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Abstract—We propose a new active mask algorithm for the seg-
mentation of fluorescence microscope images of punctate patterns.
It combines the (a) flexibility offered by active-contour methods,
(b) speed offered by multiresolution methods, (¢) smoothing of-
fered by multiscale methods, and (d) statistical modeling offered
by region-growing methods into a fast and accurate segmentation
tool. The framework moves from the idea of the “contour” to that
of “inside and outside,” or masks, allowing for easy multidimen-
sional segmentation. It adapts to the topology of the image through
the use of multiple masks. The algorithm is almost invariant under
initialization, allowing for random initialization, and uses a few
easily tunable parameters. Experiments show that the active mask
algorithm matches the ground truth well and outperforms the al-
gorithm widely used in fluorescence microscopy, seeded watershed,
both qualitatively, as well as quantitatively.

Index Terms—Active contours, active masks, cellular automata,
fluorescence microscope, multiresolution, multiscale, segmenta-
tion.

1. INTRODUCTION

IOLOGY has undergone a revolution in the past decade in
B the way it can examine and analyze processes in live cells,
due largely to advances in fluorescence microscopy [2], [3]. Bi-
ologists can now collect images across a span of resolutions and
modalities, multiple time points, as well as multiple channels
marking different structures, leading to enormous quantities of
image data. As visual processing of such high-dimensional and
large data sets is time consuming and cumbersome, automated
processing is becoming a necessity. Segmentation is often the
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first step after acquisition, as it enables biologists to access spe-
cific structures of interest (for example, individual cells) within
an image.

A. Goal

The acquisition of fluorescence microscope images is done by
introducing (into the cells) nontoxic fluorescent probes capable
of tagging proteins or molecules of interest. A fluorescent mi-
croscope images these cells by illuminating the specimen with
light of a specific wavelength, exciting the fluorescent probes to
emit light of a longer wavelength; a CCD camera records photon
emissions resulting in a digital image. As only some parts of the
sample are tagged and the tagging is not uniform, the resulting
image looks like a distribution of bright dots on a dark back-
ground, a punctate pattern, as in Fig. 1. We focus on images
in which such patterns represent individual cells in a multicell
specimen. Thus, we aim to:

Develop an algorithm for the segmentation of fluorescence
microscope images of punctate patterns.

B. Segmentation in Fluorescence Microscopy

As different imaging modalities present highly specific chal-
lenges, a solution developed for one problem often cannot be ap-
plied to another without compromising segmentation accuracy
[4]. This specificity has resulted in a vast body of literature; we
briefly mention only those works which directly relate to fluo-
rescence microscopy.

In the fluorescence microscope image segmentation commu-
nity, two algorithms are in wide use: the Voronoi [5], [6] and the
seeded watershed algorithms [7], [8]. The watershed algorithm
was designed as a “universal segmenter,” and, as it often results
in splits or merges, various modifications have been proposed
over the years [9], [10]. Its performance is critically dependent
on the initial seeds, and, unless the background is seeded, it does
not produce tight contours around the cells, thus including a sig-
nificant portion of the background with the cell (similarly for the
Voronoi algorithm).

Region-based segmentation methods could be suited to
segment fluorescence microscope images due to the relative
homogeneity of statistical properties of the foreground and
background in such images. Although there exists a number
of region-growing segmentation methods designed by the
image processing and computer vision communities [11]-[15],
these methods have not been applied directly to fluorescence
microscope cell images.
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Fig. 1. Active mask algorithm. In the basic block, the region-based and voting-
based distributing functions work in concert to first separate foreground from
background and then iteratively separate masks in the foreground. In the multi-
scale block, we look at local areas at multiple scales to allow the algorithm to
discern cell boundaries and escape local optima. In the multiresolution block,
we start at a coarse scale to obtain a fast first segmentation, and then change the
scale to refine the result.

Active contour algorithms are considered state-of-the-art in
medical image segmentation and have recently been used for
the segmentation of biological images [16]-[18]. Inspired by
the segmentation accuracy produced by the active-contour al-
gorithms, we modified an existing image statistics-based active
contour algorithm, STACS [19], to fluorescence microscope im-
ages. To be precise, we kept STACS’s region-based and curva-
ture-based forces, and imposed topology preservation to keep
the number of cells in the image constant. The resulting algo-
rithm, TPSTACS [18], performed extremely well, albeit slowly.
Aiming to keep the flexibility of the active-contour based algo-
rithms, which allow for the choice and/or design of forces suited
to a given application, we followed it by its multiresolution ver-
sion, whereby we achieved an order-of-magnitude increase in
speed by segmenting the coarse version first, followed by re-
finements at finer levels. We finally added a multiscale flavor,
to allow for both the use of convolution-based processing to in-
crease the speed, as well as for “smoothing to connect the dots”
to discern boundaries of cells [20].

C. Idea

In our previous attempts to segment fluorescence microscope
images, several issues and questions repeatedly arose: (a) What
is the “contour” in a digital image? (b) Updating the level set
function in active-contour algorithms is inefficient and slow.
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(c) How do we reconstruct the level set function in the multires-
olution version? (d) Updating in large increments in the multi-
scale version does not preserve topology. To address these is-
sues, we seek:

An algorithm that combines the:

(a) flexibility offered by active-contour methods;

(b) speed offered by multiresolution methods;

(c) smoothing offered by multiscale methods;

(d) statistical modeling offered by region-growing
methods.

We work on fluorescence microscope images of punctate pat-
terns, and assume that: (a) the statistical properties of the fore-
ground (cell) and background are distinct and relatively uni-
form; (b) the foreground is bright, while the background is dark.
The first assumption is crucial, the second not at all; one can
easily modify the algorithm should the situation be reversed in
another modality (such as brightfield microscopy). Thus, in this
paper, we are essentially looking for two different statistical
models in the image (foreground and background). We note,
however, that the techniques presented here may be generalized
to the case of more models (by adding additional region-based
distributing functions to the foreground voting, discussed later
in the paper).

D. Related Work

Literature in recent years have shown that a combination
of techniques (such as edge-based, region-based, shape-based,
etc.) is more useful to solve problems that are intractable using
any one method alone. In particular, the active contour frame-
work is one that is amenable to the combination of multiple
techniques. This, together with the encouraging success from
our previous efforts, has inspired the present work [20].

A seminal work showed that active contour algorithms can
be used to segment images that lack edges [21]. As level-sets
adapt gracefully to the image topology, multiphase level-sets
were designed to distinguish multiple regions of interest sans
tedious topology preservation [22], [23]. Likewise, the combi-
nation of parametric active contours and region-based methods
has been used effectively for multiband segmentation [24]. Fur-
ther, methods which use the level-set embedding to keep track
of the regions using a discrete grid have demonstrated the effi-
ciency of this class of algorithms [25]-[27]. Multiscale and mul-
tiresolution methods have also been used with segmentation al-
gorithms, and active contours in particular, to improve their ac-
curacy and speed [28]-[31]. While the idea of using numbered
masks is prevalent in region-based methods, the PDE literature
has also made use of this [32]. Related PDE literature also in-
cludes algorithms that evolve regions based on mean curvature
[32]-[35].

E. Outline

In Section II, we introduce the basic framework behind the
active mask algorithm. We argue for moving from the idea of
the “contour” to that of “inside and outside,” that is, to that of
masks. We then show how we adapt to the topology of the image
by allowing for multiple masks. While active-contour forces act
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(d) Foreground mask g2
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Fig. 2. Image with nine cells, its corresponding collection of masks #, and representative individual binary masks g1 (background), i2, and f4.

on the contour, we introduce distributing functions, which act
on the masks as a whole. We first describe the region-growing
distributing functions, which depend on the statistical properties
of the image and act to roughly segment the foreground from the
background. The voting-based distributing functions that follow
aim to separate the foreground into multiple masks. We then
explain how these functions work in concert to form the basic
block of the active mask algorithm (see basic block in Fig. 1).

In Section 111, we add the multiscale block, which iterates on
the basic block by increasing/decreasing the “magnification” of
the “lens” we use; essentially, we look at local areas at multiple
scales to allow the algorithm to discern the cell boundaries and
escape local optima (see the multiscale block in Fig. 1). We
follow with the multiresolution block; it starts at a coarse version
of the image and quickly achieves the initial segmentation by
going through the basic and multiscale blocks. It then “lifts” that
segmentation result to a finer resolution and repeats the process
(see the multiresolution block in Fig. 1). We then illustrate the
entire multiresolution-multiscale active mask algorithm.

Finally, in Section IV, we describe our biological testbed on
which we demonstrate the performance of the algorithm. We
compare the performance of the active mask algorithm with
that of the seeded watershed algorithm as well as the ground
truth (images hand-segmented by experts), and show that the
active mask algorithm outperforms seeded watershed both qual-
itatively and quantitatively.

II. ACTIVE MASK SEGMENTATION: BASIC BLOCK

Our segmentation task is to both separate foreground (cells)
from the background, as well as to separate cells from each
other. In Fig. 1, we give a pictorial overview of how we accom-
plish this task; in this section, we concentrate on the basic block
of the active mask algorithm.

A. Framework

We are given a d-dimensional image f of size Ny X - -+ X Ny
with (M — 1) cells present. A multidimensional pixel in that
image is denoted as n = (ny,...,nq). We choose to depart
from the active-contour framework based on contours. Instead,
given an image f, our goal is to find an M -valued image v of
identical size, where ¢ (n) = m implies that the pixel n lies
inside the mask m attempting to approximate cell m. In short,
1 will be the truth table for whether or not a given pixel lies
within the corresponding segmented region, dubbed a mask.

Ideally, we seek an algorithm that iteratively adjusts multiple
masks and ultimately results in each cell being perfectly cov-
ered by a single mask, with one mask for the background. We

now introduce some notation to simplify the expressions in the
algorithm that follows. Let @ = [];_,[0, Nj) be a rectangular
subset of the d-dimensional integer lattice Z¢. We regard our
image f as a member of ¢2(£2), that is, a member of £2(Z¢) that
satisfies f(n) = 0 whenever n ¢ €. Similarly to [32], we re-
gard a collection of M masks as a function ¢ that assigns each
pixel n € Q avalue ¥(n) € {1,..., M}. Here, n is an element
of the mth mask if )(n) = m. That is, a collection of masks is
defined to be an element of

Sy () = {L/J 7% - {OM}|L/}(7L) =0&n¢ Q}

The segmented regions are )~ *{m} = {n € Z‘l|1/1(n) =m},
m = 1,..., M, each having a corresponding mask fi,,, which
is a binary-valued characteristic function

Yi(n) = m;

otherwise.

fim (n) = {é

ey

Fig. 2 illustrates both the collection of all masks 1) as well as
representative individual masks f.,, derived from ¢, for M =
10.

Based on the statistics of the image, it is relatively easy to
roughly separate foreground/background pixels; this will be the
task of the region-based distributing functions R,, described
in Section II-B. Given those foreground pixels, the main chal-
lenge is to delineate the cells, especially those that touch. As
cells almost always have smooth boundaries, we need to par-
tition a homogeneous region (the foreground) into multiple re-
gions with smooth boundaries between them; this will be the
task of the voting-based distributing functions V,,, described in
Section II-C.

B. Region-Based Distributing Functions

We now describe the action of the region-based distributing
functions, which depend on the statistical properties of the
image, and which are tasked with separating background from
foreground. For the purpose of segmenting fluorescence micro-
scope images, we arbitrarily decide to always let the first mask
represent the background, with the remaining (M — 1) masks
representing individual cells. In our active mask algorithm
below, the mask to which a given pixel belongs is iteratively
determined by letting it and its neighboring pixels vote. The
role of the region-based distributing function R; is to skew
the voting of points of lower average intensity towards the first
mask, and those of higher average intensity away from it. In
practice, we construct R; via a soft-thresholding of a smoothed
version of the original image f (see Fig. 3).
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Fig. 3. Illustration of the effect of the region-based distributing function 2y
applied to image f from Fig. 2(a) (detail). (a) Smoothed image (f * h)(n);
(b) soft-thresholded image as in (2).

The region-based distributing function R, is defined to be

Ry(n) := asig (B((f xh)(n) = 7))

2

for some region-based lowpass filter h. In (2): sig : R — R is
any sigmoid-type function which asymptotically achieves the
values £1 at +oo, respectively; (f * h) denotes convolution
adjusted for boundary issues as in (4); the skewing factor o €
(—1,0) should be close to —1; 3 determines the harshness of
the threshold; average border intensity + should be taken as
the average intensity of those pixels which lie on the boundary
between being inside every cell and being outside them all.

In this work, we choose the following for the region-based
lowpass filter A and the sigmoid function

h(n) = Inl*/a®

2 [T _e
sig(x) =erf(z) = — et /24t 3
&(e) =erf(@) = — [ @
where a > 0 is called the scale of the region-based lowpass
filter. Such an R; has the properties that:

* For a typical pixel n outside a cell, (f x h)(n) < v, and
so Ry(n) = —«a = 1. During the voting described in Sec-
tion II-D, R;(n) then skews the voting so that the back-
ground is chosen.

* For a typical pixel n inside a cell, (f * h)(n) > -, and
so Ri(n) =~ a ~ —1. During the voting described in
Section II-D, R, (n) then skews the voting so that any mask
but the background one is chosen.

Since the geometry of the cells (smoothness) alone is sufficient
to distinguish cells from each other, we took R,,,(n) = 0 for all
masks but the first one, as we explain in Section II-D.

We designed R; to depend purely on the density of the un-
derlying fluorescence microscope images; in general, the re-
gion-based distributing functions may take into account other
statistical properties, edges, textures, and morphological fea-
tures present in the image. Because of (6), one should scale the
R,,’s so as not to exceed 1 in magnitude, as then, their value
will completely override the smoothing action of the majority
voting introduced later in (9).

C. Voting-Based Distributing Functions

We now describe the action of the voting-based distributing
functions, which depend on the geometric properties of the
image only, and whose task is to separate individual foreground
masks from each other. We draw on the idea of majority
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voting based on local averages. We do that by computing a
convolution (f * g)(n) = > ,cza f(n — £)g(£) with some
nonnegative voting-based lowpass filter g. Near the boundary
of the image, such averages take into account many values of
the image that were artificially defined to be zero, and as such,
are disproportionately small. We, thus, compute these averages
using the nonstandard, noncommutative convolution

(fx9)(n)

U*@M%z{&ﬁmm7neﬁ

4
0, n ¢ @

where xq is the characteristic function of Q. If f € £2(Q), then
(f x g) € £%(Q) is well-defined for any nonnegative, nonzero
g € (1(Z%). In practice, we compute both the numerator and
denominator of (4) by FFT-implemented circular convolutions
of zero-padded versions of f, g and x¢. In so doing, the seg-
mentation of even large images may be computed with relative
efficiency.
For example, in this work, we take g to be

g(n) =1—erf (|n|?/b” — 1) 5

where b is the scale of the voting-based lowpass filter.

The basic step of the voting-based iteration is as follows:
Given a collection of multiple masks ; at iteration i, we
begin by forming the masks (., as in (1). Next, we allow each
mask to spread its influence by convolving it with g. Because
{’l/;{l{m}}if:l partitions Q, xo = Y0, fim, and so the
values of these convolutions sum to 1

M . "
;(um *g)(n) = m ;(um xg)(n) =1. (6)

The voting-based distributing function R, is defined to be

Vm,i(n) = (Nm *g)(n)

(N

for n € 2 and mask m at iteration ¢. The outcome of the voting
is then determined to be

®

Yir1(n) = argmax [V, ;(n)]
m=1,...M

for any n € Q, and 1;11(n) = 0 otherwise. Here, V,,, ;(n)
represents the degree to which pixel n wants to belong to mask
m, based on the influence of its neighboring pixels at iteration
1. In other words, the mask m producing the largest value of
Vim,i(n) is the new mask to which pixel n will belong. We have
essentially pitted the masks against each other; each mask tries
to conquer any neighboring pixels, and may only be stopped by
another mask attempting to do the same.

Similar ideas have appeared in the PDE literature in the con-
text of level sets. In particular, analog versions of our voting-
based distributing functions have been used to evolve regions
according to mean curvature [32]-[35]. Even in this continuous-
domain setting, this method for evolving a contour is “diffi-
cult. . .to analyze theoretically or investigate numerically” [34].
‘We focus on the discrete version of this idea, which is related to
median filtering and the threshold growth of cellular automata
[36], a setting in which rigorous proofs of convergence remain
elusive.
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Fig. 4. Tllustration of the effect of the voting-based distributing functions;
(a)—(c) are details from Fig. 5(c)—(e), meant to demonstrate the separation of
the foreground region into masks with smooth boundaries.

We illustrate (8) in Fig. 4 as well as with the following simple
example.

Example 1: Consider the +th iteration of a 2-D image f with
the voting-based lowpass filter g being 1 on a 3 X 3 square cen-
tered at the origin, and O otherwise. Further, suppose that we
have M = 3 masks and that the values of ¢; in a 3 x 3 neigh-
borhood of some pixel n = (1,1) are

1;(0,0) 1;(0,1) 1;(0,2) 2 2 2
'l/}i(LO) 'l/}i(Ll) 'l/}i(172) — 2 1 3
$i(2,0) | 9i(2.1) | 9:(2.2) 2 |1 |1

Computing V,,, ;(1,1) for m = 1, 2, 3, yields 3/9, 5/9 and 1/9,
respectively; thus, in iteration ¢ + 1, the pixel (1, 1) will change
its membership from mask 1 to mask 2. O

The evolution of the algorithm based on the voting-based dis-
tributing functions is given in a pseudocode form in Algorithm
1. The skewing factor in the algorithm is needed for later; to
examine just the effect of the voting-based functions, we set
R,, = 0 for all m. Experiments reveal that Algorithm 1 will
eventually result in masks at equilibrium (that is, further itera-
tion of the voting procedure causes no further change and the al-
gorithm has converged). The minimum thickness of the masks at
equilibrium seems to be mostly dependent on the size of the sup-
port of the voting-based lowpass filter g. Similarly, the smooth-
ness of the boundaries between distinct masks at equilibrium
seems to depend greatly on the smoothness of the voting-based
lowpass filter g. If we are looking for smooth boundaries, we
should avoid the blocky g described in the example above, and
instead choose a g weighted in a more isotropic manner as in
(5). In this sense, Algorithm 1 is the active mask version of the
smoothing forces traditionally associated with active contour al-
gorithms.

Algorithm 1 [Active mask voting]

Input: Number of masks M, iteration number 4, collection of
masks 1);, voting-based lowpass filter g, skewing factors R,,.
Output: Collection of masks v and final iteration number 3.
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D. Active Mask Basic Block Evolution

Iteratively applying Algorithm 1 will not successfully seg-
ment the image in question, as it does not take the image itself
into account. As with active contours, we need to combine the
purely geometric smoothness forces with image-based forces to
push the segmentation in the right direction. In the active mask
framework, the region-based distributing functions R,,, given
by (2) for m = 1 and taken to be R,,, = 0, form = 2,..., M,
will skew the voting of the purely geometric voting-based dis-
tributing functions V,,, (7).

The active mask basic block is defined to be

it1(n) == argmax [V,, ;(n) + R, (n)]
m=1,..,.M

&)

forn € Q, and 1;11(n) = 0 otherwise. Thus, as we explained
in Section II-B, with & = —1, for a typical pixel n inside a cell,
R; skews the voting so that any mask but the background one is
chosen. Similarly, for a typical pixel n outside a cell, R; skews
the voting so that the background is chosen.

To start the iterative process, we initialize the masks )
randomly. That is, for any given n € £, we let ¥y(n)
be a number randomly chosen from {1,...,M?}, denoted
1o(n) = rand(M). The strong preference that R, exhibits for
the background will quickly distinguish it from the foreground.
With the foreground versus background question settled, the
remaining masks compete for supremacy, in a manner similar to
the unbiased voting (8). Inevitably, larger masks will consume
smaller ones. If at some point ;(n) # mg for all n € Q,
then a given mask is no longer present at a given iteration and
is eliminated forever, reducing the number of masks M, and
consequently, the number of convolutions one must compute in
(7). Ultimately, the iterations will converge when the remaining
masks that correspond to the cells achieve an equilibrium. This
will typically happen when the inherent geometry of the cells
causes a stalemate. For example, when two round cells touch,
a separate mask grows to dominate each cell. The boundary
between the two masks will coincide with the boundary be-
tween the two cells, as the narrowing of the cells near their
boundary creates a narrow pass which neither side is able to
conquer. Thus, the repeated application of Algorithm 1 will
often result in a first mask which contains the background,
while the remaining nonzero masks each describe a nonzero
cell. The steps of the basic block of the active mask algorithm
are given in a pseudocode form in Algorithm 2.

Algorithm 2 [Active mask basic block]

Input: Image f, initial number of masks M, initial collection
of masks 1), scale of the region-based lowpass filter a, scale of
the voting-based lowpass filter b, skewing factor «, harshness
of the threshold 3, average border intensity ~y.

Output: Collection of masks v and final iteration number .

AMVoting(M,i,1;, g, Rm)
while 1/)i+1 ;é 1/)5 do
Compute the voting-based distributing functions V,,, (7)
Active mask voting (9)
1t =1+1
end while
return (1);, 1)

ActiveMasks(f, M, g, a,b, a, 3,7)
Compute the region-based lowpass filter h (3)
Compute the region-based distributing functions R,,, (2)
Compute the voting-based lowpass filter g (5)
Active mask voting as in Algorithm 1
(¢,1) = AMVoting (M, 0,9, g, R.,)
return (1), 17)
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(a) Original image (b) : =0, M = 256
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©i=1 M=177

(d)i=11, M =18 (&) i =51, M =12

Fig. 5. Illustration of the evolution of the basic block of the active mask algorithm with random initialization. (a) A COPII image (enhanced for visibility).
(b) Random initialization with A/ = 256 initial masks. (c) In iteration ¢« = 1, the number of masks reduces to M = 177. (d)—(e) Further iterations resulting in

convergence at iteration ¢ = 51, with a final number of masks M = 12.

Fig. 6. Three-dimensional active mask segmentation of a z-stack. The blobs
are segmented cells.

The evolution of the basic block of the active mask algo-
rithm and the successive reduction in the number of masks as
the iterations converge are illustrated in Fig. 5. Fig. 5(a) shows
a fluorescence microscope image of HeLa cells with six whole
cells visible and three partially visible. Fig. 5(b) shows the initial
random state of 1) with M = 256 masks (we call this iteration
i = 0). In the first iteration, R, coarsely separates the back-
ground from the foreground, discarding empty masks and, thus,
drastically reducing the number of masks to M = 177 as shown
in Fig. 5(c). Subsequently, the masks in the foreground region
compete with each other, with the geometry of the cells pre-
vailing. Thus, in Fig. 5(d), at ¢+ = 11, we see the masks showing
an increased correspondence to the cells while the number of
masks is steadily decreasing, with convergence achieved in it-
eration ¢ = 51.

The active mask algorithm works easily with higher-dimen-
sional images; in fact, the cells we seek to segment are 3-D;
we give an example of 3-D segmentation in Fig. 6. The blobs
in Fig. 6 are segmented cells; a 2-D slice along the z-axis of
this volume represents the segmentation outcome for the corre-
sponding 2-D image.

No algorithm is perfect, and occasionally splits and merges
of cells will occur, particularly during 2-D segmentation [for
instance, a split is visible in Fig. 5(e) in what should be mask
wq; see Fig. 2(e)]. Generally, these anomalies depend on the
design of the voting-based and region-based distributing func-
tions, and how sensitive the filters are to the features that dis-
tinguish the objects of interest. In particular, for the segmenta-
tion of fluorescence microscope cell images with the functions
V and R described above, if the region-based function has not
been smoothed adequately, the masks during the local majority
voting may split a single cell into two or more regions based on

the kinks on the surface of a single cell. Alternatively, if the scale
of the voting-based lowpass filter is too small, the function may
be too sensitive to small indentations in the foreground, causing
spurious splits. Likewise, if the scale parameters of the filters
are too large, cusps between touching cells may be smoothed
out, resulting in spurious merges. We address these problems in
the following section.

III. ACTIVE MASK SEGMENTATION:
MULTIRESOLUTION AND MULTISCALE BLOCKS

In the previous section, we described the basic block of the
active mask segmentation algorithm. We also noted instances
when splits occur [see Fig. 5(e)]. We now address the issue of
splits by allowing the scale parameters to change; we address
the issue of speed by allowing resolution to change.

A. Multiscale Block

To overcome the problem of spurious splits noted in Sec-
tion II-D, we could slowly change the scale a > 0 of the re-
gion-based lowpass filter h from which the region-based dis-
tributing function (2) is computed. For example, with h as in (3),
choosing a to be large results in a quickly converging algorithm
but one whose ultimate masks overestimate the size of the cells
in addition to oversmoothing their boundaries, while choosing
a to be small yields better masks but slower convergence.

For the best of both worlds, « is initially taken to be large to
rapidly obtain a coarse segmentation. Then, after (9) has con-
verged for this specific a, these resulting masks form the initial
guess for the rerunning of (9) with a slightly smaller a. When
the change in « is slight, the second iteration will converge in
a few steps. This process is then repeated, gradually pulling a
down to a point where experimentation reveals the ultimate seg-
mentation as being a good match to the ground truth.

B. Multiresolution Block

In addition to simplifying one’s perspective over discrete do-
mains, a mask-based formulation of segmentation permits an
easy implementation of multiresolution schemes to speed the al-
gorithm’s performance, by obtaining a fast and coarse segmen-
tation of the image at a low resolution and then successively
refining the result at higher resolutions [37]. While one could
use any lowpass filter to obtain a coarse version of the original
image, our choice, Haar, was guided by two principles: sim-
plicity and the ability to model the signal readout behavior of
the CCD camera of a fluorescence microscope [38].
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@ k = 3, a = 3.5,
i =57, M =12
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1 =65 M =12
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=134, M =11
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Fig. 7. Tllustration of the evolution of the multiresolution multiscale active mask algorithm starting from Fig. 5(e) which used resolution level £ = 3 and scale of
the region-based lowpass filter ¢ = 4 to Fig. 7 at resolution level £ = 2 and scale @ = 4, with the final number of masks A/ = 10. This final result is also shown
in pseudo color in Fig. 11(c). (Images at different resolutions have been scaled to the same size for display purposes).

1) From Fine to Coarse: Let H be the Haar smoothed and
downsampled (coarse) version of the original image f

(Hf)(n):=2"% > f(2n+9).

Lef0,1]¢

(10)

For example, for d = 1, the output H f is half the size of f
and is given by H f(n) = [f(2n) + f(2n + 1)]/2.

Thus, we consider a multiresolution segmentation algorithm
in which we first segment a coarse version of f, HX f (H ap-
plied to f K times), which is smaller than f by a factor of 2% in
each dimension. Once Algorithm 2 has iteratively produced seg-
mentation masks 1/)(K ) for HE f, we use this information as a
starting point for the segmentation of the slightly more detailed
image HEX-1f.

2) From Coarse to Fine: The multiresolution block at itera-
tion k — 1 will begin with the lifted version of the coarser mask
4(¥)_ The lifted version ¢)(*~1) is obtained by copying each bi-
nary value of )(*) into 2% values of 1)*~1

PED(n) = p® (|27 n]) (11

where the flooring operation is performed coordinate-wise
(equivalent to upsampling and repetition interpolation). For
example, for d = 1 and if »*) = 1101, »*~1 = 11110011.
Here, a contour-based implementation of this same idea would
be unnecessarily complicated: one would need to first deter-
mine the inside of a given contour to find a mask, then apply
(11) to this mask to obtain a new one of twice its size, and
finally take the boundary of this resulting mask to find the
new contour. In short, multiresolution segmentation lends
itself more naturally to mask-based, rather than contour-based,
segmentation algorithms.

Algorithm 3 [Multiresolution multiscale active masks]
Input: Tmage f, initial number of masks M, initial resolution
level K, scale of the region-based lowpass filter a, scale of the
voting-based lowpass filter b, skewing factor «, harshness of
the threshold /3, average border intensity ~.

Output: Collection of masks v and final iteration number .

MRMSActiveMasks(f, M, K, a,b,a, 3,7)

Initialization )
i=0k=K,j=1¢(n)=rand(M), T = f
Multiresolution block
while £ > 0 do

Compute coarse version of the image

f(n) = H*I(n)

Multiscale block
while j < J; do
Basic b ock
@p , D) —ActlveMaSks(f M ¢0 a;w ,b,a, 0, ’y)

Chan, §_e of scale parameter at resolution k

05"V (n) = 93" ()
J=J+Li=i+p
end while

Lj tmask 7,& to the next higher resolution k — 1
k 1,1) (k,j 1)(|_2 1 J)
k =k- 1
end while
return (1), 1)

C. Multiresolution Multiscale Active Mask Evolution

The complete multiresolution multiscale algorithm, begin-
ning with some randomly chosen zﬁ(()K’l) € Sy (), is given
in a pseudocode form in Algorithm 3 and shown in Fig. 1, with
index k referring to the multiresolution block, and index j to the
multiscale block. We illustrate the evolutionary behavior of the
algorithm in Fig. 7. For any fixed k& and j, we iteratively apply
(9) until the masks are in equilibrium. We resume the process
shown in Fig. 5(e), at k = 3 and a; = 4, and use those masks
as the starting point for the next step in the scale change. When
the change of scales for a given resolution is completed [see
Fig. 7(a)—(b)], we lift the resulting masks to a higher resolu-
tion, k& = 2, and begin the process again [see Fig. 7(c)—(e)].
The final masks are given by the function 1/)iK°’ o’ where
Ky = 2inthe example. Note how the splits from Fig. 5(e) are no
longer present in Fig. 7(e). We could change the scale parameter
and pull the resolution back to the original resolution; however,
as satisfactory segmentation has already been achieved at this
stage, we choose k = 2 to stop. When £k = 0, the masks given
by the function 1/) pr0V1de a full-resolution, multiscale ac-
tive mask segmentation of the original image. The scale b of
the voting-based lowpass filter g used in the voting-based dis-
tributing function, chosen to be a fixed constant here, can also be
changed. The smaller the scale b, the longer it takes for ¢)(*:7%)
to converge, but the boundaries between the foreground masks
are more accurate. The parameters «, 3 and -y are fixed constants
which are experimentally determined for optimal performance.
The choice of all the parameters as well as the performance of
the algorithm, both in terms of speed and accuracy, are given in
Section IV.
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IV. EXPERIMENTAL RESULTS

There are many biological problems for which punctate
markers of the cell periphery are used. We focus on one
such problem where manual segmentation presents a critical
obstacle.

A. Biological Testbed: Influence of Golgi Protein Expression
on the Size of the Golgi Body and Cell

The Golgi body is a membrane-bound organelle in eukary-
otic cells whose cytoplasmic surface is a site for a number of
important signaling pathways [39]. Further, the Golgi body me-
diates the processing and sorting of proteins and lipids in the
final stages of their biosynthesis. Defects in the biosynthetic
pathway are responsible for many human diseases [40]. An un-
derstanding of the molecular basis of these defects is paving the
way to future effective therapeutics [41].

The Linstedt lab seeks to understand how the Golgi body’s
underlying structures are established and maintained, how they
are regulated in stress as well as the purpose of each struc-
tural feature, that is, they seek a structure/function analysis from
the underlying components of the organelle. The current hy-
pothesis being tested is that the affinity of interaction between
vesicle coat complexes and SNARE molecules (and other Golgi
proteins) establishes and controls the size of Golgi compart-
ments [42]. These tests depend on a quantitative ratiometric
assay comparing Golgi size to cell size. The assay is fluores-
cence microscopy-based and accurate segmentation is a crit-
ical step in determining cell volume. To date, the experimental
tests of this hypothesis have resulted in the discovery that di-
rect interactions between the cytoplasmic domains of Golgi pro-
teins exiting the endoplasmic reticulum (another membrane-
bound organelle in eukaryotic cells) and the COPII (a vesicle
that transports proteins from the endoplasmic reticulum to the
Golgi body) component Sarlp regulate COPII assembly, pro-
viding a variable exit rate mechanism that influences Golgi size
[43].

1) Need for Automated Segmentation: Hand segmentation of
cell boundaries was performed based on the diffuse hazy back-
ground staining of the COPII subunit Sec13 in each image. Hand
segmentation limits the analysis to cells with a flat morphology
(fewer slices in a z-stack) and to a small number of cells. To
extend the findings, the Linstedt lab needs to analyze a develop-
mental time course over a large number of cells and, as the cell
types involved are not flat, it will be necessary to have a larger
number of slices per cell.

The segmentation challenge posed by these images is that the
COPII subunit Sec13 exhibits not only a bright punctate pat-
tern in the cytoplasm, but also a hazy cytoplasmic pattern [see
Fig. 9(a) for an example]. Consequently, the signal is not uni-
form and not always strong, which makes it hard to visually de-
termine the boundary of a cell. Further, as these experiments do
not require the nuclear protein to be imaged, there is no parallel
channel from which to obtain accurate seeds as initialization
for the seeded watershed or Voronoi algorithms. As the com-
putation of cell area/volume is critical in this application, algo-
rithms that do not yield tight contours are not suitable. Using
rule-based methods to obtain tight contours or approaches, such
as active contours that require involved tuning for each image,
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(b) Hand-drawn fore-
ground seeds

(c) Automatic back-
ground seeds added

(a) Automatic seeds

Fig. 8. Seeded watershed algorithm results: (a) With automatic seeds, the algo-
rithm results in 5179 regions that need to be merged based on rules [7]. (b) With
hand-drawn foreground seeds (light gray) but no background seeds, the algo-
rithm results in regions that include a significant portion of the background with
each cell. (c) Adding background seeds, the algorithm results in reasonable seg-
mentation (background seeds are automatically chosen as every minimum in the
smoothed cell image).

make the segmentation semi-automated at best, and would re-
quire investing a considerable effort to obtain good segmenta-
tion results. Thus, we look to the active mask algorithm to seg-
ment these images.

B. Data Sets

The data was generated in two experiments.

1) DSI: The first data set consists of 15 z-stacks con-
taining 3-8 cells each. Each stack contains 40 slices of size
1024 x 1344. The HeLa cells were double labeled with the
COPII subunit Secl3 (a cytosolic protein peripherally associ-
ated with the membrane) and the Golgi marker protein, giantin,
in two parallel channels [see Fig. 11(a)—(b)]. Sec13 staining has
a diffuse cytoplasmic background used to mark the boundary
of the cell. The pixel size was 0.05 pm in z/y directions and
0.3 pum in z direction. The findings based on hand segmen-
tation of these images were reported in [43]. We developed
the cell-volume computation and Golgi-body segmentation
algorithm based on two of the stacks and tested it on others.

2) DS2: The second data set consists of 5 z-stacks con-
taining 2—4 cells each. Each stack contains 20 slices of size
1024 x 1344. The HeLa cells were labeled with Sec13. While
the cells imaged in both DS1 and DS2 belong to the same cell
line (HeLa), the ones in DS2 are thinner, and thus we have
fewer slices per stack. The pixel size was the same as for DS1.

3) Hand-Segmented DS2: To assess the performance of the
algorithm, we used the hand-segmented version of the DS2 set
as ground truth. The images were hand segmented by two ex-
perts in three separate sessions. This was done to minimize the
effect of an individual’s bias on a given day as well as ensuring
sufficient respite to segment as accurately and precisely as pos-
sible [see Fig. 9(a)-(b)].

C. Parameter Selection

We now discuss the selection of parameters as input to Algo-
rithm 3; for convenience, we summarize them in Table I.

1) Initial Number of Masks M : We initialized the algorithm
with M = 256 random masks. The larger the M, the lower the
possibility of unwanted merges.

2) Initial Resolution Level K : In this work, we decomposed
the original images to K = 3 levels (one-eighth the original
resolution), lifting the result as per (11), to & = 2 (one-fourth
the original resolution). We did not refine any further, as we
obtained a satisfactory result at k = 2.



SRINIVASA et al.: ACTIVE MASK SEGMENTATION OF FLUORESCENCE MICROSCOPE IMAGES

TABLE 1
PARAMETERS USED IN EXPERIMENTS

Param.  Description Ref. Value Res. k

M Initial number of masks 256

K/Ko Initial/final resolution levels 3/2 3/2

a Scale of the 3) (4,35,3) 3
region-based lowpass filter 5 2

b Scale of the 3 8 3
voting-based lowpass filter 16 2

a Skewing factor 2) —-0.9

B Harshness of the threshold 2),(12) 15-20

0% Average border intensity 2),(12) 3.0—4.2

3) Scale Factor a of the Region-Based Lowpass Filter: For
the multiscale evolution phase, we did not overly tune the pa-
rameters. We determined the scale parameter ar,; for the re-
gion-based lowpass filter /& in Algorithm 3 based on the resolu-
tion k as well as the approximate size of a cell at the coarsest
resolution, & = K. We began with a3 = 4 at one-eighth the
original resolution and pulled back to a3 3 = 3 in decrements of
0.5 (the numbers in parentheses in Table I). Atk = K —1 = 2,
that is, one-fourth the original resolution, we used just one value,
a,1 = 5. In practice, the more gradual the scale change, the
faster the convergence for different scales j at a fixed k. Fur-
ther, while it is not necessary to decrement the values during the
scale change process (they can also be incremented), larger a
allows us to obtain a fast coarse segmentation, whereas smaller
a takes longer to compute but provides a finer segmentation. We
used the same values of a on all the images, without tuning them
per image or stack.

4) Scale Factor b of the Voting-Based Lowpass Filter: We
changed the scale for the voting-based lowpass filter g in (5)
based on k; for k = 3,b = 8, for k = 2, b = 16. In selecting the
values, we were guided by the twin goals of expediting conver-
gence while not compromising on the quality of the boundary.

5) Skewing Factor o:: We chose o = —0.9 as the weight of
Ry given by (2).

6) Harshness of the Threshold [3 and Average Border Inten-
sity y: To facilitate and broaden the use by biologists, we have
made an effort to use those parameters deemed intuitive; thus,
to determine 3 and 7y, we use the average foreground and back-
ground value, denoted fifore and fipck, respectively. We then set

_ 4 — Hfore + Hback

=, (12)
Mfore — Mback 2

While the tuning was minimized to a large extent through scale
change, it was not entirely eliminated. We determined 3 and ~y
based on one image from each stack and used the same num-
bers for all the other images from that stack. These coarse ad-
justments are possible because the performance of the algorithm
is robust within a small range of the parameter values. While it
may be possible to obtain better results than we report with a
more involved tuning procedure, it is not practical to expect an
involved tuning of the parameters in high-throughput applica-
tions, and, thus, we did not resort to such a tuning. The range of
parameter values is given in Table I, while values used for each
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stack as well as the scripts used to obtain the results in this sec-
tion are provided with the reproducible research compendium
at [44].

D. Reference Algorithm: Seeded Watershed

Our choice of the reference algorithm was entirely guided by
our general goal, that of segmenting fluorescence microscope
images of punctate patterns. As the seeded watershed algorithm
is widely used for such a task, it was one of our candidates.
Following reviewers’ comments, we also considered algorithms
from [13]-[15] as well as general region-growing from a single
seed point (available in Matlab). Of these, sufficient informa-
tion/source code with instructions was available only for the
seeded watershed algorithm and the general region-growing al-
gorithm available in Matlab. Since the gray levels inside and
outside the cells are not uniform for the class of images we
consider, the general region-growing algorithm did not perform
well. We, thus, chose to compare the performance of our active
mask algorithm to that of the seeded watershed algorithm, as
well as the hand-segmented masks.

When we use the watershed algorithm described in [7], the
algorithm bins regions in the image based on their grayscale
values. We obtain a large number of regions (spurious splits)
despite smoothing the fluorescence microscope images to re-
duce the effect of shot noise [see Fig. 8(a)]. This result requires
a postprocessing step defining rules to merge the highly frag-
mented regions into a reasonable number of regions. We also
used hand-drawn seeds to initialize the algorithm and used the
version described in [8] to obtain as many regions as the ini-
tial seeds. Even this proved insufficient as the entire image was
assigned to one region or another [see Fig. 8(b)]. The resulting
cell masks were not tight and included a significant portion of
the background. We then further tuned the seeding procedure
to seed regions in the background to prevent the foreground re-
gions from expanding to the image borders. This result produced
tighter masks [see Fig. 9(c)] which we used for comparison with
results produced by the active mask algorithm.

E. Performance Evaluation

We now discuss the performance of the algorithm both qual-
itatively (visual inspection) as well as quantitatively. We also
report the runtime.

1) Qualitative Evaluation: We compared the results of the
active mask algorithm with the hand-segmented masks, shown
in Fig. 9. As we noted before, the seeded watershed with auto-
matic seeds performs poorly without extensive postprocessing.
Both the seeded watershed algorithm with hand-drawn fore-
ground and automatic background seeds as well as the active
mask algorithm with either random or hand-drawn seeds, seem
to include a slightly larger area than that marked by hand seg-
mentation. The results of active mask algorithm seem to match
the area marked by the experts better than the masks produced
by seeded watershed algorithm [see Fig. 9(c)—(e)].

Further, it appears that the active mask algorithm initialized
with random seeds performs almost as well as when initial-
ized with hand-drawn seeds. Although this is the case for a ma-
jority of the images, due to a random initial configuration, there
are some anomalous results as well, such as the one shown in
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(a) Original image

(b) Hand-segmented im-
age, hand-drawn seeds

(c) Seeded watershed re-
sults, hand-drawn seeds

(d) Active mask results,
random seeds

(e) Active mask results,
hand-drawn seeds

Fig. 9. (a) Image of HeLa cells marked with COPII at one-fourth the original resolution. (b) Hand-segmented masks (green, pink, yellow and red), together with
hand-drawn seeds (light gray). (c) Seeded watershed algorithm initialized with hand-drawn seeds and overlaid on the hand-segmented masks for comparison.
(The excess areas marked by seeded watershed algorithm are indicated in light pink, blue, green and yellow.) Area similarity is AS = 82.48%. (d) Active mask
algorithm initialized with random seeds overlaid on the hand-segmented masks. Area similarity is AS = 91.80%. (e) Active mask algorithm initialized with
hand-drawn seeds overlaid on hand-segmented masks. Area similarity is AS = 91.80%.

(@ (b)

Fig. 10. Effect of initialization on algorithm 3. (a) A merge occurs, two cells
are covered by the same mask. (b) Given reasonable seeds, the anomaly from
(a) disappears.

Fig. 10(a). If indeed the problem was only that of an unfavorable
initial configuration, often just rerunning the algorithm without
changing parameters produces a better result. If the problem
resulted from insufficient information or a choice of parame-
ters that induced the masks to split a cell at a particular scale,
changing the scale parameters of the filter(s) in the distributing
function(s) eliminates spurious splits during the course of the
evolution itself [see Fig. 5(b)—(e)]. Introducing details available
in a higher-resolution version of the image can also help recover
from such spurious splits (see Fig. 7). These techniques are al-
ready built into the mask evolution phase. However, they do not
help in recovering from a spurious merge during the course of
the evolution. As it is not always possible to rerun the algorithm,
if seeds are available, for example, in the form of reliable infor-
mation from a parallel channel, they do help in limiting anoma-
lies resulting from the initial randomness [see Fig. 10(b)].

2) Quantitative Evaluation: To quantify the performance of
the algorithm, we used the standard performance measure, area
similarity (AS), for each cell in each of 80 different 2-D slices.
AS normalizes twice the area that is common to the masks by
the sum of the areas of hand segmentation and the algorithm
and, thus, penalizes the algorithm that produces larger regions.
Performance of AS > 70% generally implies a good agreement
of the algorithm’s result with the ground truth [45]. The area
similarity between the mask j in the active mask algorithm (or
seeded watershed algorithm) and the mask ¢ in the hand-seg-
mented data set (where n(AM; ) is the number of nonzero values
in the mask AM;) and is given by

. 2n(HS; A AM)
AS(i,j) = n(HS;) + n(AM;)’

TABLE II
QUANTITATIVE ASSESSMENT. AREA SIMILARITY MEASURE COMPUTED FOR
THE ACTIVE MASK ALGORITHM AND THE REFERENCE FOR EVALUATION,
SEEDED WATERSHED ALGORITHM

Area similarity [%]

Automatic seeds Hand-drawn seeds

0.14
84.73

72.94
86.06

Seeded watershed
Active masks

For partial cells (cells on the periphery), hand-segmented
masks were not provided. While the active mask algorithm
segmented every cell in the image, whether it was at the pe-
riphery or at the center, the seeded watershed algorithm tended
to include peripheral cells in the same region as a neighboring
central cell. For the seeded watershed algorithm, this required
seeding the incomplete cells to avoid leakage of watershed
regions of valid whole cells in the image. To compute the
numbers, we considered only those cells that were chosen in
the hand-segmented data set. As the density of cells varies per
image, and to account for the influence of neighboring cells on
the performance of the algorithm for a cell, we averaged the
performance measures per image before computing the overall
average for the data set.

A summary of the results is presented in Table II. For the
seeded watershed algorithm, AS = 72.94% with ¢ = 13.90
for hand-drawn seeding, while for the active mask algorithm,
AS = 84.73% with o = 7.90 and AS = 86.06% witho = 7.15
for random seeding and hand-drawn seeding, respectively.! AS
for the seeded watershed with automatic seeding is very low.
Whereas in practice the seeded watershed is not initialized with
automatic seeding as such, we have provided this measure for
completeness. As mentioned in Section IV-D, there are various
flavors of the algorithm; perhaps a more sophisticated version,
such as in combination with active contours, would perform
better [46]. We do not comment further on the seeded watershed
with automatic seeding. In what follows, we use only the seeded
watershed algorithm with perfect seeding for comparison.2 The
active mask algorithm outperforms the seeded watershed algo-
rithm in both cases. Moreover, the active mask algorithm has a

IThis is with all the preprocessing described in Section IV-D to make the
comparison as fair as possible to the seeded watershed algorithm.

2Perfect seeding means hand-drawn seeds for the foreground and automatic
for the background, as explained earlier in Section IV-D.
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lesser chance of detecting false positives in the image. As we
mentioned earlier, the performance of active mask algorithm
with random seeding is not significantly different from that with
hand-drawn seeds. These numbers underscore that the algorithm
almost always performs just as well with random seeds as it does
with hand-drawn seeds.

3) Runtime: We implemented the active mask algorithm in
MATLAB (version 2007a) for flexible design and prototyping
[47]. Due to the random initial configuration, runtime ranged be-
tween 30 s to 2 min on an Intel Pentium M 1.6-GHz processor
with 1.5-GB memory for the results above. We have also cre-
ated an ImageJ plugin [48], to facilitate wide distribution among
biologists. Apart from algorithmic optimization (such as not
waiting for absolute convergence at each scale before changing
the scale parameter, and using the segmentation of one image to
initialize the segmentation of the succeeding image in a stack)
to expedite convergence, optimizing the code in compiled lan-
guages such as C may yield anywhere between a 10x to a 1000x
speedup, if the problem is not memory bound (that is, a lot of
data and very few computations) [49].

F. Application-Specific Processing

In Section IV-A, we introduced our biological testbed, the
application that motivated the design of an automated seg-
mentation algorithm for fluorescence microscope images of
punctate patterns. As examples of application-specific postpro-
cessing modules, we show how cell-volume computation and
Golgi-body segmentation were performed, given the segmenta-
tion outcome of the active mask algorithm.

1) Cell-Volume Computation: Given the active mask seg-
mentation outcome, each p,,, in (1) represents a distinct region.
If we set d = 2 and segment the images of a stack in 2-D to
obtain an approximation of the cell volume, we can simply sum
the areas of the 2-D masks, as it is done when hand segmen-
tation of the 2-D images is used to process the images. To en-
sure the cells along a stack are assigned the same mask number,
we may initialize one of the slices in a stack where the cells
are fairly discernible with an initial M > L masks, where L
is the expected number of cells. The segmentation outcome of
this slice can be used to initialize the neighboring masks and so
on. Postprocessing to match a region in one mask with the most
overlapping region in a successive mask may also be used in
computing the volume from a 2-D segmentation procedure [1].
This pseudo-3-D segmentation (as the 2-D segmentation bene-
fits from the information in 3-D) also speeds up segmentation of
a stack over segmenting each image in the stack independently.

We can also segment in 3-D directly. Such a segmentation
affords an elegant way of visualizing the cells in the z-stack
and the segmentation outcome is not hampered when a cell is
occluded by another cell in a 2-D section (see Fig. 6). Further,
the volume of each cell can be computed in a straightforward
manner from such a result.

2) Golgi-Body Segmentation: The Golgi-body is a double-
membraned organelle consisting of cisternae stacked to increase
its surface area to facilitate secretion. Thus, though there is only
one Golgi-body in each cell, in a 2-D section, a Golgi-body
may appear as multiple fragments [see Fig. 11(b)]. If the cells
are close, then by using the Golgi channel alone it is not easy
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(c) Segmented cell image

(d) Segmented Golgi im-
age

Fig. 11. (a) Original HeLa cell image [COPII, also shown in Fig. 5(a)].
(b) Original HeLa Golgi image (giantin). (c) Active mask segmentation of
the parallel cell image. (d) Active mask segmentation of the corresponding
Golgi image. Using cell segmentation to initialize Golgi segmentation helps
associate the different fragments of the Golgi-body in a 2-D slice of a cell to
their corresponding cells.

to associate the different pieces of the organelle in 2-D with
others that belong to the same cell. Given the active mask seg-
mentation of cells for the COPII channel of an image, we may
use the resulting masks to initialize the segmentation of the
corresponding Golgi channel. The advantage is that multiple
pieces of the Golgi body belonging to a cell are now marked
by the same mask [see Fig. 11(d)]. Moreover, such a Golgi
mask matches the cell to which the different Golgi fragments
belong [see Fig. 11(c)]. This facilitates the computation of the
Golgi-volume and, subsequently, the ratio of the Golgi volume
to the cell volume as required by the application.

V. CONCLUSION

We have proposed a new algorithm termed active mask seg-
mentation, designed for segmentation of fluorescence micro-
scope images of punctate patterns, a large class of data. The
framework brings together flexibility offered by active-contour
methods, speed offered by multiresolution methods, smoothing
offered by multiscale methods, and statistical modeling offered
by region-growing methods, to construct an accurate and fast
segmentation tool. It departs from the idea of the contour and
instead uses that of a mask, as well as multiple masks. The
algorithm easily performs multidimensional segmentation, can
be initialized with random seeds, and uses a few easily tunable
parameters.

We compared the active mask algorithm to the seeded wa-
tershed one, and showed active masks to be highly competitive,
both qualitatively and quantitatively. We have also compared the
algorithm to the ground truth, hand-segmented masks provided
by experts, and have found good agreement. We have shown
how the segmentation results may be used with application-spe-
cific postprocessing modules using the example of cell-volume
computation and Golgi-body segmentation for the study of the
influence of Golgi protein expression on the cell size. Thus, we
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have demonstrated that, for segmentation of fluorescence micro-
scope images of punctate patterns, active mask segmentation is
a viable alternative to hand segmentation or any standard algo-
rithm (such as seeded watershed or level-set based methods).
We are currently expanding the repertoire of distributing func-
tions that can be used to segment a wider range of images such
as those of tissues as well as images that possess features such as
edges. Moreover, though even simple, continuous-domain ver-
sions of our algorithm are difficult to analyze, we are currently
seeking proofs of convergence of (9).

VI. REPRODUCIBLE RESEARCH

To facilitate sharing the method with end users as well as
developers, we provide the code and information necessary to
reproduce the results in this paper at [44]. The code is given
both as developed in Matlab, as well as the Image]J plugin.
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