If � is EN, then aD�U is EN for any diagonal unitary
matrix D, unitary matrix U, and a �= 0.
■ If � is MR, then D�A is MR for any invertible diagonal
matrix D and any invertible matrix A.
■ If � is UNTF MR, then D�U is UNTF MR for any unitary
diagonal matrix D and any unitary matrix U.

INFINITE-DIMENSIONAL FRAMES VIA FILTER BANKS
We now consider the only infinite-dimensional class of frames
discussed in this article, those implemented by filter banks, the
reason being that these are frames used in applications and our
only link to the real world. The vectors (signals) live in the infi-
nite-dimensional Hilbert space H = � 2(Z). An in-depth treat-
ment of filter banks is given in [61], while a more
expansion-oriented approach is followed in [64] and [65].

FILTER BANK VIEW OF BASES
As we have done earlier in the article, we will first examine how
filter banks implement bases and then move onto frames.
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We have seen that we want to find representations or matri-
ces � and �̃ such that ��̃∗ = I. As of now, we have presented a
generic matrix �, but how do we choose it? Of course, we want
it to have some structure and lead to efficient representations of
signals. Since now we are dealing with infinite-dimensional
matrices, this might be easier said than done.

EXAMPLE
Suppose we have the following two vectors:
ϕ0 = (· · · , 0, 1, 1, 0, · · · )T/

√
2 , and ϕ1 = (· · · , 0, 1,−1, 0,

· · · )T/
√

2. These vectors form a basis for their span, that 
is, they can represent any two-dimensional vector, but not any
vector in � 2(Z) . Now, define τi as a shift by i, that 
is, if x = (. . . , x−1, x0, x1, . . . )

T ∈ � 2(Z) , then τi x =
(. . . , x−i−1, x−i, x−i+1, . . . )

T is its shifted version by i. Let us
form the following matrix:

�∗ =




...

(τ−2ϕ0)
∗

(τ−2ϕ1)
∗

(ϕ0)
∗

(ϕ1)
∗

(τ2ϕ0)
∗

(τ2ϕ1)
∗

...




,

that is, the columns of � are the two vectors ϕ0, ϕ1 and all their
even shifts:

�∗ = 1√
2




. . .
...

...
...

...
...

...

· · · 1 1 0 0 0 0 · · ·
· · · 1 −1 0 0 0 0 · · ·
· · · 0 0 1 1 0 0 · · ·
· · · 0 0 1 −1 0 0 · · ·
· · · 0 0 0 0 1 1 · · ·
· · · 0 0 0 0 1 −1 · · ·

...
...

...
...

...
...

. . .




.

From this expression we can see that � is block diagonal. If we
denote by

�∗
0 = 1√

2

(
1 1
1 −1

)
, (37)

then, � can be written as

�∗ =




. . .

�∗
0

�∗
0

�∗
0

. . .




.

This is known as the Haar transform and is an example of a
block transform. The matrix �∗ above is unitary and corre-
sponds to an orthonormal expansion. The basis � is given 
by � = {ϕ2i, ϕ2i+1}i∈Z = {τ2iϕ0, τ2iϕ1}i∈Z . Therefore, any
x ∈ � 2(Z) can be represented using the Haar ONB as

x = ��∗x =
∑
i ∈Z

〈ϕi, x 〉ϕi ,

and can be implemented using the two-channel filter bank
shown in Figure 4. The decomposition is implemented using
the analysis filter bank, while the reconstruction is implement-
ed using the synthesis filter bank (we will make this more pre-
cise shortly). �

In general, in such a filter bank, one branch is a low-pass
channel that captures the coarse representation of the input
signal and the other branch is a high-pass channel that cap-
tures a complementary, detailed representation. The input into
the filter bank is a square-summable infinite sequence
x ∈ � 2(Z). Assuming that the filter length l = 2, the two
analysis filters act on two samples at a time and then, due to
downsampling by two, the same filters act on the following
two samples. In other words, there is no overlap. On the syn-
thesis side, the reverse is true. This is an example of a block
transform. Iterating this block (the two-channel FB) on either
channel or both leads to various signal transforms, each of
which is adapted to a class of signals with different energy con-
centrations in time and in frequency (this is usually referred to
as “tiling of the time-frequency plane”).

So how exactly is the filter bank related to the matrix �? In
our discussion above and the Haar example, we assumed that
the filter length is equal to the shift. This is not true in general,
and now, we lift that restriction and allow filters to be of arbi-
trary length l (without loss of generality, we will assume that fil-
ters are causal, that is, they are nonzero only for positive
indices). However, we do leave the restriction that the filters are
finitely supported, that is, they are finite impulse response (FIR)
filters. (IIR filters also fit in this framework, we concentrate on
FIR only for simplicity. Moreover, this restriction makes all the
operators bounded and all the series converge.) Consider an
inner product between two sequences x and y (on the left), and
filtering a sequence x by a filter f and having the output at time
k (on the right):

[FIG4] Two-channel filter bank with downsampling by two.
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〈x, y〉 =
∑
i ∈Z

x∗
i yi x ∗ f =

∑
i ∈Z

x∗
i fk−i .

By comparing the above two expressions, we see that we could
express filtering a sequence x by a filter f and having the output
at time k as

∑
i ∈Z

x∗
i fk−i = 〈 fk−i, xi 〉 .

Thus, to express the analysis part of the filter bank, we can do
the following:

X =




...

X0

X1

X2

X3
...




=




...

〈ϕ̃0, x 〉
〈ϕ̃1, x 〉
〈ϕ̃2, x 〉
〈ϕ̃3, x 〉

...




=




...

〈 g̃−i, xi 〉
〈h̃−i, xi 〉
〈 g̃2−i, xi 〉
〈h̃2−i, xi 〉

...




=




. . .
...

...
...

...
. . .

· · · g̃3 g̃2 g̃1 g̃0 · · ·
· · · h̃3 h̃2 h̃1 h̃0 · · ·
· · · g̃5 g̃4 g̃3 g̃2 · · ·
· · · h̃5 h̃4 h̃3 h̃2 · · ·
. . .

...
...

...
...

. . .




︸ ︷︷ ︸
�̃∗




...

x0

x1

x2

x3
...




︸ ︷︷ ︸
x

= �̃∗x .

Similarly, the reconstruction part can be expressed as

x =




. . .
...

...
...

...
...

...
. . .

· · · g2 h2 g0 h0 0 0 · · ·
· · · g3 h3 g1 h1 0 0 · · ·
· · · g4 h4 g2 h2 g0 h0 · · ·
· · · g5 h5 g3 h3 g1 h1 · · ·
. . .

...
...

...
...

...
...

. . .




︸ ︷︷ ︸
�




...

X0

X1

X2

X3
...




︸ ︷︷ ︸
X

= ( · · · τ−2 g τ−2 h g h τ2 g τ2 h · · · ) X

=




. . .
...

...
...

. . .

· · · �1 �0 0 · · ·
· · · �2 �1 �0 · · ·
. . .

...
...

...
. . .


 X = �X , (38)

where �i are n × m matrices with n being the shift and m the
number of channels/filters in the filter bank. The matrices are
formed by taking the i th block of n coefficients from each of the
m filters. Here n = 2 and m = 2.

Recall again, we have assumed our filters to be causal. From
above, we can conclude the following:

■ The basis is � = {τ2i ϕ0, τ2i ϕ1}i ∈ Z = {τ2i g, τ2ih}i ∈ Z . In
other words, the impulse responses of the template filters g and h
and their even shifts form the basis � (they are the columns of �).

■ The dual basis is �̃ = {τ2i ϕ̃0, τ2i ϕ̃1}i ∈ Z = {τ2i g̃,
τ2i h̃}i ∈ Z. In other words, the impulse responses of the tem-
plate filters g̃ and h̃ and their even shifts form the basis �̃
(they are the columns of �̃).
■ When �̃ = �, the basis is orthonormal. In that case,
g̃i = g−i, that is, the impulse responses of the analysis filters
are time-reversed impulse responses of synthesis filters.
■ The even shifts appear because of down/upsampling by
two.
■ When the filters are of length l = 2 (l = n in general), �∗
or �̃∗ contain only one block, �∗

0 or �̃∗
0, along the diagonal,

making it a block-diagonal matrix (as in the Haar transform).
The effect of this is that the input is processed in nonoverlap-
ping pieces of length two. Effectively, this is equivalent to
dealing with bases in the two-dimensional space.
■ We discussed here a specific case with two template filters
and shifts by two. In filter bank parlance, we discussed two-
channel filter banks with sampling by two. (By sampling, we
mean the two sampling operations, downsampling and
upsampling.) Of course, more general options are possible
and one can have m-channel filter banks with sampling by m.
We then have m template filters (basis vectors) from which all
the basis vectors are obtained by shifts by multiples of m. The
blocks �∗

i then become of size m × m. Again, if filters are of
length l = m, this leads to the block-diagonal �∗ and, effec-
tively, finite-dimensional bases.

Z-DOMAIN VIEW OF SIGNAL PROCESSING
Historically, the above, basis-centric view of filter banks came
very recently. Initially, when the filter banks were developed
to deal with speech coding [22], [34], the analysis was done in
z-domain (for easier algebraic manipulation). In particular, 
z-transform comes in handy when we have to deal with shift-
varying systems such as filter banks. Shift variance is introduced
into the system due to downsamplers (or shifts). A tool used to
transform a filter bank from a single-input, single-output (SISO)
linear periodically shift-variant system into a multiple-input,
multiple-output (MIMO) linear shift-invariant systems is called
the polyphase transform.

For i = 0, . . . , m − 1, for the i th synthesis filter (template
basis vector), (ϕi0(z), . . . , ϕim−1(z))T is called the polyphase
representation of the ith synthesis filter where

ϕik(z) =
∑
p∈ Z

ϕi,mp+ kz−p , (39)

are the polyphase components for i, k = 0, . . . , m − 1. To relate
ϕik(z) to a time-domain object, note that it is the discrete-time
Fourier transform of the template basis vector ϕi obtained by
retaining only the indices congruent to k modulo m. Then
�p(z) is the corresponding m × m synthesis polyphase matrix
with elements ϕik(z). In other words, a polyphase decomposi-
tion is a decomposition into m subsequences modulo m. We can
do the same on the analysis side, leading to the polyphase
matrix �̃∗

p(z). Then, the input/output relationship is given by
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x(z ) =
(

1 z−1 . . . z−(m−1)
)

�p(z )�̃∗
p(z )xp(z ), (40)

where xp(z) is the vector of polyphase components of the signal
(there are m of them) and ∗ denotes conjugation of coefficients
but not of z. Note that the polyphase components of the analysis
bank are defined in reverse order from those of the synthesis
bank. When the filter length is l = m, then, each polyphase
sequence is of length one. Each polyphase matrix then reduces
to �p(z ) = �0, �̃∗

p(z ) = �̃∗
0 , that is, both �p(z ) and �̃∗

p(z )

become independent of z. It is clear from the above, that to
obtain perfect reconstruction, that is, to have a basis expansion,
the polyphase matrices must satisfy

�p(z )�̃∗
p(z ) = I . (41)

If the filter length is l = m, the above implements a finite-
dimensional expansion (block transform). For example, if we
wanted to implement the DFTm using a filter bank, we
would use an m-channel filter bank with sampling by m and
prototype synthesis filters ϕi given in (11). Since each proto-
type filter is of length m, each of its polyphase components
will be of length one and a constant, leading to a constant
polyphase matrix.

If a filter bank implements an ONB, then �̃p(z ) = �p(z−1),
and (31) reduces to

�p(z )�∗
p(z−1) = I . (42)

A matrix satisfying the above is called a paraunitary matrix, that
is, it is unitary on the unit circle.

EXAMPLE
As a first example, go back to the Haar expansion dis-
cussed earlier. Since m = 2, ϕ0(z ) = (1 + z−1)/

√
2, ϕ1(z) =

(1 − z−1)/
√

2, and the polyphase matrix is �∗
p(z ) = �∗

0 from
(37).

As a more involved example, suppose m = 2 again and we
are given the following set of template filters:

G(z ) = z−2 + 4z−1 + 6 + 4z + z2,

H(z ) = 1
4

z
(

1
4

z−1 + 1 + 1
4

z
)

,

G̃(z ) = 1
4

(
−1

4
z−1 + 1 − 1

4
z
)

,

H̃(z ) = z−1(z−2 − 4z−1 + 6 − 4z + z2) .

Having the polyphase decomposition for each filter being written as
G(z ) = G0(z2) + z−1G1(z2) , H(z ) = H0(z2) + z−1 H1(z2) ,
G̃(z ) = G̃0(z2) + zG̃1(z2) , H̃(z ) = H̃0(z2) + zH̃1(z2) , the
polyphase matrices are then (they have polyphase components
of the above filters as their columns)

�p(z ) =
(

z−1 + 6 + z 1
16 (1 + z )

4(1 + z ) 1
4 z

)
,

�̃p(z ) =
( 1

4 −4(1 + z−1)

− 1
16 (1 + z−1) 1 + 6z−1 + z−2

)
.

Thus, the filter bank with filters as defined above implements a
biorthogonal expansion. The dual bases are

� = {ϕ2i, ϕ2i + 1}i ∈ Z = {τ2i g, τ2ih}i ∈ Z ,

�̃ = {ϕ̃2i, ϕ̃2i + 1}i ∈ Z = {τ2i g̃, τ2i h̃}i ∈ Z ,

and they are interchangeable.                                                  �

FILTER BANK TREES
Many of the bases in � 2(Z) (and frames later on) are built by
using two- and m-channel filter banks as building blocks. For
example, the dyadic (with scale factor 2) discrete wavelet trans-
form (DWT) is built by iterating the two-channel filter bank on
the low-pass channel (Figure 5 depicts the synthesis part). The
DWT is a basis expansion and as such nonredundant (critically
sampled). To describe the redundancy of various frame families
later on, we introduce sampling grids in Figure 5 in Part II of
this article [48], each depicting time positions of basis vectors at
each level. Thus, for example, the top plot in the same figure
depicts the grid for the DWT. At level 1, we have half as many
points as at level 0, at level 2, half as many as at level 1, and so
on. Because of appropriate sampling, the grid has exactly as
many points as needed to represent any x ∈ �2(Z) and is thus
nonredundant.

We can also build arbitrary trees by, at each level, iterating
on any subset of the branches (typically known as wavelet pack-
ets [21]). To analyze these tree-structured filter banks, we typi-
cally collect all the filters and samplers along a path into a
branch with a single filter and single sampler. This is possible
using the so-called Noble identities [61] that allow us to
exchange the order of filtering and sampling.

EXAMPLE
Assume we have a DWT with two levels, that is, the low-pass
branch is iterated only once (see Figure 5). Then, the equivalent
filter bank has three channels as in Figure 6 with sampling by 2,

[FIG5] The synthesis part of the filter bank implementing the
DWT with j levels. The analysis part is analogous.
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4, and 4, respectively. The equivalent filters are then (call (↑ m)

the operator upsampling a filter by m)

ϕ2 = h, ϕ1 = g∗ (↑ 2)h, ϕ0 = g∗ (↑ 2)g .

Assuming for simplicity that the filters have only two taps, the
matrix � in (38) is block diagonal with

�∗
0 =




h0 h1 0 0
0 0 h0 h1

g0 h0 g1 h0 g0 h1 g1 h1

g2
0 g0 g1 g0 g1 g2

1


 .

We see here that even though we have only three branches, the
filter bank behaves as a critically sampled four-channel filter
bank with sampling by four.                                                     �

FILTER BANK VIEW OF FRAMES
The filter bank expansions we just discussed were bases and thus
nonredundant. Now, nothing stops us from being redundant
(for reasons stated earlier) by simply adding more vectors.

EXAMPLE
Let us look at the simplest case using our favorite example: the
MB frame given in “The Mercedes-Benz Frame.” Our �∗ is now
block diagonal, with �∗

0 = �∗
UNTF from (16) on the diagonal. In

contrast to finite-dimensional bases implemented by filter banks
[see Haar in (37)], the block �∗

0 is now rectangular of size 3 × 2.
This finite-dimensional frame is equivalent to the filter bank
shown in Figure 7 with {ϕ̃i} = {ϕi}, given in (16).                             �

As we could for finite-dimensional bases, we can investigate
finite-dimensional frames within the filter bank framework (see
Figure 8). In other words, all cases we consider in this article,
both finite dimensional and infinite dimensional, we can look at
as filter banks.

Similarly to bases, if in (38) � is not block diagonal, we
resort to the polyphase-domain analysis. Assume that the filter
length is l = kn (if not, we can always pad with zeros), and write
the frame as (causal filters)

�∗ =




. . .
...

...
...

...
...

. . .

· · · �∗
0 �∗

1 · · · �∗
k−1 0 · · ·

· · · 0 �∗
0 · · · �∗

k−2 �∗
k−1 · · ·

· · ·
...

...
...

...
... · · ·

· · · 0 0 · · · �∗
0 �∗

1 · · ·
· · · 0 0 · · · 0 �∗

0 · · ·
. . .

...
...

...
...

...
. . .




, (43)

where each block �i is of size n × m. �0, for example, is

�0 =




ϕ00 . . . ϕ0,m−1
...

. . .
...

ϕn−1,0 . . . ϕn−1,m−1


 .

In the above, we enumerate template frame vectors from
0, . . . , m − 1. A thorough analysis of oversampled filter banks
seen as frames is given in [13], [24], and [25].

SUMMARY
To summarize, the class of multiresolution transforms obtained
using a filter bank depends on three parameters: the number of
vectors m, the shift or sampling factor n, and the length l of the
nonzero support of the vectors.

BASES m = n
The filter bank in this case is called critically sampled and
implements a nonredundant expansion—basis. The basis � has
a dual basis associated with it, �̃, leading to biorthogonal filter
banks. The associated matrices �, �̃ are invertible. In the z-
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[FIG6] The synthesis part of the equivalent three-channel filter
bank implementing the DWT with two levels. The analysis part is
analogous.
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[FIG8] A filter bank implementation of a frame expansion: It is an
m-channel filter bank with sampling by n.
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[FIG7] Three-channel filter bank with downsampling by two.

x

ϕ3˜

ϕ̃2

ϕ̃1

ϕ3

ϕ2

ϕ1

2

2

2

2

2

2

+ x



IEEE SIGNAL PROCESSING MAGAZINE [103] JULY 2007

domain, this is expressed as follows: A filter bank implements a
basis expansion if and only if (41) evaluated on the unit circle
is satisfied [64].

An important subcase is when the basis � is orthonormal, in
which case it is self-dual, that is, �̃ = �. The filter bank is
called orthogonal and the associated matrix � is unitary,
��∗ = I. In the z-domain, this is expressed as follows: A filter
bank implements an ONB expansion if and only if its polyphase
matrix is paraunitary, that is, if and only if (42) holds [64]. Well-
known subcases are the following:

■ When l = m, we have a block transform. In this case, in
(38), only �0 exists, making � block-diagonal. In effect, since
there is no overlap between processed signal blocks, this can
be analyzed as a finite-dimensional case, where both the input
and the output are m-dimensional vectors. A famous example
is the Discrete Fourier Transform (DFT), which we discussed
earlier.
■ When m = 2, we get two-channel filter banks. In (38),
�i is of size 2 × 2 and by iterating on the low-pass channel,
we get the DWT [64] (see Figure 5).
■ When l = 2m, we get Lapped Orthogonal Transforms
(LOT), efficient transforms developed to deal with the block-
ing artifacts introduced by block transforms, while keeping
the efficient computational algorithm of the DFT [64]. In this
case, in (28), only �0 and �1 are nonzero.

FRAMES m > n
The filter bank in this case implements a redundant expansion—
frame. The frame � has a dual frame associated with it, �̃. The
associated matrices �, �̃ are rectangular and left/right invert-
ible. This has been formalized in z-domain in [24], as the follow-
ing result: A filter bank implements a frame decomposition in
� 2(Z) if and only if its polyphase matrix is of full rank on the
unit circle.

An important subcase is when the frame � is tight, in
which case it is self-dual, that is, �̃ = �, and the associated
matrix � satisfies ��∗ = I . This has been formalized in 
z-domain in [24], as the following result: A filter bank imple-
ments a TF expansion in � 2(Z) if and only if its polyphase
matrix is paraunitary. A well-known subcase of TFs is the fol-
lowing:

■ When l = n, we have a block transform. Then, in (43), only
�0 is nonzero, making � block diagonal. In effect, since
there is no overlap between processed blocks, this can be ana-
lyzed as a finite-dimensional case, where both the input and
the output are n-dimensional vectors.

CONCLUSIONS
Coming to the end of Part I, we hope you have a different pic-
ture of a frame in your mind from a “picture frame.” While nec-
essarily colored by our personal bias, we intended this tutorial as
a basic introduction to frames, geared primarily toward engi-
neering students and those without extensive mathematical
training. Frames are here to stay; as wavelet bases before them,
they are becoming a standard tool in the signal processing tool-

box, spurred by a host of recent applications requiring some
level of redundancy. Part II [48] covers these applications, so
stay tuned…
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