Beyond
Bases:

The Advent

of Frames
(Part i)

Frames in Action
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hile the first part of this article [73] presented most of the basic theoretical
developments of frames, this part is more user friendly. It covers a large
number of known frame families as well as those applications where
frames made a difference. If you are familiar with the theory behind
frames, you can just read this part and use it as necessary; all the relevant
notation is given in Part I [73].

ALL IN THE FAMILY

We now consider particular frame families. The first two, harmonic tight frames and equiangu-
lar frames, are purely finite dimensional, while the rest are, in general, infinite dimensional. For
some of the families, we will consider the unit-norm tight frame (UNTF) version and give the
frame bound A yielding the redundancy of the frame family. We will denote by 4; the redundan-
cy/frame bound at level jwhen iterated filter banks (FBs) are used.

HARMONIC TIGHT FRAMES AND VARIATIONS
Harmonic tight frames (HTF) are obtained by seeding from W = DFT,, (given in [73]), by delet-
ing the last (m — n) columns:

m 0 i [ (n—1
0i = /;(Wm,w,;z,...,W,;(" )), M

fori =0, ..., m— 1. Since obtained as an instance of the Naimark Theorem (given in [73]), this

Digital Object Identifier 10.1109/MSP.2007.904809

1053-5888/07/$25.0002007IEEE

IEEE SIGNAL PROCESSING MAGAZINE [115] SEPTEMBER 2007




is thus a Parseval tight frame (PTF), that is, ®®* = I. The sim-
plest example of an HTF is the Mercedes-Benz (MB) frame given
in [73, “The Mercedes-Benz Frame”]. In [26], the authors define a
more general version of the HTF, called general harmonic frames.
They also show that the HTFs are unique up to a permutation of
the orthonormal basis (ONB) and that every general harmonic
frame is unitarily equivalent to a simple variation of an HTF.

HTFs have a number of interesting properties: 1) For
m =n+ 1, all equal-norm tight frames (ENTFs) are unitarily
equivalent to it; in other words, since we have HTFs for all n, m,
we have all ENTFs for m = n + 1. 2) It is the only equal-norm
PTF (ENPTF) such that its elements are generated by a group of
unitary operators with one generator. 3) HTFs are maximally
robust (MR) to erasures [54].

These frames have been generalized in an exhaustive work by
Vale and Waldron [100], where the authors look at frames with
symmetries. Some of these they term HTFs [their definition is
more general than what is given in (1)] and are the result of the
operation of a unitary U on a finite Abelian group G. When G is
cyclic, the resulting frames are cyclic. In [26], the HTFs we
showed above are with U = I and generalized HTFs are with
U = D diagonal. These are cyclic in the parlance of [100]. An
example of a cyclic frame are (n + 1) vertices of a regular sim-
plex in R”. There exist HTFs which are not cyclic.

Similar ideas have appeared in the work by Eldar and
Bolcskei [46] under the name geometrically uniform (GU)
frames, frames defined over a finite Abelian group of unitary
matrices both with a single generator as well as multiple gener-
ators. The authors also consider constructions of such frames
from given frames, closest in the least-squares sense, a sort of a
Gram-Schmidt procedure for GU frames.

GRASSMANIAN PACKINGS AND EQUIANGULAR FRAMES
Equiangular (referring to |(¢;, ¢;)| = const.) frame families
have become popular recently due to their use in quantum
computing. In that terminology, a rank-1 measurement is rep-
resented by a positive operator valued measure (POVM). Each
rank-1 POVM is a tight frame.

The first family is symmetric informationally complete
POVMs (SIC-POVMs) [86]. A SIC-POVM is a family ® of m = n?
vectors in C” such that

p2=h

p1=9+(12)h

O

po=9g+(T2)g

[FIG1] The synthesis part of the FB implementing the a trous
algorithm. The analysis part is analogous. This is equivalent to
[73, Figure 5], with sampling removed.

1
N2 —
i, ppI” = n+l 2)

holds for all 7, j, i # j. At this point, it is not known whether
SIC-POVMs exist for all finite dimensions.

The second family is mutually unbiased bases (MUBs). A
MUB is a family ® of n+ 1 ONBs in a Hilbert space of dimen-
sion 7 (for instance, C") such that for any two different bases
By, Byand any vectors ¢; € By and ¢; € B, we have

1
s, pp? = p 3)

Both harmonic tight frames and equiangular frames have
strong connections to Grassmanian frames. In a comprehensive
paper [96], Strohmer and Heath discuss those frames and their
connection to Grassmanian packings, spherical codes, graph
theory, Welch Bound sequences (see also [62]). These frames are
of unit norm (not a necessary restriction) and minimize the
maximum correlation |{¢;, ¢;)| among all frames. The problem
arises from looking at overcomplete systems closest to ortho-
normal bases (which have minimum correlation). A simple
example is an HTF in H". Theorem 2.3 in [96] states that, given
a frame ®:

. o m-—n A

mqin((g% i, o)) = nm—1) 4)
The equality in (4) is achieved if and only if ® is equiangular and
tight. In particular, for H = R, equality is possible only for
m < n(n+ 1)/2, while for H = C, equality is possible only for
m < n’. Note that the above inequality is exactly the one Welch
proved in [105] and which later led to what is today commonly
referred to as the Welch’s Bound given in (7) by minimizing
interuser interference in a code-division multiple access (CDMA)
system [82] (see the discussion on the Welch’s Bound). In a
more recent work, Xia et al. [107] constructed some new frames
meeting the original Welch’s Bound (7).

These frames coincide with some optimal packings in
Grassmanian spaces [32], spherical codes [33], equiangular lines
[78], and many others. The equiangular lines are equivalent to
the SIC-POVMs we discussed above.

THE ALGORITHME A TROUS

The algorithme a trous is a fast implementation of the dyadic
(continuous) wavelet transform. It was first introduced by
Holschneider, Kronland-Martinet, Morlet, and Tchamitchian in
1989 [63]. The transform is implemented via a biorthogonal,
nondownsampled FB. An example for j= 2 levels is given in
Figure 1 (this is essentially the same as the 2-level discrete
wavelet transform (DWT) as in Part I [73, Figure 5], with sam-
plers removed).

Let g and A be the filters used in this FB. At level 7 we will
have equivalent upsampling by 2¢ which means that the filter
moved across the upsampler will be upsampled by 2¢, inserting
(27 — 1) zeros between every two samples and thus creating
holes (frou means hole in French).
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Figure 2(d) shows the sampling grid for the a trous algo-
rithm. It is clear from the figure, that this scheme is com-
pletely redundant, as all the points exist. This is in contrast to
a completely nonredundant scheme such as the DWT, given in
the top plot of the figure. In fact, the redundancy (or frame
bound) of this algorithm grows exponentially since
A =24=4 . 4= 2/, ... (note that here we use a two-
channel FB and that 4; is the frame bound when we use j lev-
els), and the total redundancy for j levels is 27+l This
growing redundancy is the price we pay for shift invariance as
well as the simplicity of the algorithm. The two-dimensional
(2-D) version of the algorithm is obtained by extending the
one-dimensional (1-D) version in a separable manner.

GABOR AND COSINE-MODULATED FRAMES

The idea behind this class of frames, consisting of many fami-
lies, dates back to Gabor [53] and the insight of constructing
bases by modulation of a single prototype function. Gabor
originally used complex modulation, and thus, all those fami-
lies with complex modulation are termed Gabor frames. Other
types of modulation are possible, such as cosine modulation,
and again, all those families with cosine modulation are
termed cosine-modulated frames. Cosine-modulated bases are
also often called Wilson bases. The connection between these
two classes is deep as there exists a general decomposition of
the frame operator corresponding to a cosine-modulated FB
as the sum of the frame operator of the underlying Gabor
frame (with the same prototype function and twice the redun-
dancy) and an additional operator, which vanishes if the gen-
erator satisfies certain symmetry properties. While this
decomposition has first been used by Auscher in the context
of Wilson bases [4], it is valid more generally. Both of these
classes can be seen as general oversampled FBs with m chan-
nels and sampling by n (see [73, Figure 7]).

GABOR FRAMES
A Gabor frame is ® = {¢; };":_01, with

0ik = Wit oo . 5)

where index 7 =0, ..., m — 1 refers to the number of frame
elements, & € Z is the discrete-time index, W, is the m th root
of unity and ¢ is the prototype frame function. Comparing (5)
with (1), we see that for filter length /=nand ¢y =1,k=0
and 0 otherwise, the Gabor system is equivalent to a HTF frame.
Thus, it is sometimes called the oversampled discrete Fourier
transform (DFT) frame.

For the critically sampled case, one cannot have Gabor
bases with good time and frequency localization at the same
time (this is similar in spirit to the Balian-Low theorem
which holds for £2(R) [37]); this prompted the development
of oversampled (redundant) Gabor systems (frames). They are
known under various names: oversampled DFT FBs, complex-
modulated FBs, short-time Fourier FBs and Gabor FBs and
have been studied in [17], [18], [20], [35], [50], (see also [95]

and references within). More recent work includes [77], where
the authors study finite-dimensional Gabor systems and show
a family in C”, with m = n? vectors, which allows for % — n
erasures, where n is prime (see “Robust Transmissions” sec-
tion for discussion of erasures). In [74], new classes of Gabor
ENTFs are shown, which are also MR.

COSINE-MODULATED FRAMES

The other kind of modulation, cosine, was used with great suc-
cess within critically sampled FBs due to efficient implementa-
tion algorithms. Its oversampled version was introduced in
[18], where the authors define the frame elements as:

9ik = V2cos (% + az‘) ®0,k » (6)
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[FIG2] Sampling grids corresponding to time-frequency tilings of
(a) DWT (nonredundant), (b) DD-DWT/Laplacian pyramid, (c) DT-
CWT/PSDWT/PDWT, and (d) a trous family (completely
redundant). Black dots correspond to the nonredundant (DWT-
like) sampling grid. Crosses denote redundant points. Note that
the last two ticks on the y-axis represent level 4 for the highpass
and lowpass channels, respectively.
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where index 7 =0, ..., m — 1 refers to the number of frame
elements, k € 7 is the discrete-time index and ¢y is the proto-
type frame function. The so-called odd-
stacked cosine modulated FBs are
difined in (6); even-stacked ones exist
as well.

Cosine-modulated FBs do not suffer
from time-frequency localization prob-
lems, given by a general result stating
that the generating window of an
orthogonal cosine modulated FB can be obtained by construct-
ing a tight complex FB with oversampling factor 2 while making
sure the window function satisfies a certain symmetry property
(for more details, see [18]). Since we can get well-localized
Gabor frames for redundancy 2, this also shows that we can get
well-localized cosine-modulated FBs.

THE DUAL-TREE COMPLEX WAVELET TRANSFORM
The dual-tree complex wavelet transform (DT-CWT)} was first
introduced by Kingsbury in 1998 [69]-[71]. The basic idea is to
have two DWT trees working in parallel. One tree represents the
real part of the complex transform while the second tree repre-
sents the imaginary part. That is, when the DT-CWT is applied
to a real signal, the output of the first tree is the real part of the
complex transform whereas the output of the second tree is its
imaginary part. Shown in Figure 3 is the synthesis FB for the
DT-CWT. Each tree uses a different pair of lowpass and highpass
filters. These filters are designed so that they satisfy the perfect
reconstruction condition.

Let ®, and ®; be the square matrices representing each of
the DWTs in the DT-CWT. Then,

1
P = — (P, D)),
75 o o

is a rectangular matrix, and thus a frame, representing the DT-
CWT. The indices r and 7 stem from real and imaginary. The
right inverse of ® is the analysis FB (analysis operator) and is
given by ®* = 1//2 ((d)r)*l(CD,-)*l)T. If ®, and ®; are uni-
tary matrices, then ® = @, ®d* = [, and ® is a PTE.

Because the two DWT trees used in the DT-CWT are fully
downsampled, the redundancy is only 2 for the 1-D case (it is 2¢
for the d-dimensional case). We can see that in Figure 2(c),

Analysis DWT i Synthesis DWT i

| >

Analysis DWT r

Synthesis DWT r

[FIG3] The FB implementing the CWT. The two branches have
two different two-channel FBs as in [73, Figure 3]. The analysis
part is analogous.

HARMONIC TIGHT FRAMES ARE
A REDUNDANT COUNTERPART
OF THE DISCRETE FOURIER
TRANSFORM.

where the redundancy at each level is twice that of the DWT,
that is A = A2 = ... Aj = 2. Unlike the a trous algorithm, how-
ever, here the redundancy is independ-
ent of the number of levels used in the
transform.

When the two DWTs used are
orthonormal, the DT-CWT is a tight
frame. The DT-CWT overcomes one
of the main drawbacks of the DWT:
shift variance. Since the DT-CWT
contains two fully downsampled DWTs which satisfy the half-
sample delay condition (see below), aliasing due to downsam-
pling can be largely eliminated and the transform becomes
nearly shift invariant. The advantage the DT-CWT has over
other complex transforms is that it has a fast invertible imple-
mentation and moreover, when the signal is real valued, the
real and imaginary parts of its transform coefficients can be
computed and stored separately.

As mentioned previously, the pairs of filters (A, g,) and
(hi, g;) of each DWT have to satisfy the perfect reconstruction
condition. In addition, the filters have to be FIR and satisfy the
so-called half sample delay condition, which implies that all of
the filters have to be designed simultaneously. From this condi-
tion it also follows that the two highpass filters form an approxi-
mate Hilbert transform pair, and it thus makes sense to regard
the outputs of the two trees as the real and imaginary parts of
complex functions. Different design solutions exist, amongst
them the linear phase biorthogonal one and the quarter-shift
one [71], [91]. Moreover, we can use different-flavor trees to
implement the DT-CWT. For example, it is possible to use a dif-
ferent pair of filters at each level, or alternate filters between the
trees at each stage except for the first one.

In 2-D (or mD), the DT-CWT possesses directional selectivity
allowing us to capture edge or curve information, a property
clearly absent from the usual separable DWT. In the real case,
orientation selectivity is simply achieved by using two real sepa-
rable 2-D DWTs in parallel. Two pairs of filters are used to imple-
ment each DWT. These two transforms produce six subbands,
three pairs of subbands from the same space-frequency region.
By taking the sums and differences of each pair, one obtains the
oriented wavelet transform.

The near shift invariance and orientation selectivity proper-
ties of the DT-CWT open up a window into a wide range of
applications, among them denoising, motion estimation, image
segmentation as well as building feature, texture and object
detectors for images (see “Other Applications” section and refer-
ences therein).

DOUBLE-DENSITY FRAMES

AND VARIATIONS

The DT-CWT appears to be the most notable among the over-
sampled FB transforms. It is joined by a host of others: In
particular, Selesnick in [89] introduces the double-density DWT
(DD-DWT), which can approximately be implemented using a
three-channel FB with sampling by 2 as in [73, Figure 6]. The
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filters in the analysis bank are time-reversed versions of those in
the synthesis bank. The redundancy of this FB tends towards 2
when iterated on the channel with ¢;

and a directional FB. Thus, first a wavelet-like method is used for
edge detection (pyramid) followed by local directional transform
for contour segment detection. It is

[73, Figure 6]. Actually, we have that A almost critically sampled, with redun-

A1 = (3/2), Ay = (T/4), ... Ao =2 THE ALGORITHME A TROUS dancy of 1.33. It draws on the ideas of a

[see Figure 2(b)]. Like the DT-CWT, IS THE MOST REDUNDANT pyramidal directional FBs (PDFBs)
FILTER BANK FRAME.

the DD-DWT is nearly shift invariant
when compared to the a trous con-
struction. In [90], Selesnick introduces the combination of the
DD-DWT and the DT-CWT which he calls double-density, DT-
CWT (DD-DT-CWT). This transform can be seen as the one in
Figure 3 (DT-CWT), with individual FBs being overcomplete
ones given in [73, Figure 6] (DD-DWT). In [1], Abdelnour and
Selesnick introduce symmetric, nearly shift-invariant FBs imple-
menting tight frames. These FBs have four filters in two couples,
obtained from each other by modulation. Sampling is by 2 and
thus the total redundancy is 2.

Another variation on a theme is the power-shiftable DWT
(PSDWT) [92] or partial DWT (PDWT) [94], which removes
samplers at the first level but leaves them at all other levels
(see Figure 4). The sampling grid of the PSDWT/PDWT is
shown in Figure 2(c). We see that it has redundancy 4; = 2 at
each level (similarly to the CWT). The PSDWT/PDWT
achieves near shift invariance.

Bradley in [22] introduces overcomplete DWT (OC-DWT),
the DWT with critical sampling for the first & levels followed by
a trous for the last j— k& levels. The OC-DWT becomes the a
trous algorithm when & = 0 or the DWT when & = J.

MULTIDIMENSIONAL FRAMES

Apart from obvious, tensor-like, constructions (separate appli-
cation of 1-D methods in each dimension) of multidimensional
(mD) frames, we are interested in true mD solutions. The old-
est mD frame seems to be the steerable pyramid introduced by
Simoncelli, Freeman, Adelson and Heeger in 1992 [92], follow-
ing on the previous work by Burt and Adelson on pyramid cod-
ing (see “Pyramid Coding” and [23]). The steerable pyramid
possesses many nice properties, such as joint space-frequency
localization, approximate shift invariance, approximate tight-
ness, oriented kernels, approximate rotation invariance and a
redundancy factor of 4j/3, where j is the number of orienta-
tion subbands. The transform is implemented by a first stage
of lowpass/highpass filtering followed by oriented bandpass fil-
ters in the lowpass branch plus another lowpass filter in the
same branch followed by downsampling. An excellent overview
of the steerable pyramid and its applications is given on
Simoncelli’s web page [88].

Another beautiful example is the recent work of Do and
Vetterli on contourlets [34], [42]. This work was motivated by
the need to construct efficient and sparse representations of
intrinsic geometric structure of information within an image.
The authors combine the ideas of pyramid coding (see
“Pyramid Coding”) and pyramid FBs [41] with directional pro-
cessing, to obtain contourlets, expansions capturing contour
segments. The transform is a frame composed of a pyramid FB

which is a PTF when all the filters used
are orthogonal (see Figure 5).

Some other examples include [79] where the authors build
both critically sampled and nonsampled (a trous like) 2-D
DWT. It is obtained by a separable 2-D DWT producing 4 sub-
bands. The lowest subband is left as is, while the three higher
ones are split into two subbands each using a quincunx FB
(checkerboard sampling). The resulting FB possesses good
directionality with low redundancy. Many “-lets” are also mul-
tidimensional frames, such as curvelets [24], [25] and shearlets
[75]. As the name implies, curvelets are used to approximate
curved singularities in an efficient manner [24], [25]. As
opposed to wavelets which use dilation and translation, shear-
lets use dilation, shear transformation and translation, and
possess useful properties such as directionality, elongated
shapes and many others [75].

DISCUSSION AND NOTES
While in this section we aimed to present a comprehensive
overview of frame families implementable by FBs, omissions are

i @
-,

H

:

[FIG4] The synthesis part of the FB implementing the power-
shiftable DWT. The samplers are omitted at the first level but
exist at all other levels. The analysis part is analogous.

Pyramid
Filter Bank

O

D

>

[FIG5] The synthesis part of the pyramid directional FB. The
pyramid FB is given in “Pyramid Coding.” The scheme can be
iterated and the analysis part is analogous.
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probable. We note here some other developments, which, while
not necessarily yet in the realm of FB frames, are related to
them nevertheless.

For example, Casazza and Leonhard keep a tab on all
equal-norm Parseval frames in [27]. In [6], [7], [56], the
authors introduce the notion of localized frames, as an
important new direction in frame theory, with possible FB
instantiations in the future.

APPLICATIONS

We now present a glimpse at applica-
tion domains where frames have been
used with success. As with the previous
material, we make no attempt to be
exhaustive; we merely give a representative sample. These appli-
cations illustrate which basic properties of frames have found
use in the real world. In some of these, frames have been used
deliberately; by considering the requirements posed by applica-
tions, frames emerged as a natural choice. In others, only later
have we become aware that the tools used were actually frames.

SOURCE CODING

An area where frames were immediately recognized as natural
signal expansions was that of source coding. The success was
motivated by the fact that frames show resilience to additive
noise as well as numerical stability of reconstruction [37]. We
start by illustrating resilience to noise. Intuitively, if a certain
amount of noise is present, distributed over the transform
coefficients (inner products), then it stands to reason that
when there are m coefficients (frame) as opposed to n (m > n,
bases), it is easier to deal with that lower level of noise per
coefficient.

Example: We go back to our MB frame and consider its
UNTF version given in [73, “The Mercedes-Benz Frame”].
Suppose we perturb our frame coefficients by adding white
noise w; to the channel 7, where Elw;] = 0, E [w;wy] = 028,-k
for i, k=1,2,3. We can now find the error of the recon-
struction,

[SSI )

L2 3
x—k =33 Ao e — 3D (gi X) +wei
i=1 i=1

2 3
3 Zwi<ﬂz‘~
i=1

Then the averaged mean-squared error per component is

2
1 1
MSE = 5E||x—5c||2 = 5E

2 3
3 Zwiﬁﬂi
i=1

1 24 2 2 2 2
—gaggnspzn = 30%,

since all the frame vectors have norm 1. Compare this to the
same MSE obtained with an ONB: 2. In other words:

THE STEERABLE PYRAMID
IS ONE OF THE OLDEST FRAMES.

3
MSEong = EMSEMB’

that is, the amount of error per component has been reduced
using a frame. [
Frames are thus generally considered to be robust under
additive noise [12], [37], [83]. While additive noise models for
quantization error can be somewhat
misleading as shown in [36], we use
this example because it is simple and
carries some intuition. Other works
in the area include [11], [36], [38],
[55], [58], and have been used with
success in the context of sigma-delta
quantization [19], [38], [57], and oversampled A/D conversion.

DENOISING

Denoising with wavelets can be traced back to the work by
Weaver et al. [104] (and even earlier to Witkin [106]), and
was later on popularized by Donoho and Johnstone [43], [44].
Even then, sophisticated use of overcomplete expansions
showed excellent results, and thus one of the first works on
denoising with frames is [108], where the authors combined
the overcomplete expansion with a variation of the technique
from [81] to reconstruct the image from its wavelet maxima.

More recent works include cycle spinning introduced by
Coifman and Donoho [31]. They suggest that when using a J-
stage wavelet transform, one can take advantage of the fact
that there are effectively 2/ different wavelet bases, each one
corresponding to one of the 2/ shifts. Thus one can denoise
in each of those 2/ wavelet bases and then average the result.
Even though errors of individual estimates are generally pos-
itively correlated, one gets an advantage from averaging the
estimators. Another effect of this is that the shift-varying
basis gives way to a shift-invariant frame (collection of
bases). In [45], Dragotti et al. construct separable multidi-
mensional directional frames for image denoising. The algo-
rithm is in spirit similar to cycle spinning.

Ishwar and Moulin take a slightly different approach to
develop a general framework for image modeling and estima-
tion by fusing deterministic and statistical information from
subband coefficients in multiple wavelet bases using maxi-
mum-entropy and set-theoretic ideas [64]-[67]. For instance,
in [67] natural images are modeled as having sparse repre-
sentations simultaneously in multiple orthonormal wavelet
bases. Closed convex confidence tubes are designed around
the wavelet coefficients of sparse initial estimates in multiple
wavelet bases (frames). A POCS algorithm is then used to
arrive at a globally consistent sparse signal estimate.
Denoising and restoration algorithms based on these image
models produced visually sharper estimates with about 1-2
dB PSNR gains over competitive denoising algorithms such
as the spatially adaptive Wiener filter.

Some other works include that by Fletcher et al. [51], where
the authors analyze denoising by sparse approximation with
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frames. The known apriori information about the signal x is that
it has known sparsity &, that is, it can be represented via &

nonzero frame coefficients (with
respect to a given frame ®). Then,
after having been corrupted by noise
yielding X, the signal can be estimated
by finding the best sparse approxima-
tion of X. This work is essentially an

THE SUCCESS OF WAVELETS

IN DENOISING IS FOLLOWED

BY EVEN GREATER SUCCESS
OF DENOISING WITH FRAMES.

used, that is, the dual frame is used to reconstruct. The authors
model the noise as additive n = X — X as in “Source Coding”

with the assumptions that every noise
component is of zero mean and variance
o2 and that they are uncorrelated. The
canonical dual frame operator (see [73])
is used as it minimizes the error of
reconstruction. Losses in the network

attempt to understand how large a

frame should be for denoising with a

frame to be effective. In [30], the authors use the shift-invariant
properties of the DT-CWT to provide better persistence across
scales within the Hidden Markov tree, and hence better denois-
ing performance, while in [84], the steerable pyramid is used
(see “Multidimensional Frames” section). An example of denois-
ing by frames is given in Figure 6 (courtesy of Vivek Goyal).

ROBUST TRANSMISSION

Another application where frames found a natural home was
that of robust transmission in communications. It was pio-
neered by Goyal, Kovatevi¢ and Kelner in [54], and was followed
by works in [13]-[16], [26], [62], [74], [85], [96], [101]. The
problem was that of creating multiple descriptions of the source
so that when transmitted, and in the presence of losses, the
source could be reconstructed based on received material. This
clearly means that some amount of redundancy needs to be
present in the system, since, if not, the loss of even one descrip-
tion would be irreversible.

In the initial work, the R”-valued source vector x is represent-
ed through a frame expansion with frame operator ®*, yielding
X = ®*x € R™, The scalar quantization of the frame expansion
coefficients gives X lying in a discrete subset of R™. One
abstracts the effect of the network to be the erasure of some com-
ponents of X This implies that the components of X are placed in
more than one packet, for otherwise all of X could be lost at once.
If they are placed in m separate packets, then any subset of the
components of X may be received; otherwise only certain subsets
are possible. The authors assume that linear reconstruction is

are modeled as erasures of a subset of

quantized frame coefficients; to the
decodey, it appears as if a quantized frame expansion were com-
puted with the frame missing the elements which produced the
erased ones, and thus, assuming it is a frame, a dual frame can be
found. As a result, the authors concentrated on questions such as
which deletions still leave a frame, which are the frames remain-
ing frames under deletions of any subset of elements (up to
m — n), etc. An example of this discussion is given for the MB
frame in [73, “The Mercedes-Benz Frame”].

CDMA SYSTEMS

The use of frames in CDMA systems dates back to the work of
Massey and Mittelholzer [82] on Welch’s Bound and sequence
sets for CDMA systems.

In a CDMA system, there are m users who share the avail-
able spectrum. The sharing is achieved by scrambling m-
dimensional user vectors into smaller, n-dimensional vectors.
In terms of frame theory, this scrambling corresponds to the
application of a synthesis operator corresponding to m dis-
tinct n-dimensional signature vectors ¢; of norm /7. Noise-
corrupted versions of these synthesized vectors arrive at a
receiver, where the signature vectors are used to help extract
the original user vectors. The variance of the interuser inter-
ference for user 7 is:

m
of =Y Hei-p)? =12,
j=1

leading to the total interuser interference:

(@) (b)

(c) (d)

[FIG6] Denoising with frames. (a) Lena with 34.0 dB white Gaussian noise. (b) Denoised Lena with 25.4 dB noise, using a soft threshold
in a single basis. (c) Denoised Lena with 24.2 dB noise, using cycle spinning (frame) from [36]. (d) Denoised Lena with 23.2 dB noise,
using differential cycle spinning (frame). The technique used here is an extension of the work in [64]. (Figure courtesy of Vivek Goyal).

IEEE SIGNAL PROCESSING MAGAZINE [121] SEPTEMBER 2007



m
01‘201‘ = Z (o, (/’j>|2 —mn® = FP({y; m - mn2.

i, j=1

In the above, we recognize the frame potential given in [73]. The
goal is to minimize the interferences and make them equal.

It is obvious that no interference is possible if and only if all
@; are orthogonal, and in turn, this is possible only if m2 < n, or,
when ¢; either form an orthogonal set
or an ONB. When m>n,
FP—mn®>FP—m?n and the
result is known as Welch’s Bound. The
question of which expression is the
actually Welch’s Bound frequently leads to confusion. In his
original paper [105], Welch found the lower bound on the maxi-
mum value of the cross-correlation of complex sequences, given
in (4). In 1992, Massey and Mittelholzer [82] rephrased it in
terms of the bound on the maximum user interference as given
in (7). The sequences all have the same norm and

m

> Uei-oi)l® = m*n, )

i, j=1

with equality if and only if the 72 x n matrix ®* whose rows are
@} has orthogonal columns of norm /n. If we normalize every
vector to be unit norm, we can immediately translate the above
into frame parlance (see Theorem 2, [73]): (a) Welch’s Bound is
equivalent to the frame potential inequality. (b) Frame potential is
minimized at tight frames. (c) m x n matrix is the analysis opera-
tor ®*. (d) Columns of the analysis operator of a tight frame are
orthogonal (consequence of the Naimark Theorem [73]).

This work was followed by many others, among those, by
Viswanath and Anantharam’s [102] discovery of the

PYRAMID CODING

FRAMES HAVE BEEN USED
IN CDMA SYSTEMS.

Pyramid coding was introduced in 1983 by Burt and Adelson [23].
Although redundant, the pyramid coding scheme was developed
for compression of images and was recognized in the late 1980s as
one of the precursors of wavelet octave-band decompositions. The
scheme works as follows: First, a coarse approximation is derived (an
example of how this could be done is in Figure 7). While in Figure 7
the intensity of the coarse approximation Xj is obtained by linear
filtering and downsampling, this need not be so; in fact, one of the
powerful features of the original scheme is that any operator can
be used, not necessarily linear. Then, from this coarse version, the
original is predicted (in the figure, this is done by upsampling and

Fundamental Inequality (see [73]) during their investigation of
the capacity region in synchronous CDMA systems. The authors
showed that the design of the optimal signature matrix S
depends upon the powers {p; = ||<p,-\|2}§":l of the individual
users. In particular, they divided the users into two classes:
those that are oversized and those that are not. While the over-
sized users are assigned orthogonal channels for their personal
use, the remaining users have their
signature vectors designed so as to be
Welch Bound Equality (WBE)
sequences, namely, sequences which
achieve the lower bound for the frame
potential, and are thus tight frames.

When no user is oversized, that is, when the Fundamental
Inequality is satisfied, their problem reduces to finding a tight
frame for H with norms {/p;}7 ;. The authors gave one solu-
tion to the problem using an explicit construction; characteriza-
tion of all solutions to this problem using a physical
interpretation of frame theory was given in [73].

The equivalence between UNTFs and Welch Bound
sequences was shown in [96]. Waldron formalized that equiva-
lence for general tight frames in [103], and consequently, tight
frames have been referred in some works as Welch Bound
sequences [98].

MULTIANTENNA CODE DESIGN

An important application of ENPTFs is in multiple-antenna code
design [59]. Much theoretical work has been done to show that
communication systems which employ multiple antennas can
have very high channel capacities [52], [97]. These methods rely
on the assumption that the receiver knows the complex-valued
Rayleigh fading coefficients. To remove this assumption, in [61],

[FIG7] The analysis part of the pyramid FB [23] with
orthonormal filters g and h, corresponding to a tight frame.

filtering) followed by calculating the prediction error X;. If the prediction is good (which will be the case for most natural images
which have a lowpass characteristic), the error will have a small variance and can thus be well compressed. The process can be iterat-
ed on the coarse version. In the absence of quantization of X, the original is obtained by simply adding back the prediction at the

synthesis side.

The pyramid coding scheme is fairly intuitive, thus its success. There are several advantages to pyramid coding: The quan-
tization error depends only on the last quantizer in the iterated scheme. As we mentioned above, nonlinear operators can
be used, opening the door to the whole host of possibilities (edge detectors, ...) The redundancy in 2D is only 1.33, far less
then the a trous construction, for example. Thanks to the above, pyramid coding has been recently used together with
directional coding to form the basis for nonseparable MD frames called contourlets (see “Multidimensional Frames”).
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new classes of unitary space-time signals are proposed. If we
have n transmitting antennas and we transmit in blocks of m
time samples (over which the fading coefficients are approxi-
mately constant), then a constellation of A unitary space-time
signals is a (weighted by «/m) collection of n x m complex
matrices {®y} for which ®;®*; = I, a PTF in other words. The
ith row of any @ contains the signal transmitted on antenna ¢
as a function of time. The only struc-
ture required in general is the time-
orthogonality of the signals.

Originally it was believed that
designing such constellations was a
too cumbersome and difficult opti-
mization problem for practice.
However, in [61], it was shown that
constellations arising in a systematic fashion can be found with
relatively little effort. Systematic here means that we need to
design high-rate space-time constellations with low encoding
and decoding complexity. Full transmitter diversity (that is,
where the constellation is a set of unitary matrices whose differ-
ences have nonzero determinant) is a desirable property for
good performance. In a tour-de-force, in [59], the authors used
fixed-point-free groups and their representations to design high-
rate constellations with full diversity. Moreover, they classified
all full-diversity constellations that form a group, for all rates
and numbers of transmitting antennas.

OTHER APPLICATIONS
We now just briefly touch upon a host of other applications from
standard to fairly esoteric ones such as quantum teleportation.

Although unintuitive, frames were used for compression in
the 1980s (unintuitive since frames are redundant and the
whole purpose of compression is to remove redundancy). Burt
and Adelson proposed pyramid coding of images [23] which
used redundant linear transforms and was quite successful for a
while (see “Pyramid Coding”).

If one considers the segmentation problem as classification
into object and background, the work of [76], [99] then uses
frames for segmentation. In a more recent work, de Rivaz and
Kingsbury use the the complex wavelet transform (see “The Dual-
Tree Complex Wavelet Transform”) to formulate the energy terms
for the level-set based active contour segmentation approach [39].
They use a limited redundancy transform with a fast implementa-
tion. Both Laine and Unser used frames to decompose textures in
order to characterize them across scales [76], [99]. In [28] the
authors use frames for image interpolation and resolution
enhancement. In [29], the authors use frames to significantly
improve the classification accuracy of protein subcellular location
images to close to 96%, as well as the high-throughput tagging of
Drosophila embryo developmental stages [68].

Regularized inversion problems such as deblurring in noise
can also greatly benefit from the ability of redundant frames to
provide signal models that allow Bayesian regularization con-
straints to be applied efficiently to complicated signals such as
images, as illustrated in [40].

FRAMES ARE HERE TO STAY;
THEY ARE BECOMING A
STANDARD TOOL IN THE SIGNAL
PROCESSING TOOLBOX.

Another application of frames has been in signal reconstruc-
tion from nonuniform samples (see [2], [8], and [49] and refer-
ences therein). Benedetto and Pfander used redundant wavelet
transforms (frames) to predict epileptic seizures [9], [10].
Kingsbury used his complex wavelet transform for restoration
and enhancement [69], motion estimation [80] as well as build-
ing feature, texture and object detectors for images [3], [48],
[72]. Balan, Casazza and Edidin used
frames for signal reconstruction with-
out noisy phase within speech recogni-
tion problems [5]. Many connections
have been made between frames and
coding theory [60], [87].

Recently, certain quantum meas-
urement results have been recast in
terms of frames [47], [93]. They have applications in quantum
computing and have to do with positive operator valued meas-
ures (POVMs). The SIC-POVMs as well as mutually unbiased
bases were discussed in “Grassmanian Packings and
Equiangular Frames.” Who knows, maybe Star Trek comes to
life, and frames play a role in quantum teleportation [21]!

CONCLUSIONS

As we conclude Part II of our introduction into frames and
applications, we necessarily repeat what we said at the end of
Part I [73]: Frames are here to stay; as wavelet bases before
them, they are becoming a standard tool in the signal pro-
cessing toolbox, spurred by a host of recent applications
requiring some level of redundancy. We hope this article will
be of help when deciding whether frames are the right tool
for your application.
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