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Algebraic Signal Processing Theory:
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Abstract—We derive a signal processing framework, called
space signal processing, that parallels time signal processing. As
such, it comes in four versions (continuous/discrete, infinite/finite),
each with its own notion of convolution and Fourier transform. As
in time, these versions are connected by sampling theorems that
we derive. In contrast to time, however, space signal processing
is based on a different notion of shift, called space shift, which
operates symmetrically. Our work rigorously connects known and
novel concepts into a coherent framework; most importantly, it
shows that the sixteen discrete cosine and sine transforms are the
space equivalent of the discrete Fourier transform, and hence can
be derived by sampling. The platform for our work is the algebraic
signal processing theory, an axiomatic approach and generaliza-
tion of linear signal processing that we recently introduced.

Index Terms—Discrete cosine and sine transforms, Fourier co-
sine transform, space shift, signal model, Algebra, module, convo-
lution.

1. INTRODUCTION

HE theory of time signal processing in one dimension is
T the foundation of our discipline. It consists of four closely
related variants depending on the nature of the time domain (see
Fig. 1): infinite continuous, finite (meaning finite duration) con-
tinuous and periodically extended, infinite discrete, and finite
discrete and periodically extended. Each case has its own notion
of filtering, or, convolution, spectrum, and Fourier transform.
For example, infinite discrete-time signal processing has the dis-
crete-time Fourier transform (DTFT) as Fourier transform and
the spectrum is periodic, that is, continuous, finite, and periodi-
cally extended (see Fig. 1). Note that all visualizations in Fig. 1
are directed, representing the directed flow of time formally cap-
tured by the time shift discussed next.

The time signal processing framework for these four cases
can be systematically derived from one basic concept: the con-
tinuous-time shift. Assume a signal z(¢) on R. For some T' € R,
the time shift is defined as follows:

time shiftby T : z(¢t) — x(t — T). ()
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Convolution can be viewed as a superposition of weighted shifts
and is defined as

h(t) + (t) = / h(r)a(t — 7)dr. %)

The spectrum consists of the simultaneous eigenfunctions
exp(jwt), w € R, for this convolution, and the Fourier trans-
form is defined as the projection onto these eigenfunctions. In
summary, we obtain the basic framework for infinite contin-
uous-time signal processing (Fig. 1, top left).

The other three cases of time signal processing can be derived
through equidistant sampling. Sampling in the time domain
yields infinite discrete-time signal processing, sampling in the
frequency domain yields finite continuous-time signal pro-
cessing, and sampling in both domains yields finite discrete-time
signal processing, the Fourier transform of which is called the
discrete Fourier transform (DFT), one of the most important tools
in time signal processing; sampling is one way to derive the DFT.

Another important class of transforms used in signal
processing are the discrete cosine and sine transforms
(DCTs/DSTs), originally derived and thought of as approx-
imations to the Karhunen-Logve transform of a first-order
Gauss-Markov process [2], [3].

In this paper, we ask the question: Can a signal processing
framework analogous to time signal processing in Fig. 1 be de-
rived such that the DCTs/DSTs are obtained similarly to the
DFT? As we will show, the answer is positive. As an example, a
visualization of the framework underlying the most widely used
trigonometric transform, DCT type 2, is shown in Fig. 2. The
details will be explained later; here, we only want to point out
two major differences with respect to time signal processing.
First, the visualizations are now undirected (no inherent notion
of past and future) and hence we refer to this framework as space
signal processing. Second, in time signal processing, the four
structures in the time domain are equal to the four structures in
the frequency domain. In space signal processing, this is not the
case unless all sixteen DCTs/DSTs are considered jointly.

Based on the above discussion of time signal processing, it
becomes clear that space signal processing, if it exists, has to
be based on a different notion of shift. Indeed, the solution is
what we call the space shift, which operates undirected, namely
symmetrically to the left and the right:

space shift by T : z(t) — %(:E(t +T)+z(t-T)). Q)

The associated notion of convolution is now obtained as super-
position of space shifts

() ssa alt) = [ ()5 (alt+ 1)+ alt = D)dr @
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Fig. 1. Four variants of time signal processing. Left: the structures of the time domains; right: the structures of the corresponding Fourier domains. The backwards
arrow signifies a periodic signal extension beyond the shown signal domain (interval).
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Fig. 2. Four variants of space signal processing. Left: the structures of the space domains; right: the structures of the corresponding Fourier domains. The first S
in SFT, SFS, and DSFT stands for “space.” The looping arrows signify different forms of symmetric and antisymmetric signal extensions. Details are introduced

later.

where *g,4 denotes this new convolution, which comes in two
flavors: S and A. After defining these, we derive the necessary
sampling theorems to obtain the complete framework partially
shown in Fig. 2. We achieve here several goals:

* we show that a complete linear signal processing frame-
work different from standard time signal processing can
be derived;

* we demonstrate that the DFT and the DCTs/DSTs are
equivalent concepts with an equivalent underlying frame-
work in the most rigorous sense; and

* we provide a novel way of deriving the DCTs/DSTs.

The platform for our work is the algebraic signal processing
theory (ASP), a general axiomatic approach to signal processing
built on the basic concept of a signal model [4], [5]. For ex-
ample, the four cases in Fig. 1 are different signal models. We
showed already how to derive discrete-time and discrete-space
signal models (in the sense used here) from the shift definition
“bottom-up,” that is, without the use of continuous signal pro-
cessing and sampling [4], [6]. Here we complete the picture by
showing the appropriate continuous-space models and deriving
sampling theorems. Our approach in this paper is meant to be
general enough so as to be applicable to other forms of nontime
signal processing, such as 2-D hexagonal space [7], 2-D quin-
cunx space [8], or others.

Related Work: Our work is closely related to both Fourier
analysis on symmetric or antisymmetric! signals and prior work
that establishes the close relationship between DCTs/DSTs and
the DFT of various symmetric/antisymmetric signals. For ex-
ample, the Fourier cosine transform [3] is associated with sym-
metric infinite continuous signals and periodic functions with
symmetries have Fourier series of a particular form [9], [10].
Further, DCTs/DSTs are closely related to a DFT on a signal
with symmetry [11], [12] and have special associated convo-
lutions. Along similar lines, continuous equivalents of the dis-

ISometimes called even and odd.

crete cosine transform were defined in [13]-[16] to perform in-
terpolation using zero-padding in the frequency domain (sim-
ilar to DFT-based interpolation). Our work ties these concepts,
and others that we define, into one coherent framework that pre-
cisely parallels time signal processing and that is held together
by sampling theorems. Reference [17] discusses the modern
work in sampling theory, including generalizations that, instead
of using bandlimited spaces spanned by sincs, use other approx-
imation spaces, spanned by splines and wavelets, for example.

Organization of the Paper: In Section II, we start by iden-
tifying the general definitions of signals, filters, and filtering
(convolution) within the algebraic signal processing theory.
We then use these generic concepts to present infinite con-
tinuous-space signal processing in Section III and derive its
sampling theorems in Section IV. The frequency domains of
the so obtained discrete-space models give rise to four finite
continuous-space models that we define in Section V. Sampling
those in Section VI finally yields the sixteen DCTs/DSTs as
Fourier transforms for finite discrete-space models.

II. ALGEBRAIC SIGNAL PROCESSING THEORY

We start with a short overview of the ASP introduced in
[4]-[6]. ASP is a general and axiomatic approach to linear
signal processing (henceforth simply called signal processing).
For this paper, ASP provides the natural platform for the in-
troduction of space signal processing and for the organization
of signal processing concepts to clearly identify parallels and
differences.

Overview: Two key observations underlie ASP: the algebraic
nature of signal processing and the concept of a signal model, a
collection of three objects sufficient to define a signal processing
framework.

The set of filters in signal processing is usually assumed to
be a vector space (addition = parallel connection, scalar multi-
plication = amplification), but also offers multiplication (serial



244

TABLE I
ESSENTIAL CONCEPTS FOR THE INFINITE CONTINUOUS-TIME MODEL

Infinite Continuous-Time Model

Signal model (H,S, ®)

Filter algebra H  L'(R)
Signal module S L2(R)
Mapping & V = L2(R) — S = L3(R), z(t) — x(t)

Visualization —_— e

t
Basic concepts

Multiplication in . hq(¢) * ha(t) = / hi(T)ha(t — 7)dT

TER

Filtering  h(t) * 2(t) = / h(r)a(t — 7)dr
TER
Spectral concepts
Spectral basis S, {pw(t) = e/}, w €R
Fourier transform %, / z(t)pl (t)dt
teR
Visualization — seve ———»—
w
Inverse x(t) % / ZTwpw(t)dw
. w€ER
ww(t) e]wt
Frequency response /., / h(t)yr (t)dt
tER
Inverse h(t) % / hewte (t)dw
weR

connection), an operation outside the vector space framework.
Thus, algebraically, the filter space is more than a vector space:
it is an algebra H, a vector space that is also a ring. Further,
the set of signals is also typically assumed to be a vector space,
and filters operate on this space via filtering. Algebraically, this
means that the signal space is an H-module S. These observa-
tions naturally place signal processing into the context of rep-
resentation theory of algebras, a well-developed mathematical
discipline (see [18], for example).

ASP is axiomatically built on top of the concept of a signal
model, defined as a triple (H, S, ®), where H is a chosen filter
algebra, S an associated H-module of signals, and ® a bijec-
tive mapping from a vector space V into the module S. The
purpose of ® is to assign a module and an algebra to a signal
(vector) space, so filtering and other concepts are defined. ASP
now asserts: If a signal model (H,S, ®) is given, all the basic
ingredients for signal processing are automatically defined (if
they exist) and provided by the representation theory of algebra.
These basic ingredients include the notions of filtering, spec-
trum, and Fourier transform, and others, and usually take dif-
ferent forms for different signal models.

Example Time Signal Processing: In ASP, each of the four
variants of time signal processing in Fig. 1 is a signal model for
a different vector space V. For example, in the infinite contin-
uous-time model, V' is typically assumed to be the space of fi-
nite-energy functions V' = L?(R). The signal module S is iden-
tical to V' as a set, but not as an algebraic structure: it possesses an
algebra operating on it, typically chosen as?’ H = L!(R). @ is the
identity mapping from V' to S. The Signal model concepts for
the infinite continuous-time model are summarized in Table I.

2Note that choosing L?(R) destroys the algebra property: the convolution of
two finite-energy functions is in general not finite-energy.
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As discussed in the introduction, the infinite continuous-time
model is based on the time shift (1). The visualization of the
time model in Table I shows the domain on which time signals
live; the domain is directed due to the operation of the directed
time shift.

From the definition of the signal model, Basic concepts
follow, including the multiplication defined in the filter algebra
(cascade of filters), and how filters operate on signals (in both
cases standard convolution). In Spectral concepts, we define
spectral components S,,, which are nothing but subspaces of
the signal module, invariant under the operation of the filter
algebra (in signal processing, we typically find these by finding
eigenfunctions). The Fourier transform (FT)3 computes projec-
tions onto those subspaces. The spectral-domain visualization
possesses the same structure as the time-domain one.

We then proceed to define the inverse FT, as well as the fre-
quency response, found by filtering the spectral components and
recording the eigenvalues. All this is well-known for the infi-
nite continuous-time model. The benefits of the concept of a
signal model and the general ASP framework become evident
later when we consider different signal models.

We now briefly discuss the finite continuous-time model,
which will motivate the need for the mapping @ in the signal
model. The finite-time model is used for signals and filters
living on an interval, say, | = [0, ], and filtering is circular
convolution *p (P stands for periodic). Given h(t),z(t) de-
fined on [, the circular convolution is computed by extending
x(t) periodically to xp(t), performing ordinary convolution,
and viewing the (periodic) result as a function on |

h xp x = h x xp viewed as function on .

(&)

In ASP, we capture the required signal extension rigorously by
viewing the signal domain as a circle Ip (P for periodically
extended [) with circumference I, instead of an interval. Intu-
itively, signals on the circle [ p are equivalent to periodic signals
on the real line.

We summarize this model in Table II. Note that now we can
choose I! for both filter and signal space. The purpose of ® is
again to assign a module and an algebra to a vector space. This
time this includes “applying” the signal extension (by changing
the domain of the signal from [ to | p). The model is well-defined
since the convolution in (5) yields again a periodic signal, that
is, a signal on [ p.

One may imagine that different signal extensions could be
possible, which would require different mappings ®, as will in-
deed be the case later when we consider space models.

The Fourier transform for this model is again found by identi-
fying the eigenspaces under filtering (now circular convolution).
Itis well known that these are spanned by complex exponentials:
each

S ={ont) =71, ket (6)

is a simultaneous eigenspace for all filters h in H. The Fourier
transform of a signal z(t) is hence the projection onto these
spaces; it yields the coefficients of the Fourier series expansion
of z(t) (see Table II).

3We denote by FT the Fourier transform corresponding to the infinite contin-
uous-time model.

4Since the domain is compact, L' contains L2.
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TABLE II
ESSENTIAL CONCEPTS FOR THE FINITE CONTINUOUS-TIME MODEL

Finite Continuous-Time Model

Signal model (H,S, @)

Filter algebra H  L'(Ip)
Signal module S L'(Ip)
Mapping & V = LY(I) — S = L' (Ip), z(t) — =(t)
. . . /\
Visualization s 7 *

Basic concepts

Multiplication in H  hi(t) xp ha(t) = / hi(T)ha(t — 7)dT
T€El

h(kI +t) = h(t) ©

h(t) *p x(t) = /

7€l
(kI +t) = z(t)

Extension in H
Filtering h(T)z(t — T)dT

Extension in &

Spectral concepts

Spectral basis S, {¢k(t) = ejyt}, keZ

Fourier transform 2, z(t) gy (t)dt
tel
Visualization T T
Inverse x(t) % Z Trpr(t)
Yr(t) €T
Frequency response fj, / h(t)yy(t)dt
tel
Inverse h(t) % Z hr(t)
kEZ

Structured Signal Domains Through Quotient Sets: The
proper framework to formally define the circle Ip and other
structured signal domains needed later are equivalence re-
lations and quotient sets [19]. While not strictly needed for
understanding the paper, we briefly introduce this framework
for completeness.

Intuitively, | p is equal to the real line in which we identify all
points that are at multiples of I from each other. This way, the
structure of a periodic signal on R is translated into the structure
of the signal domain. The difference is a subtle one yet crucial
in ASP.5

We briefly define equivalence relations and quotient sets in
the simplest case using the above circle as example.

Let S be a set. An equivalence relation ~ on S is a relation
that satisfies three properties, namely for a,b,c € S

1) a~a;

2)a~b=b~a;

Na~b&b~c=a~c
Fora € S,[a] = {b € S| b~ a} is called the equivalence
class of a, and the set of all equivalence classes

S/ ~={[a] | a € 5}

is the quotient set of S with respect to ~. The quotient set par-
titions S, that is, every a € S lies in exactly one equivalence
class.

SFor example, periodic signals viewed as functions on R have infinite energy
and usually their power is computed. However, the power is just the energy if
the signal is viewed as function on [ p.
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Connecting to the prior discussion, the equivalence relation
~pon S = R defined as

t1 ~pto & (tz —tl)/I e’

yields R/ ~p= Ip. Namely, | = [0,]) is a complete set of
pairwise nonequivalent points, and I ~p 0, which means the
end points of [ (0 and I) in Table II can be identified as shown
by the backwards arrow of the visualization, creating the circle
structure.

For some signal extensions (in this paper: antisymmetric) a
more general version of the above construction is needed.

III. INFINITE CONTINUOUS-SPACE MODELS

We now formally define two infinite continuous-space
models. These models will be related to the DCTs/DSTs in the
same way as the infinite continuous-time model in Table I is
related to the DFT.

As discussed in the introduction, these space models are ob-
tained from a different notion of shift, the symmetric space shift
(3), which is equivalent to convolving z(¢) with (6(¢t — T') +
8(t + T))/2. We define a space filter as superposition of space
shifts as

h(t) = / h(T)%(é(t _T) 4+ 6(t+T))dr.

This implies that h(¢) = h(—t) is symmetric and hence we
need to integrate over R* only. We view h as a function on
R+ symmetrically extended; formally, h is a function on R}' =
R / ~g with

t1 ~s to & |t1| = |t2|.

As signal space we could choose L?(R); however, to obtain the
DCTs and DSTs through sampling, the right choice is to restrict
to the signal space of symmetric and of antisymmetric signals
(in our framework to signals on ng and R, where Rj denotes
signals on RT, antisymmetrically extended). Note that if s €
R, then necessarily (0) = 0.

Accordingly, we define in both cases space convolution or
filtering *g,* 4 as

b ssan(t) = [ W) (alt+ ) +alt = )i, @)

JTreERT

where z(¢) is symmetrically or antisymmetrically extended
(note that the extension of « changes the actual computation in
(7), hence, the subscript S/A). We can also state this convolution
in a form similar to (5). Namely, assume h(t), z(t) are defined
on RT, then

1
hxsjaa = §(hs * T5/4) viewed as function on R*.  (8)

Thus, to compute, say, S convolution, one first extends the signal
symmetrically, computes the ordinary convolution, and then re-
tains the part on RT. The factor 1/2 simplifies the associated
notion of frequency response determined below. Equation (8)
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TABLE III
ESSENTIAL CONCEPTS FOR THE INFINITE CONTINUOUS-SPACE MODELS. S DENOTES A SYMMETRIC AND A AN ANTISYMMETRIC EXTENSION

Infinite Continuous-Space Models

Signal model (H,S,®) S A
Filter algebra H ... Lt (]Rg) ......................................
Signal module S L2(RY) L2(RY)
Mapping @ V = L?(Rt) —» S = L2(RY), «(t) —» o(t) V =L2RT)—S=L2R}), o(t) — x(t)
Visualization C() 7 anen -1 C(} 7 rees

Basic concepts

Multiplication in H

Extension in H
Filtering

Extension in &
Spectral concepts
Spectral basis S,

Fourier transform Z,

Symmetries Z_., = Zo,

Visualization

Inverse x(t)

Yo (t)

Frequency response f,

Inverse h(t)

ha(t) s ha(t) = /€R+ hl(T)%(hg(t — 1)t halt+ 7))dr
T h(=t) = h(1)

h('r)%(a:(t —7)+z(t+7))dr
er+
z(—t) = —x(t)

{pw(t) =sin(wt)}, w € RT

()l (t)dt
tert . X

il

0 w

/ Twpw (t)dw
wERT

cos(wt)
h(t)y(t) dt
teRt

1 hewthe (t)dw
weRT

A=

also shows how to perform a convolution involving Dirac delta
functions on R, R,. Namely, for a > 0

Bt — a) wsya 2(t) = 3 (nsyalt — ) + wsya(t + )

1
h(t) xs/4 6(t —a) = §(h5(t—a)ihs(t+a)) )
and for a = 0 (note that §(¢) is not in R¥)
1 1
6(t) x5/4 (1) = 51;(15), h(t) xs 6(t) = §h(t) (10)

In summary, we get the two space models shown in Table III.
Note that they share the same filter algebra (symmetric filters)
but have different signal modules (symmetric and antisymmetric
signals). Also note that the notions of convolution are well-de-
fined since the convolution of symmetric functions is again sym-
metric and the convolution of a symmetric and an antisymmetric
function is again antisymmetric.

We now proceed by deriving all the other concepts in the
table, and immediately see how the space models differ from
the time models (compare Table I with Table III). For example,
the invariant subspaces under filtering are spanned by cosines
for the S model as shown by

a>0 (11

?

8(t — a) x5 cos(wt) = cos(at) cos(wt)

and by sines for the A model. The associated Fourier transforms
hence take two different forms that we call space Fourier trans-
form S (SFT-S) and space Fourier transform A (SFT-A).

In contrast, the frequency response for both models, found by
computing the eigenvalues of the respective Fourier basis under
filtering as in (11), takes the same form in both cases and is
computed exactly as the SFT-S.

Note that the SFT-S and SFT-A are equal to what is called in
[3] the Fourier cosine transform and the Fourier sine transform,
respectively. Hence, as an aside, Table III establishes them as
Fourier transforms for properly chosen signal models, and iden-
tifies the associated notions of shift, convolution and others.

IV. SAMPLING INFINITE CONTINUOUS MODELS

We have already commented on the fact that the three discrete
and finite variants of time signal processing in Fig. 1 can be de-
rived from the infinite continuous-time model (Table I) through
sampling time, or frequency, or both. To do the same for the space
models in Table III, we first need a sampling procedure that is
general enough to be applicable to other, nontime, signal models
such as space. We first establish this procedure using infinite con-
tinuous-time case as example. Along the way, we will point out
subtleties, which, although obvious in time, might not feel that
natural in space, and thus, the whole discussion in time is of ed-
ucational value. The formulation of the sampling theorem most
often encountered is due to Shannon [20]; the result is also at-
tributed (by Shannon himself) to Whittaker [21], Kotelnikov [22]
and Nyquist [23]. The standard derivation of the sampling the-
orem can be found in numerous texts ([24], [25], for example).

A. Sampling Infinite Continuous Time

We derive the sampling theorem for the infinite contin-
uous-time model (Table I) in steps and summarize the results in
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TABLE 1V
ESSENTIAL CONCEPTS FOR SAMPLING INFINITE CONTINUOUS TIME

Sampling Infinite Continuous Time

Sampling concepts
Sampling period T
Sampling points t,, n € Z nT

> a(tn)d(t — tn)

Sampled signal z7(t)

nezZ
Visualization ce—>0—>o—>o
nT (n+1)T
Spectral concepts
Pw,n elwtn
Fourier transform 7 , Z z(tn) el o
nez
Symmetries xT,sz”-Hu = &7,
Visualization
0 @ 2T

Sampling theorem concepts
Nyquist band Qnyq  {w |0 < |w| < T}
T we QNyq7
0 otherwise.
sin( 25 t)

=
{ZL’ ES ‘ jw =0,u) g QNyq}
{l(t —tn) | n € Z}
> w(tn)l(t — tn)

neEL

Sinc filter [w

Bandlimited subspace Spr,
Basis b for Spp,

Sampling theorem For z(t) € Spr, :  z(t) =

Table IV. We do it in a slightly nonstandard ways; this is done so
that the steps can be easily replicated for other signal models.

Select the Shift: We choose a shift among those in (1), which
means fixing 7.

Sample the Signal and Compute Fourier Transform: We se-
lect a set of locations ¢,, € R and require that it be closed under
the selected shift by 7'. Hence, the ¢,, have to be equidistant.
The relative placement with respect to 0 is irrelevant, and thus,
we assume that the signal is sampled at integer multiples of
T :t, = nT,n € Z. Sampling can then be described as fol-
lows, resulting in the sampled signal ()

wr(t) =Y w(tn)8(t — tn).

nez

Usually, the sampling process is described as multipli-
cation of the signal by a train of Dirac delta functions,
wr(t) = x(t)(3 0, ez 0(t — tn)), and then the Poisson summa-
tion formula is used to obtain the sampling theorem. Since the
multiplication of signals is strictly speaking outside the signal
model framework and since we do not want to derive a Poisson
formula for every signal model, instead, we compute the FT of
the sampled signal directly:

i’T’w = / a:T(t)e_j“’tdt
teR

“Ja

nez

= Zx(tn)e_j“’”T.

nez

z(tn)6(t — t,)e < dt

12)
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In the above, we used that [, o 6(t — To)x(t)dt = x(Tp), and
t, = nT. Setting z,, = z(t,), we recognize the above as the
discrete-time Fourier transform (DTFT) of the sequence x(t,,)
in /2(2).

Find the Symmetries in the Fourier Transform: The spectrum
of the sampled signal contains redundancy that manifests itself
as symmetries. The purpose of this step is to find these sym-
metries and with it the largest nonredundant interval that these
symmetries extend to the entire domain (here R). The signal can
then be reconstructed from this interval that we will call Nyquist
band.

Inspecting (12) shows that

j:T,mQ?"+w = iﬁT_’w, m € Z

which means that the resulting Fourier transform is (27 /T')-pe-
riodic. As a consequence, any interval of length 27 /T could be
chosen as Nyquist band. The usual choice [24] is the symmetric

Onyq = {w [0 < |w| <7/T7. (13)
and 7 /T is then called the Nyquist frequency. We will not use
this term in the rest of the paper since the spectra of the space
models considered later are right-sided only: hence, intervals
symmetric around zero cannot be chosen since negative fre-
quencies do not exist. To solve this problem, we will instead
work with the Nyquist band, which is unambiguous.

In Table IV, [0, 27 /T is shown as Nyquist band; the back-
wards arrow shows the periodic extension to R. For the space
models considered later, other, nonperiodic symmetries will
occur.

Extract the Original Spectrum: Assuming that the signal is
bandlimited to the Nyquist band, for reconstruction, we need to
extract only that band by applying an ideal lowpass filter sup-
ported in the Nyquist band. In the time domain, this is equivalent
to filtering the signal by the inverse frequency responsefof this
lowpass filter. This is the sinc filter I(¢) we give in (14); it is
indeed exactly 1 at o = 0 and 0 at all other sampling points
t, = nT, or, l(t,) = b,, as given in Table IV. The sinc filter
and its frequency response are:

Z _{T wEQNyq

sin( Xt
Y= sa oy = TED gy
0 otherwise Tt
Sampling Theorem: The above extraction process is equiva-
lent to filtering the sampled signal with [()

x(t) =1(t) x zp(t) = / WT)zp(t —7)dr

TER

_ /GR Ur) S a(tn)o(t — 7 — ta)dr

ne”z

which, after exchanging integral and sum, leads to the expres-
sion for the sampling theorem:7

6Note that here, we are making the distinction between Fourier transform,
applied to signals, and frequency response, applied to filters. In continuous time,
these two are identical; however, this will not be the case for all the signal models
we are considering, as we will see later.

TWe will denote by I: infinite, F: finite, C: continuous, T: time, S: space.
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TABLE V
ESSENTIAL CONCEPTS FOR SAMPLING INFINITE CONTINUOUS SPACE WITH EXTENSION S

Sampling Infinite Continuous Space: Model S (Symmetric Extension)

Sampling concepts
Sampling period T
Sampling points tn, n > 0 nT

Sampled signal z7(t)

Visualization

Spectral concepts
Pw,n

Fourier transform &7,

w H
T
T
oo
........................................ D @(ta)S(E—tn) e
n=0
o T o “T2 312 T2
............................................. COS(WER) vttt et e
oo o0
La(to) + > 2(tn)el m D a(tn)eln
n=1 n=0

Symmetries "ET,2m277'iw =27

Visualization 5 .
0 @ /T

Sampling theorem concepts
Nyquist band Qnyq

Sinc filter fw

IE) oo

Bandlimited subspace Spr,
Basis b for Spr,

o {2 €S| dw =0,w¢ Oy}
{3UOY UL Ut = t) +1(t+ ) [n=1,...}

jT,2m2T7‘:tw =(-1)M2r.,

0 o /T~

{fwlo<w< T}

T WGQNyq,
........ 0 otherwise.
sin(Ft)
............. Ty

(3 (Ut —ta) + Ut +ta)) [ =0,...}

Sampling theorem For z(t) € Spr, :  z(t) =

n=1

%x(to)l(t) +3 ac(tn)% (Ut = tn) + 1t + tn))

e’}

z(t) = Y m(tn)% (Ut —tn) + Ut +tn))

n=0

Theorem 1 (Sampling Theorem: ICT Model): For a signal
x(t) bandlimited to the Nyquist band:

a(t) =Y a(tn)l(t —tn).

ne”z

15)

Theorem 1 shows that the space Spr, = {z € S | £, = 0,w ¢
Qnyq} of bandlimited signals is spanned by the orthogonal set
[(t) % 6(tn) = U(t — tn), n € Z. Note that these I(t — ¢,), as
used in (15), are signals now and not filters.

Comment: Sampling infinite time yields the infinite discrete
model and the finite continuous model as its spectral domain.
This motivates the introduction of the latter, but, more impor-
tantly, it is needed to obtain the finite discrete model (and with
it the DFT) again by sampling.

By sampling the infinite continuous-space model, we thus ex-
pect to not only find infinite discrete-space models, but also the
proper finite continuous models that need to be sampled to ob-
tain the sixteen DCTs/DSTs as the Fourier transforms for the
corresponding finite discrete-space models.

B. Sampling Infinite Continuous Space

We now repeat the above process for the two infinite space
models defined in Table III. We cover S in detail and only
briefly point out differences in A. The results are summarized
in Tables V and VI.

In the infinite space model S, both the signals and the filters
are defined on R; visualized in Table III.

Select the Shift: We select a space shift among those in (3),
which means fixing 7.

Sample the Signal and Compute Fourier Transform: We se-
lect a set of sampling locations ¢,, closed under the space shift
by T'. This requires equidistance, just as for the time model. It
turns out there are only two possible choices, depicted in Fig. 3,
namely starting at O or 7'/2. For every other choice, the left-
most point will not have the distance of a multiple of 7 to itself
(walking left and being reflected due to the boundary condition).
We refer to the two choices as whole-point sampling (W) and
half-point sampling (H) following [11]. In the former case, sam-
ples are taken at t,, = nT, n > 0; in the the latter case, samples
are taken at t, = nT + T/2,n > 0.

We proceed by considering the W case in detail; H is similar
and also given in Table V.

We sample the signal «(t) at t, = nT, n > 0, and get

or(t) = ix(tn)é(t —t). (16)

As in the time case, we proceed by directly computing the
Fourier transform of 1 (t). The Fourier transform to be used is
the one associated with the space model S from Table III

Tr, = / 7 (t) cos(wt)dt
teR+

a7)

Il
|
8
—
~
(=}
N
+
NgE
8
=
3
~
Q
o
n
—
€
~+
3
~
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TABLE VI
ESSENTIAL CONCEPTS FOR SAMPLING INFINITE CONTINUOUS SPACE WITH EXTENSION A

Sampling Infinite Continuous Space Model A (Antisymmetric Extension)

w H
Sampling concepts
Sampling period T T
Sampling points tn,, n >0 nT +T nT + %
o0
Sampled signal Z7(t)  ..oeii Z T(En)0(E = En) oot
n=0
Visualization ;, Z.T L -1 ;/2—37'72—5;,/2—
Spectral concepts
(DUSTL ettt e SIN(WER) v eee ettt et
oo oo
Fourier transform Zr , Z x(tn) @i n Z z(tn) el n
n=0 n=0
Symmetries Erom2r to = +(-1)™&71,0 Epom2r £ = +i7.0
Visualization  -/( -1( )-1

0 /T~
Sampling theorem concepts

Nyquist band Qnyq

Sinc filter fw

1(t)

Bandlimited subspace Spr,

Basis b for S,

(&)

0 T~

wlo<w< £}

T wEQNyq,
......... 0 otherwise.
sin(Ft)
............. g
T

{x €S |2w =0,w ¢ Onyqg}
{3 (Ut —tn) =1t +1n))) n=0,...}

o0
Sampling theorem For z(t) € Spr : «(t) = Z m(tn)% (Ut —tn) = U(t+1tn))

n=0

The factor 1/2 associated with the first sample appears for the
same reasons as in (10). We call the above a discrete-space
Fourier transform of the sequence x(t, ), n > 0.

Find the Symmetries in the Fourier Transform: We now need
to find the Nyquist band of the sampled signal Zr,,, that is,
the largest interval on which the spectrum is nonredundant. As
before, this is done by finding the symmetries.

Inspecting (17) reveals the symmetry

:i.T,Zm%TTiw = .QAZT,W, me 7.
Hence, we can visualize the spectrum as living on the interval
[0,7/T), extended symmetrically to the left and to the right. In
Table V, this domain is visualized as a line between [0, 7/T")
with loops on the left and right with weights 1. The Nyquist
band is accordingly Qnyq = {w | 0 < w < w/T}.

Extract the Original Spectrum: We extract the Nyquist band
by applying an ideal lowpass filter with frequency response [,
supported only in the Nyquist band. Applying the inverse fre-
quency response from Table III yields the same result as in the
time case (14), only the filter is viewed as a function on R;:

i, = {T W€ Mya 4y = sin(t) g
0 otherwise ’ ald

As in time, the interpolating sinc is indeed 1 at t) = 0 and O at
all other sampling points ¢,, = nT.

Sampling Theorem: The extraction process that reconstructs
the original signal, is the pointwise multiplication of the sam-

pled signal 27, with the sinc filter iw in the Fourier domain, or,
equivalently, S convolution in the original domain:

x(t)

l(t) *g .TT(t)

=1(t) x5 Y x(tn)8(t — tn)

Sl )(U(0) s 8t~ 1)),

n=0

where we have used linearity of the convolution. Using (9) and
(10) we get the sampling theorem:

Theorem 2 (Sampling Theorem: ICS-S Model With W): For a
signal z(t) bandlimited to the Nyquist band:

2(t) = 5o(to)l(0) + 3 (ta)5 (U = ta) + U + 1))

Theorem 2 shows that the set of signals bandlimited to the
Nyquist band is spanned by the [(t) g 6(t — t,,), which are
space-shifted copies of the sinc filter in (18). As in time, these
are signals (not filters) and orthogonal.

Half-Point Sampling: Half-point sampling starts sampling at
t = T/2, which is at distance T from its mirror image —7'/2.
This choice changes the associated discrete-space Fourier trans-
form and also the symmetry in the spectrum of the sampled
signal:

m a
TT,w,

)

=(-1) m € Z.

xT,Qm,Q,T’,"iw
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) |
l T l l
Fig. 3. Two ways (W on the left and H on the right) of sampling the infinite

space model S. Left: Start at t, = 0 and sample T" apart. Right: Start at t, =
T'/2 and sample T apart.

| | | vees |

T2 T
.‘ —_— s 1 ® 'y
Fig. 4. Two ways (W on the left and H on the right) of sampling the infinite

space model A. Left: Start at ¢, = 1" and sample 1" apart. Right: Start at t, =
T'/2 and sample T apart.

We depict the spectral domain as a line O to 7w /7" where the loop
on the right side has weight —1 for the antisymmetric extension
(Table V, column H).

The Nyquist band is exactly the same as for the W case and
hence the sinc filter [(¢) is also identical to the W case. Thus,
the sampling theorem takes the following form:

Theorem 3 (Sampling Theorem: ICS-S Model With H): For a
signal z(t¢) bandlimited to the Nyquist band:

2(t) = Zx(tn)%(l(t )+ 1+ 1)),

The space of bandlimited signals is spanned as before by
I(t) s 6(t,), that is, signals obtained from the template sinc,
now space-shifted by the half integers ¢,,.

Sampling the Infinite Space Model A: We now briefly discuss
sampling the other infinite space model, that with the antisym-
metric extension from Table III. As we noted before, first big
differences occur here: filter and signal space are different and
the Fourier transform of a signal is computed differently than
the frequency response of a filter. Note that all signals are O at
t = 0, which can thus be omitted as a sampling point. The two
equidistant choices are shown in Fig. 4.

The sampling process is summarized in Table VI; as the steps
are identical to what we have just seen, we only briefly point out
the differences. First, we get two additional versions of a dis-
crete-space Fourier transform and two new forms of symmetry
in the frequency domain. However, the Nyquist band is the same
as before, and since the filter spaces for S and A are the same
(Table III), the sinc filter is the same as before. However, the
space of bandlimited signals now takes a different form: it is
again spanned by signals obtained from the template sinc filter
convolved with all §(¢ — ¢,,), which, using (9), evaluates to

U(t) wa 8(t — 1) = %(l(t ) = U+ ).

V. FINITE CONTINUOUS-SPACE MODELS

Sampling the the infinite continuous-space models in the
previous section yielded four infinite discrete-space models
and their corresponding finite continuous spectra visualized in
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Tables V and VI. Since our goal is to sample those (obtaining
the sixteen DCTs/DSTs as one outcome) we first formally
define the four finite continuous-space models. They are the
space equivalent of the finite continuous-time model in Table II.

The four models are summarized in Table VII. Note that the
visualizations of the signal models correspond to the visualiza-
tions of the spectra in Tables V and VI. The signal domains
are intervals that on each side are either symmetrically or anti-
symmetrically extended yielding the four choices denoted with
SS, SA, AS, AA. The filter algebra is the same in all cases.
Note that all models are well-defined since space-shifting (3) an
SS/SA/AS/AA signal yields a signal with the same symmetry.

We cover only the SS model in detail; we briefly touch upon
others.

A. Finite Space Model SS

Beside the inherent “beauty” of both extensions being sym-
metric, we have a practical reason for dealing with this case in
detail. As we will see later, one of its sampled models leads to
the well-known DCT (of type 2), which has been used in image
processing for a long time.

Signal Model and Basic Concepts: Signal and filter space are
L'(Iss), which consist of functions on the interval I = [0, I]
symmetrically extended in both directions. Formally, a signal
x(t) on I is SS extended as

xss(QkI:tt) = LE(t), kel.

Note that this is the same as first S-extending «(t) to [—I, I] and
then periodically extending the result: (zs)p = zgs, thatis, SS
signals have the period 21. Filters for the model have the same
extension. SS convolution, defined in Table VII, can be related
to ordinary convolution and S convolution as follows:
h*ssxzé(hs*xss):h*sliss, (19)
where in the last term, zgg is viewed as a function on Rt and
in all cases the result is viewed as a function on |.
As in Section III, we have to pay particular attention to con-
volving with Dirac delta functions; the results are derived using
(19). For a € (0, 1), as expected

§(t — a) %55 2(t) = 5 (rss(t — o) + zss(t +a),

h(t) *gg 5(f — a) = %(hss(t — a) + hsg(t—{— a))

For a = 0, I, the result is analogous to (10) and for the same
reasons

5(1) #ss a(t) = 50,
§(t— 1) s 2(t) = %a:(t -,

(1) #ss 6(1) = 3h(1) 0)
h(t) *ss 6(t — T) = %h(t _ D). 21

Spectral Concepts: The eigenspaces under the above filtering
are

Sk = {on(t) = cos(kn/I)t)}, kel 22)
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TABLE VII
ESSENTIAL CONCEPTS FOR THE FINITE CONTINUOUS-SPACE MODELS

Finite Continuous-Space Models

Signal model (H,S, @) SS SA AS AA
Filter algebra . ..oouuttit et LY(I88)  veeee e
Signal module S L' (Igs) L'(Isa) L'(Tas) L'(Taa)
Mapping L*(I) — L' (Iss) LYI) — L'(Isa) LY(I) — L' (Ias) LYI) — L' (Laa)
Visualization ~ (

0 t

Basic concepts

Multiplication in H

Extension in H

Filtering

Extension in §  x(2kI £ t) = z(t)

Spectral concepts

Spectral basis Sy, k >0 {g(t) = cos(Ext)} {ek(t) = cos(
Fourier transform @ ..ot e
Visualization k:(')_ } . k:(. 1- 3

o0 oo
Inverse z(t) &0 + 3 > #xpk(t) 22 awen()

k=1 k=0

Symmetries Z_j = T T_p =Tp_1
k41

Yi(t)  cos(Exi) os(2)7 )

Frequency response hy,

Inverse A(t)

hl(t) *S S hg(t) =

h(t) *ss/s4/a5/44 T(t) = /el
x(2kI £1) = (=1)F2(t)

[ m@g el =)+ ha+ T
T€l

h(2kI % t) = h(t)
h(T)%(w(t —7)+x(t+7))dr

x(2kI £1) = £(=1)*z(t) @2kl £t) = x(t)

k+Lyr . k+i)m T
B2y o) =sin(ET0)  {en(t) = sin(5E 1))
. T(B) PR (B)dt o
€l
=0 1T 2 =0 1 2
o0 o0
2> dner(t) 2> Ener(t)
k=0 k=1
By = —dpy §_p = —iz
Lyn
cos( (k+[2 ) t) cos(kT”t)
. / REVDEENAE oo
2 Z R (t) %flo +2 Z i (t)
k=0 k=1

Namely, let A(t) be any filter, then
h(t) *ss r(t) =
_1 ! L. T)>
+ cos (’“TW(HT))) dr
_ %/Tel h(r) cos <k7”7> cos (k—“t> dr
ot [ _nren ()
outt)e [ PG = (1)

oo (= (7
1

J

hy

This conforms with the well-known fact that periodic functions
that are also symmetric (here zss = (xg)p) have a Fourier
series consisting of cosines only. The derivation also yields the
frequency response hj, computed the same way as the Fourier
transform. This is not the case for the SA/AS/AA models.

Note that in (22) S_; = &; is whole-point symmetric; thus
the structure of the spectrum is as shown in Table VII. This is
expected since it corresponds to the W column of Table V.

B. Other Models
We briefly discuss the other models in Table VII.

Signal Model and Basic Concepts: First, we note that due to
the antisymmetric extension, the AS model requires z(0) = 0,
the SA model z(7) = 0, and the AA model both. The AA model
has period 2/ and the SA and AS model the period 41.

Convolution can be related to ordinary convolution as

1
hxss/sajasjaa® = 5(/15 *TSS/SAJAS/AA)-

This equation can be used to compute the convolution with
Dirac delta functions. For example, for a € (0, 1)

1
h *SS/AA 5(t — a) = §(h55(t — a) + hss(t + a)),

1
h*SA/AS 6(t — a) = i(hSA(t_ CL) + hSA(t‘]‘CL))

and fora = 0,1

h(t) +s.4 6(1) = %h(t),

—%h(t—[).

h(t) *AS 6(t — I)

Spectral Concepts: The subspaces invariant under filtering

take different forms for the four models as shown in Table VII.

However, the frequency response takes only two different forms:

it is the same for SS and AA and for SA and AS. Except for SS
and SA, it is computed differently than the Fourier transform.
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TABLE VIII
ESSENTIAL CONCEPTS FOR SAMPLING FINITE CONTINUOUS TIME

Sampling Finite Continuous Time Model (yields DFT)

Sampling concepts
Sampling period T
Sampling points ¢,

3
7y

Sampled signal xp(t) z(tn)o(t — tn)

0

3
Il

—>0—>o

Visualization ¢ sees @
isualizati ; T

N-DT
Spectral concepts

jkn2m
Pk,n e’ N
N-1
Fourier transform & j, E Z(tn)es n

n=0

Symmetries  E7 Ntk = LTk

e— > 0—P> 0 si:: 06— 0

sualizati
Visualization fhiang s e

Sampling theorem concepts
Nyquist band Qnyg  {k |0 <k <N -1}
T k€ Qnyg,
0 otherwise.
sin( 2 sin(Ft) t)

Sinc filter I,

. N—
) xe™t NT

sin(—&=t) ~NT t)
Bandlimited subspace Spr,  {r € S| & =0,k & Qnyq}
Basis b for Sgr,  {l(t —tn) |n=0,...,N —1}
N—-1
Sampling theorem For z(t) € Spr :  z(t) = Z (tn)l(t — tn)
n=0

Interestingly, the inverse frequency response for the SA and
AS model will yield an SA function (since all ), have this prop-
erty in this case), which hence satisfies (1) = 0. Thus, it will
reconstruct h(t) only on [0, I) if the sum converges.

VI. SAMPLING FINITE CONTINUOUS MODELS

In this section, we sample finite continuous models following
the same steps as before. For illustration, we start with the fa-
miliar finite-time model in Table II and obtain, besides the sam-
pling theorem, the DFT. The same procedure applied to the
four finite-space models in Table VII will later yield the sixteen
DCTs/DSTs.

A. Sampling Finite Continuous Time

The main concepts we discuss here are summarized in
Table VIII.

Select the Shift: We select a time shift on the circle, which
means fixing 7.

Sample the Signal and Compute Fourier Transform: The
sampling points ¢,, have to be closed under the shift by 7', hence
they have to be equidistant on the circle of length . We start at
0,8 and choose N samples, thatis, 7' = I/N. Sampling yields

N-1

wr(t) = 3 alta)s(t — t)

n=0

(23)

8Different starting points lead to slightly different versions of the DFT.
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and the Fourier transform of z1(¢) (defined in Table II) is

~ _g2mk
TT k :/ xT(t)e 7T tdt
Jtel
N-1

= Z w(tn)efjkn%.

n=0

(24)

This is precisely the DFT of the finite sequence x,, = z(ty),
n=20,...,N—1.

The above process yields the structure of the finite discrete-
time model (bottom right in Fig. 1). The signal lives on a discrete
circle with IV points (it is discrete periodic with a fundamental
period of length V') and the shift moves the signal by one sample
clockwise. The DFT diagonalizes the adjacency matrix of the
circle (the cyclic shift).

Find the Symmetries in the Fourier Transform: From (24),
we see that after sampling, the spectrum becomes periodic:

TrmN+k = Erk, mMEL.

Again, this means that we can choose any interval of length NV
as Nyquist band. To be consistent with the infinite continuous-
time case (13), the N points should be symmetric around 0.
However, this would yield a nonstandard definition of the DFT.
We choose the Nyquist band 0xyq = {k |0 < k < N -1}
to obtain the DFT as defined in almost every signal processing
book. Interestingly, this is not consistent with (13), and often
produces confusion as our inherent notion of what the natural
ordering of frequencies should be (low to high) is disturbed;
with this definition of the DFT, the highest frequency is in the
middle of the spectrum. Remember, however, that this is just the
question of ordering, as any interval of length N would do the
trick. This is one reason that in this paper we abandon the terms
Nyquist rate and Nyquist frequency in favor of Nyquist band.
The other is that space models have no negative frequencies;
hence, a symmetric band is inherently not possible.

Extract the Original Spectrum: Assuming a signal bandlim-
ited to the Nyquist band, for reconstruction, we use the appro-
priate sinc filter [(¢)

2 _{T kEQNyq 1

N— 1 SlIl (
I, = I(t) = —el™t w7
k 0 otherwise’ (t) N€

7t)
ot

~Nrt)
Inspect [(t): the numerator provides the zeros at all integer mul-
tiples of T', including 7" = 0. The denominator is 0 at ¢ = 0 and
is then nonzero until ¢ = £NT, that is, its period is IV times
larger than that of the numerator. Together they give a value of
1 att = 0 and zeros at all integer multiples of 7', as an interpo-
lating sinc should.

Sampling Theorem: Theaboveextraction processis pointwise
multiplication of the sampled signal 2 ; with the sinc filter Ir
in the Fourier domain. This is equivalent to the convolution

z(t) = U(t) *p z7(t)

sin (

which leads to the expression for the sampling theorem.
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TABLE IX
ESSENTIAL CONCEPTS FOR SAMPLING FINITE CONTINUOUS-SPACE MODEL WITH EXTENSION SS

Sampling Finite Continuous Space Model SS (Symmetric/Symmetric Extension)

WW (yields DCT-1)

WH (yields DCT-5)

HW (yields DCT-6) HH (yields DCT-2)

Sampling concepts

: . I I I I
Sampling period ' = N-1 prmey N
Sampling points t,, nT nT nT + 5 nT + 5
N—1
Sampled signal Z7(t) oo E T(En)O0(E — tn) oot
n=0
1 1 i . . o sxn @ . . . . . (o——e——0 =u:s 06— o——e——0 ::ix 0——o )
Visualization  s==3—2, DT 0 1 o7 N-IT “T2 312 ST N-1/2)T T2 312 5172 N-172)T
Spectral concepts
1 1
knm knm k(""‘i)ﬂ' k(n+§)7r
rn cos(FET) cos(3T) cos(v) cos(——4>—)
2 2
N—1
Fourier transform &7, ... E 1
n=0
Symmetries & 1= & = T = z 1=
Y TmN4k— D™ TmN+k T,mN+k T,mN 4k LHCEDTHL
:2' _ 1 5? _ 1 _1 mi _ 1 _1 m./,i' _ 1
TYmN,k,% T,mN,k,% (=1 T,mN,k,% (-1 T,mN,k,%
Visualization o——e o tiin o ) . . o eee . o- ) o tiin o . . . o siin o .
k=0 1 2 N-1 k=0 1 2 N-1 k=0 1 2 N-1 k=0 1 2 N-1

Sampling theorem concepts
Nyquist band Qnyq

Sinc filter ik

IE) oo
{2 €S8 |2 =0,k ¢ Onyq}

Bandlim. subspace Spr,

Basis b for S,

{Senel, (It —tn) +U(t+tn)) In=0,...,N =1},

(k|0<k<N-1}
T k€ Qnyq,
0 otherwise.
. (2N-D=
1 sin(

1 Nt
N TRIRCARRT) et

_ {12 forta=0, _{1/2 for tn = I,

€n = . = .
" 1 otherwise. n 1 otherwise.

N-1
Sampling theorem
n=0

For o(t) € Spr, :  a(t) = Zz(tn)%ene/n (Ut = tn) +1(t+tn))

Theorem 4 (Sampling Theorem: FCT Model): For a signal
x(t) bandlimited to the Nyquist band:

N-1
o(t) =D w(tn)l(t — tn).
n=0

The space Spy, of those signals bandlimited exactly to the
Nyquist band (see Table VIII), that is, the space of signals
which can be reconstructed from their sampled versions, is
Spr = {:E es | Ty = 0,]{3 ¢ QNyq}.

B. Sampling Finite Continuous Space

For each of the four finite-space models in Table VII we have
four choices of equidistant sampling, which arise from the treat-
ment of the two boundaries (each one is either S or A). Namely,
for an S boundary we have the two choices W and H shown
in Fig. 3 and for an A boundary the two choices are W and H
shown in Fig. 4. This means that each of the four finite contin-
uous models will spawn four sampled versions (WW, WH, HW,
HH) for a total of sixteen finite discrete-space models. As we
will show, these have exactly the sixteen DCTs/DSTs as their
corresponding Fourier transforms.

We derive in detail the case of HH sampling the SS model
(Table VII), which will yield the most widely used DCT of type
2. Then we briefly discuss the other three cases of sampling

SS and collect the results in Table IX. Finally, we discuss the
sampling of the other finite-space models.

Select the Shift: We fix a space shift by T'.

Sample the Signal and Compute Fourier Transform: We
sample HH, that is, the first sampling point is 7'/2 and the
last one is I — T'/2. To get N samples, T = I/N and
t, =nT+T/2,n=0,..., N — 1. The sampled signal is

N-1

wr(t) = @(t)d(t — tn)

n=0

and applying the Fourier transform from Table VII, column SS,
we get

) = k(n + %)7['
Trg = nz::o x(tn) cos < N ) (25)
which, with z,, = 2(nT + T/2), is nothing else but the DCT,
type 2, of zg,...,xny—1. After sampling we obtain the graph
structure shown under “Visualization.” This shows that the
DCT, type 2, is a Fourier transform for the finite-space model
with this visualization, that is, HH extensions on both sides.

The adjacency matrix of the visualization is indeed diagonal-
ized by the DCT, type 2, [6], which confirms the correctness of
our construction.
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TABLE X
ESSENTIAL CONCEPTS FOR SAMPLING FINITE CONTINUOUS-SPACE MODEL WITH EXTENSION SA

Sampling Finite Continuous Space Model SA (Symmetric/Antisymmetric Extension)

WW (yields DCT-3)

WH (yields DCT-7)

HW (yields DCT-8) HH (yields DCT-4)

Sampling concepts

J—T . I I I I
Sampling period 7' N N-1 N1 ~
. . T T
Sampling points ¢, nT nT nT + 5 nl + 5
N—1
Sampled signal T (£) i Z T(n)O(E —tn) et
n=0
isualizati e i ® e aeee o) N oo e o Co—e——o sves o—— &)1
Visualization 01 o (N-I)T o1 o (N-I)T /2 312 5T/2 (N-1/2)T /2 312 5T)2 (N-172)T
Spectral concepts
(k+1)nw (k+%)nx (k+3)(n+i)m (k+1)(n+i)m
Pk,n cos( K, ) cos( NE - cos( 2N+% 2’7 cos(%)
N—1
Fourier transform &7, ... Z 2 L
n=0
Symmetries  Z7 mN+k—1 = T Nk D™ = ¥ Nk L™ = TP mN+k—1 =
? 2
T mN—k T mN—k (=)@, mN—k (=1)™&r mN—k
Visualization  (g——p—sg - e—0 i3 TR IS s R ISy e R

Sampling theorem concepts
Nyquist band Qnyq

Sinc filter I,

HE) e

Bandlim. subspace Spr,

Basis b for Spr,

N sin(
{r eS| 2k =0,k ¢ Qnyq}

{Len (It —tn) +U(t+1ta)) [n=0,...,N =1}, en{

{(k|0<k<N-1}
T k€ Qnygs

0 otherwise.
1 sin(Ft)
N7 t)

1/2 for t, =0,

N-1
Sampling theorem

n=0

For z(t) € Spr : () = Zx(tn)%en(l(t—tn)+l(t+tn))

Find the Symmetries in the Fourier Transform: The sampled
signal spectrum in (25) has the following symmetry properties:
lf?T,—k = Z%T,k on the left, and I%T,N =0, §7T,N+k = —.QAZT,N_k
on the right. Taken together, for n € Z

& i = (1)
2

_q1ym+1
TmN+k—1 RRHCS b i

T,mN —k— 1t
which yields the spectrum structure shown in Table IX, under
the heading HH. Note that in our visualization of the spectrum,
there is no loop of weight —1 on the right side; this is because
the value of 75 at K = N is 0, and hence the node vanishes.
The Nyquist band is again Qnyq = {k |0 < k < N —1}.
Extract the Original Spectrum: Similarly to what we did in
the time case, and again assuming that the signal is bandlimited
to the Nyquist band, we extract only that band by the suitable
box and compute the inverse frequency response using its defi-
nition in Table VII, column SS.

R 1 sin (%t)
o= {1 BEMN gy = S22 (p)
0 otherwise’ N sin (555t)

Sampling Theorem: As before, the extraction process which
results in the original signal, is pointwise multiplication of the
sampled signal 27 ; and the sinc filter ] « 1n the Fourier domain,
or, equivalently, convolution (from Table VII, column SS) of the

sampled signal by the inverse frequency response of the filter in
the original domain [(¢) *ss z7(t).

Theorem 5 (Sampling Theorem: FS Model-SS-HH): For a
signal z(¢) bandlimited to the Nyquist band

)= a:(tn)%(l(t ) U+ ).

As always, the space Spy, of bandlimited signals consists of
those whose spectral support is limited to {)xyq. The sampling
theorem reveals the basis for this space. As expected, the basis
functions are perfect interpolators as we show in the Appendix
for this case.

Sampling SS: WW, WH, HW: Since the underlying contin-
uous model is the same, the sinc takes the same form in all cases.
The only difference to HH sampling is that the sampling loca-
tions include one (WH and HW) or two (WW) boundary points,
which affects [(¢) 27 (t) due to (20) and (21). We accommodate
this in Table IX by introducing the correction factors €,,, €/, .

Sampling SA, AS, AA: S boundaries are sampled as before (H
or W; see Fig. 3), and A boundaries as shown in Fig. 4, that is,
the boundary point is always omitted since the signal value is
known to be zero.

The AA model shares the frequency response (and its inverse)
with the SS model; hence the sinc is the same as for SS.



KOVACEVIC AND PUSCHEL: ALGEBRAIC SIGNAL PROCESSING THEORY

255

TABLE XI
ESSENTIAL CONCEPTS FOR SAMPLING FINITE CONTINUOUS-SPACE MODEL WITH EXTENSION AS

Sampling Finite Continuous Space Model AS (Antisymmetric/Symmetric Extension)

WW (yields DST-3)

WH (yields DST-7)

HW (yields DST-8) HH (yields DST-4)

Sampling concepts

O . I I I I
Sdmplmg pCTlOd T N N—-I—% N_—% ~N
Sampling points t, nT +T nT +T nT + % nT + %
N—1
Sampled signal T (t) i Z T(tn)O(E —tn) e
n=0
Visualization o T T o T T 1 stz st T T T2 312 512 NeIT
Spectral concepts
(bt g) (nt D7 e (kHE) (D) (k) (nt ) o (b g)(ntg)m
@ sin(T2EHDT sin( {2t sin( 22T sin( 20t 2)T)
2
2 N—-1
Fourier transform &7 ;.. Z 1
n=0
Symmetries &7, mNt+k—1 = T Nk L™ = & Nk Lym = BT mN+k—1 =
—&T mN—k —&7 mN—k (=)™ 2 Nk (—1)™H & vk
Visualization (g3 = =7 (= s R VY & A A R & s R
Sampling theorem concepts
Nyquist band ONyq  cvvvvnnn {E10< k<N =1} o
. . T ke QN
SINC fIltEr [, et L
r 0 otherwise.
1 sin(Ft)
L1 G I N SR £)  *7oreeeee e
Bandlim. subspace SBr,  ...iiiiiiiiii {r €S| 2 =0,k & ONyql - oooiiiiii
1/2 forty, =1
H 1./ _ ;o n )
Basis b for S, ..iiiiiiiiiiain sen (l{t—tn) +U(t +tn)) |n=0,...,N—-1}, €, = {1 otherwise. T

N-1
Sampling theorem

n=0

For 2(t) € Spr :  =(t) = Zx(tn)%e;(za—tn)+1(t+tn))

Similarly, the SA and AS model share the sinc, which now
takes a different form, computed, as usual, as the inverse fre-
quency response of the box

jk:{T keQN.yq’ Ut ZLM
0 otherwise N sm(ﬁt)

All other concepts are shared with the SS case. The results are
summarized in Tables IX-XII.

Finally, we note that the tables reveal which DCTs and DSTs
are (close to be) inverses of each other. To find the inverse for
a given DCT or DST, we first look up the visualization of its
spectral domain and then retrieve the transform that has the same
visualization for its space domain. For example, the spectral do-
main visualization associated with the DCT-2 in Table IX cor-
responds to the space-domain visualization associated with the
DCT-3 in Table X and vice-versa.

To obtain the exact relationships, more tools are needed

[12], [6].

VII. CONCLUSION

In this paper, we developed the complete continuous signal
processing framework, called space signal processing, which
underlies the sixteen discrete cosine and sine transforms, and, in

doing so, a novel way of deriving them through sampling. To or-
ganize the framework in exactly the same way as standard time
signal processing, several key insights were needed. First, the re-
alization that a different shift operation, namely the symmetric
space shift, was needed as starting point. Second, a viewpoint
that replaces signals with symmetries (for example, periodic)
by signals on a compact domain with structure (for example, a
circle). Third, the rigorous decoupling of filter space and signal
space, multiplication of filters and filtering, and of Fourier trans-
form and frequency response. All these are naturally provided
by the algebraic signal processing theory of which this paper is
an application.

This paper complements our prior, bottom-up derivation of
the finite-space models in [6]. The latter had the advantage that
it also revealed the “z-transforms” and the polynomial algebras
associated with the DCTs/DSTs. These algebras are the key to
deriving their fast algorithms [26]. Together with this paper,
[6], [26] provide a complete linear, deterministic theory of the
DCTs/DSTs, which also may prove amenable to teaching this
material.

APPENDIX

Let I(t) be as defined in (26), and let t,, = nT + T/2,0 <
n < N. We show that {r,(¢) = (I(t — t,) + Ut + t,))/2 |



256 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 58, NO. 1, JANUARY 2010

TABLE XII
ESSENTIAL CONCEPTS FOR SAMPLING FINITE CONTINUOUS-SPACE MODEL WITH EXTENSION AA

Sampling Finite Continuous Space Model AA (Antisymmetric/Antisymmetric Extension)

WW (yields DST-1) WH (yields DST-5)

HW (yields DST-6) HH (yields DST-2)

Sampling concepts

i i I _I_ _I_ L
Sampling period T° N1 N+l N+1 N
Sampling points t, nT + T nT +T nT + % nT + %
N-1
Sampled signal T (t) oo Z T(En)0(E = En) et
- n:0 -
Visualization  g—p—= et emn g s Twr ST T w
Spectral concepts
(kD) (nt)m (k1) (ntl)m (k1) (n+d)m . (kD) (n+YHx
Pl,n s1n(( I\)7(+1 ) ) sm(( 1\;3_ ) ) sm(T%?) sm(%)
N—1
Fourier transform T, ... Z T(ER)Phm v oeve et
n=0
Symmetries & _pymt1 = & = z = (—-1)m+! & _pymt1 = (=1)m*?
Yy Tom N+ k= 1 12)"1 T,mN+k T,mN+k = (=1) T mN+k— LEC 12)m (=1
- —& & -Z
TﬂnN—k—w TﬂmN—k—M T,mN—k—w T,mN—k—M
Visualization ) _g——p—3 gy b i s TR e T

Sampling theorem concepts
Nyquist band nyq

Sinc filter [k

L) e
{x €S| 2K =0,k ¢ QUnyq}
................................. {3t —ta) +1t+tn) I n=0,...,N =1} ...

Bandlim. subspace Spr,
Basis b for Spy,

fE1O<ESN =1} oo

T k€ Qnyg,

0 otherwise.

. 2N—-1
1 sin( ( 2NT)7rt)

N sin(ggrt)

N—-1

Sampling theorem For z(t) € Spr, = «(t)

n=0

3 m(tn)% (Ut = tn) +1(t + tn))

0 < n < N} are perfect interpolators, that is, 7,,(,,) = 0 for
n # mand r,(t,) = 1.
As the first set we compute [(pT'), fi

orp € Z, |p| < 2N. If
p = 0, L'Hopital’s rule yields I(pT) = 1(0)

= (2N —1)/N.
Forp # 0
1 sin(pm — F5m) 1
pT)= ——"  2N"/ _ (_qyp+l __
(vT) N singgm (=1) N

Now we can compute 7y, (tm,) = (I((m —n)T) + I((m +n +
1)T))/2 assuming 0 < n,m < N.Forn =m

L0y + (20 + 1)1))

2
1 2N—1+1 B
T2 N N)

as desired.
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