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Abstract—We present a constructive algorithm for the design of
real lapped equal-norm tight frame transforms. These transforms
can be efficiently implemented through filter banks and have re-
cently been proposed as a redundant counterpart to lapped orthog-
onal transforms, as well as an infinite-dimensional counterpart to
harmonic tight frames. The proposed construction consists of two
parts: First, we design a large class of new real lapped orthog-
onal transforms derived from submatrices of the discrete Fourier
transform. Then, we seed these to obtain real lapped tight frame
transforms corresponding to tight, equal-norm frames. We iden-
tify those frames that are maximally robust to erasures, and show
that our construction leads to a large class of new lapped orthog-
onal transforms as well as new lapped tight frame transforms.

Index Terms—Bases, DFT, filter banks, frames, lapped orthog-
onal transforms, orthonormal, paraunitary matrices, tight.

I. INTRODUCTION

O VER the past decades, redundancy has become a
common tool in signal processing and communications

and found its way into signal representations through frames
[1]–[3]. Nowadays, frames serve a wide range of applications
from robust transmission to denoising (see [4] and references
therein) to the classification of diverse biomedical image
datasets [5]–[7]. Motivated by the need of having frame fam-
ilies dedicated to a spectrum of applications not considered
before, we seek to design new classes of frames.

We consider a frame to be a redundant set of vectors
, which span . A signal is expanded

into the frame using a transform, which computes the signal
projection coefficients. The original signal is then reconstructed
using the corresponding inverse transform

(1)
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Here is the Hermitian transpose. Both and its dual can
be seen as infinite matrices, a view that we take in our construc-
tion. The frame vectors are the columns of .

Which frame properties should we look for? Our design cri-
teria lead us to search for what we call lapped tight frame trans-
forms (LTFTs). These frames should be as follows.

• Computationally efficient: They can be implemented with
filter banks. As an additional benefit, they have real coef-
ficients.

• Tight: , so that the signal reconstruction is trivial,
since .

• Equal norm: for any .
• Lapped: The support of each is longer than a single

block of the signal processed by the filter bank.
• Maximally robust to erasures (when possible): A signal

can be reconstructed after a partial data loss. We provide
a formal definition later.

The above requirements resemble those of the nonredundant
LTFT counterparts that inspired this work: lapped orthogonal
transforms (LOTs) [8]. LOTs are expansions into orthonormal
bases (counterpart of tight frames) and computationally ef-
ficient since they can be implemented with filter banks. They
have basis vectors of overlapping support to eliminate blocking
artifacts. In our previous work [9], we constructed LTFTs from
LOTs by a process called seeding, a special form of submatrix
extraction.

When constructing LTFTs from known LOTs in [9], we no-
ticed that these LOTs have similar structure, which we exploit
here to systematically construct a large class of real LOTs from
specific submatrices of discrete Fourier transform (DFT) ma-
trices. We then use seeding to obtain real LTFTs from LOTs.
We prove that the corresponding frames are equal-norm, tight,
and that many of them are maximally robust to erasures. We
estimate the total number of the constructed LOTs and LTFTs,
and provide examples to illustrate our method. In addition, we
demonstrate that some of the known real LOTs can be con-
structed using our algorithm. Our systematic method is flex-
ible, leads to a large number of previously unknown LOTs and
LTFTs, and implicitly ensures the desirable properties we listed
above.

Related work includes [10], where the authors propose a
transform derived from the extended lapped complex trans-
form [11]. They use a change of parameters to derive the
decomposition vectors from the extended lapped complex
transform, ensure that the decomposition is invertible, and
describe the construction of the inverse. While in spirit this
approach is similar to ours, it does not use seeding and leads to
a completely different LTFT (the corresponding inverse filter
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SANDRYHAILA et al.: SYSTEMATIC CONSTRUCTION OF REAL LAPPED TIGHT FRAME TRANSFORMS 2557

Fig. 1. An� -channel filter bank sampled by � implementing a basis �� �
�� or a frame �� � �� expansion. The analysis part computes the transform
� � �� �; and the synthesis part computes the inverse transform � � �� .

bank is optimized to process seismic data [12]). The same
authors have also developed a 2-D nonseparable LTFT [13].

Another well-known family of tight frames, the tight
Weyl–Heisenberg frames [14], can also be viewed as a spe-
cial class of LTFTs with arbitrary overlap. These frames are
constructed from a prototype window function by translating it
in time and modulating in frequency. They can also be imple-
mented with oversampled multichannel filter banks, in which
all filters are modulates of one prototype filter. To demonstrate
this, we identify a subclass of LTFTs constructed in this paper
that are tight Weyl–Heisenberg frames.

II. BACKGROUND

In this section, we discuss signal transforms that can be
implemented with multichannel filter banks. Such transforms
can be interpreted as expansions into bases or frames, imple-
mented with critically sampled or oversampled filter banks,
respectively. Our focus is on basis and frame vectors with over-
lapping support to avoid blocking effects. Finally, we describe
the seeding process and discuss the construction of tight frames
by seeding basis matrices.

A. Filter Banks

Consider an -channel filter bank, shown in Fig. 1. Each
channel consists of an analysis filter and synthesis filter

, and down- and upsamplers by . If
, the filter bank is called critically sampled; if ,

it is oversampled. We assume all analysis and synthesis filters
and

have the same length for some (this requirement
is not restrictive as long as all filters have finite support). For
a signal , the operation of the filter bank can be described via
matrix-vector products as shown in (1): the transform
is filtering followed by downsampling and the inverse transform

is upsampling followed by filtering. has the form

. . .
...

...
...

...
...

. . .

...
...

...
...

...

. . .
...

...
...

...
...

. . .

(2)

where each block , is the matrix

...
. . .

... (3)

Note that the synthesis filters form the columns of .
For (1) to hold, we must have . In this paper, we

only consider self-dual bases and frames, meaning or

(4)

We can rewrite (4) in the -domain using polyphase analysis.
Namely, we define the polyphase matrix as1

(5)

with as defined in (3). We say has degree , since
any polynomial in has degree at most . Using (5),
(4) is equivalent to being paraunitary:

(6)

Here, represents the Hermitian transpose of a polyphase
matrix of , in which coefficients are complex-conjugated,

is replaced by , and the matrix is transposed. A paraunitary
square matrix is unitary on the unit circle.

If we consider the columns of as vectors in , then (4)
requires these vectors to form either an orthonormal basis (for

) or a tight, self-dual frame (for ) in . We
will often emphasize the special case of a basis by denoting
with . Correspondingly, the base vectors are denoted with
for frames or for bases.

In summary, oversampled filter banks correspond to frames
in , whose elements form the columns of in (2). The
converse is also true. This class of frames is called filter bank
frames.

We have three equivalent representations of filter bank
frames, and, by slight abuse of notation, we will use them in-
terchangeably as convenient and refer to all of them as frames:

1) a set of vectors spanning ;
2) an infinite matrix as in (2);
3) a polyphase matrix as in (5).
We will also encounter finite frames, that is, spanning sets of

or , and will view them equivalently as matrices,
. A finite basis hence corresponds to a square matrix.

For a given frame is the associated transform
that computes the vector of projection coefficients with respect
to , as shown in (1). Depending on the value of processes
the signal either in nonoverlapping or overlapping

blocks, thus leading to either blocked or lapped trans-
forms . These cases are visualized in Fig. 2 and discussed
next.

1The subscript � will always denote a polyphase matrix in this paper and
should not be confused with subscripts denoting submatrices as in (2).
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Fig. 2. The infinite matrix � in (2) in four different scenarios. The columns
of � are the basis/frame vectors. In this paper we assume �� � �� � is the
transform that computes the corresponding coefficients of a signal �. (a)� � �
for basis expansion with block transform, (b) � � � for basis expansion with
lapped transform �� � ��, (c) � for frame expansion with block transform, (d)
� for frame expansion with lapped transform �� � ��.

B. Basis Expansions

Basis Expansions With Blocked Transforms: In a critically-
sampled filter bank with filters of length equal to the
sampling factor ,

(7)

is a block-diagonal matrix with copies of on the diagonal, as
visualized in Fig. 2(a). In this case, (4) is equivalent to

, that is, is an orthonormal basis in . The filter bank
processes an infinite signal by applying to succes-
sive nonoverlapping blocks of signal elements. Since signal
blocks are processed as independent signals, and the results are
then concatenated, blocking effects occur due to boundary dis-
continuities. A well-known example of a blocked transform uses

; others include the use of discrete cosine and sine
transforms or the discrete Hartley transform.

In the case of the DFT,

Basis Expansions With Lapped Transforms: To avoid
blocking artifacts, basis vectors with longer support can be
used, as is the case with LOTs. They can be viewed as a class of

-channel critically-sampled filter banks, originally developed
for filters of length and later generalized to
arbitrary integer multiples of [8].

In this paper, we focus on LOTs with basis vector support
whose bases are visualized in

Fig. 2(b). The only nonzero blocks in (2) are and ; hence,
(5) yields a polyphase matrix of degree :

(8)

Since is square, (6) is equivalent to

(9a)

(9b)

We use these conditions later to show that the new transforms
we construct are indeed LOTs.

Two main classes of LOTs exist that use either complex ex-
ponentials or cosines in their basis vectors. They are used in a
variety of applications. For example, the Malvar LOT [15] is
well-suited for noise suppression and echo cancellation, while
the Young-Kingsbury LOT [11] was introduced for motion es-
timation applications. Below we list four known families of
LOTs by specifying a block row of this matrix, that is, the

matrix . The index range in each case is
. A block column of the corre-

sponding basis is obtained by Hermitian conjugation.
• Princen-Johnson-Bradley LOT [16]:

(10)

• Oddly-Modulated DCT LOT:

(11)

• Young-Kingsbury LOT [11]:

(12)

• Malvar Complex LOT [15]:

(13)

C. Frame Expansions

In the previous section, we explained how critically-sampled
filter banks compute basis expansions. Similarly, oversampled
filter banks compute frame expansions.

For frames, the property (4), , is called tightness
[17].2 Tight frames can be constructed from orthonormal bases
using the Naimark theorem [18], [19].

Theorem 1: A set is a tight frame for a Hilbert space
if and only if there exists another Hilbert space with

an orthonormal basis , so that the orthogonal projection
of onto satisfies: , for all .
One example of an orthogonal projection is the canonical pro-

jection that simply omits coordinates and is called seeding [20].
In the finite case, seeding yields a frame ( matrix)

for by omitting rows from a basis ( matrix) of
. Conversely, every finite frame can be obtained this way.3

To seed in the infinite case considered here, we extend this
approach to polyphase matrices .

2Note that in general, a tight frame is also one for which�� � �� ; however,
since � can be pulled into �, we consider only � � � here.

3Just extend � with rows to an invertible square matrix.
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Definition 1: A frame is obtained by seeding from
a basis , if it is constructed from by preserving
only a subset of the rows of . This is written as

, where is the set of indexes of the retained rows.
In particular, for , seeding constructs frames of the form

in Fig. 2(c) from bases of the form in Fig. 2(a). Conversely, every
such frame can be constructed this way.

For , seeding constructs frames of the form in Fig. 2(d)
from bases of the form in Fig. 2(b) (the example in the figure
is for ). However, in this case, it is unclear whether the
converse is true.

The following result is a special case of Theorem 1.
Lemma 1: Seeding an orthonormal basis (paraunitary)

yields a tight frame .
Next, we discuss the blocked and lapped frame expansions in

Fig. 2(c) and (d) in greater detail.
Frame Expansions With Blocked Transforms: If , then,

as visualized in Fig. 2(c),

(14)

The difference from (7) is that is now rectangular:
, and can be viewed as an -element frame in .

Hence, if it is tight, it can be constructed from an orthogonal
basis in by seeding.

As an example, harmonic tight frames (HTFs) are obtained
by preserving the first rows of , that is,

. is a frame for ; the corresponding
in (14) is a frame for the complex .
Similarly, real HTFs can be obtained by seeding from the real

DFT (RDFT) [20]. For example, the Mercedes–Benz frame

(15)

can be seeded from the orthogonal

by retaining (and exchanging) the last two rows.
Frame Expansions With Lapped Transforms: Projecting sig-

nals onto frame vectors with nonoverlapping support leads to
similar blocking artifacts as for orthonormal bases. We thus use
the same approach as for orthonormal bases in Section II-B and
consider frames in with vector support , visual-
ized in Fig. 2(d).

As in (8), the resulting polyphase matrix has degree 1:

and the tightness condition is equivalent to
being paraunitary (6).

In [9], we constructed LTFTs by seeding the polyphase matrix
of an LOT basis:

(16)

By the Naimark theorem, the constructed frames are tight; this
is why we named them lapped tight frame transforms. We will
follow later the same procedure here to derive LTFTs from LOT
bases. First, we introduce the frame properties we consider.

D. Frame Properties

Apart from tightness, other frame properties are often desir-
able, such as [4] the following.

• Equal norm: These are frames with basis vectors of the
same norm, , for . Since in the real
world, the squared norm of a vector is usually associated
with its energy, equal norm is required in situations where
equal-energy signals are desirable.

• Maximal robustness: An frame is maximally
robust to erasures, if and only if any submatrix of

has the full rank on the unit circle. This requirement
arose in using frames for robust transmission [21], where
the loss of up to transform coefficients over the
transmission channel would not prevent the complete re-
construction of the original signal. The loss of coefficients
translates into removal of the corresponding set of
columns in and the ability to reconstruct translates
into the remaining matrix being invertible.

We can construct new frames from old ones by appropriate
transformations that preserve the desired properties. Below we
list such transformations in the polyphase domain (polynomial
counterpart of the discussion for scalar matrices [20]).

Proposition 1: Assume all the matrix products below are
compatible and is a frame. Then,

i) is a frame, for any of full
rank on the unit circle;

ii) if is a tight (unit-norm tight) frame, then
is also a tight

(unit-norm tight) frame, for any paraunitary matrices
and ;

iii) if is a maximally robust frame, then
is also a maximally robust

frame, for any diagonal matrix and any matrix
, both of full rank on the unit circle.

III. CONSTRUCTION OF NEW LOTS AND LTFTS

Our goal is to design real filter bank frames that are tight,
equal-norm, and maximally robust to erasures. We do this by
starting from a polyphase matrix closely related to the DFT.
We first show that particular submatrices of this matrix yield
new LOTs (bases); we then use seeding to obtain the desired
frames and hence LTFTs .

A. Construction of New Real LOTs

In Section II-B, we showed that a real LOT basis corresponds
to a real square paraunitary polyphase matrix of degree

. Although in general is paraunitary if and only if
it is unitary on the entire unit circle , for a real of
degree , it suffices to check only two conditions.

Lemma 2: Let be a real polyphase matrix
of degree 1, that is, , where

. Then, is paraunitary if and only if and
are unitary.
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Fig. 3. Construction of frames for � � �.

Proof: “ ” is immediate. To prove “ ”, let
and be unitary, that is,

(17)

Subtracting the two equations yields

Inserting into (17) yields ; all require-
ments (9a)–(9b) for a paraunitary are satisfied.

Lemma 2 chooses 1 and as evaluation points. Using a very
similar proof, we can generalize to arbitrary roots of unity
and , provided .

As an example application of Lemma 2, consider the
polyphase matrix

(18)

Both and
(the discrete Hartley transform [22]) are unitary; hence, by
Lemma 2, is paraunitary.

In Theorem 2 (the proof is in Appendix A), we show that spe-
cific submatrices of are paraunitary, and thus cor-
respond to LOTs. In Section III-B we will seed these matrices
to obtain LTFTs (this algorithm is depicted in Fig. 3).

Theorem 2: Let be an submatrix of
, constructed by selecting the fol-

lowing row and column sets:

for some constants .
Then, is paraunitary if (in par-

ticular, divides ) and one of the following is satisfied:
i) divides , and ;

ii) does not divide , and divides both
and .

Note that Theorem 2 implies that must divide .
Since is symmetric, we can interchange the row

and column index sets in the theorem.
Corollary 1: constructed as in Theorem 2 is parauni-

tary if and only if is paraunitary.
Note that in Theorem 2 we work with index sets instead of

lists since permutations of rows and columns preserve parauni-
tarity.

Each paraunitary matrix obtained with Theorem 2 de-
fines a basis ; the associated LOT is .

We provide examples and further analysis in Section IV.
Here, we first complete the theory and discuss the seeding of
LTFTs from the above LOTs.

B. Construction of New LTFTs From LOTs

In this section, we seed LOT matrices , con-
structed as in Theorem 2, to obtain frames and
establish their properties.

Tightness: Any seeding of a obtained with Theorem 2
yields a tight frame by Lemma 1.

Equal Norm: Every element of constructed with The-
orem 2 has the norm . Hence, the columns of any seeded

matrix have the same norm .
Maximally Robust Frames: In general, maximal robustness

for frames is a property difficult to prove since one has to check
that every submatrix of is invertible. The good
news is that it is sufficient to ensure that each such submatrix is
nonsingular for at least one value [23].

Lemma 3: A square polyphase matrix is nonsingular
if and only if there exists such that .

We will use this fact in the proof of the following theorem.
Theorem 3: Let be a paraunitary polyphase matrix

constructed using Theorem 2 such that and are
co-prime. Further, we seed a frame

by retaining rows. Then is maximally robust to
erasures if (as sets)

for some and .
The proof is given in Appendix B.
As an example, consider the following family of maximally

robust LTFTs.
Corollary 2: If is constructed as in Theorem 2 with

and , then any consecutive
seeding (retaining of consecutive rows) of yields a max-
imally robust LTFT .

Note that the LTFTs constructed as in Corollary 2 and seeded
starting with the first row (i.e., ) are
Weyl–Heisenberg frames [14].

IV. NEW LOTS AND LTFTS: EXAMPLES AND ANALYSIS

In this section, we construct new classes of real LOTs and
LTFTs using the theory from Section III. We first provide ex-
amples of LOTs constructed with Theorem 2; we also show that
the previously known real LOTs (10)–(11) can be constructed
using Theorem 2. Then, we seed these LOTs to construct LTFTs.
Further, we discuss the design of windows for the LTFTs, pro-
viding additional flexibility in design. Finally, we briefly discuss
complex LTFTs constructed from the complex LOTs (12)–(13).
Note that, as before, we always construct bases and frames

; the associated LOTs and LTFTs are given by and .
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Fig. 4. Magnitude responses of (a) LOT basis vectors in (19) and (b) seeded
LTFT frame vectors in (21) derived using our construction method. The cor-
responding filter bank has � � � filters with support �� � � (LOT) or
�� � � (LTFT).

A. New LOTs

Small Example: We start with and con-
struct a polyphase matrix using Theorem 2 with parameters

and get

(19)

Since the parameters satisfy condition (i) of the theorem,
is paraunitary and hence specifies an LOT.

Fig. 4(a) depicts the magnitude responses of the basis vectors
in this example.

Class of LOTs: Next we give one example of how to construct
an entire class of LOTs for any size . In Theorem 2, we choose

with any and to
satisfy condition (i). Then, for any ,

(20)

is paraunitary, that is, is an LOT.
Number of New LOTs: We now investigate how many

can be derived from and Theorem 2. Nec-
essarily, , which implies that is not prime. This in mind,
Table I shows the number of new LOTs generated using our
method. For example, there are 28 3 3 paraunitary subma-
trices of and all are found with the theorem. Note
that every submatrix is specified by a row subset and column
subset of ; the ordering does not matter.

Further, there are 40 5 5 paraunitary submatrices of
that do not arise from Theorem 2. One such example

is the row set and the column set .
However, we speculate that these matrices are up to permuta-
tions the same as other submatrices that are derived from the
theorem. In fact, Theorem 2 could be extended based on the
permutation symmetries of the DFT [24], [25] and may then
cover all paraunitary submatrices.

Finally, we must note that empirical tests show that there are
no paraunitary submatrices of for not
dividing , for .

TABLE I
NUMBER OF PARAUNITARY � �� � ��� GENERATED FROM 	
�

USING THEOREM 2. THE NUMBERS OF PARAUNITARY SUBMATRICES � ���
THAT DO NOT SATISFY THEOREM 2 ARE SHOWN IN ITALIC

B. New Real LTFTs

Small Example: As a small example we seed (19) by re-
taining the first two rows and get

(21)

By construction, this frame is tight and equal norm. By
Theorem 3, any seeding at stride
(that is, consecutive) yields a maximally robust frame; hence,
the constructed LTFT is also maximally robust.

The frame has columns with

where the first element 1 in each vector is at position .
can be viewed as a lapped counterpart of the Mercedes-

Benz frame in (15). Fig. 4(b) depicts the magnitude responses
of the frame vectors in this example.

Class of LTFTs: Given any , an
can be constructed by seeding the in (20),
retaining rows. Any such frame will be tight and equal norm.
Since the construction parameters satisfy Theorem 3, and

also is maximally robust if
it results from consecutive seeding.
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Fig. 5. Magnitude responses of LTFT frame vectors resulting from consecutive
seeding with� � �� � � � of the (a) Princen-Johnson-Bradley and (b) oddly-
modulated DCT LOTs. In each case the corresponding filter bank has � � �

filters of support �� � ��.

C. Known Real LOTs and LTFTs

We demonstrate that the two known families of real LOTs
(Princen-Johnson-Bradley and Oddly-Modulated DCT) in (10)
and (11) can be derived using Theorem 2.

First, we compute the corresponding polyphase matrices.
Note that both (10) and (11) show and we have to
compute . Below, the row index is and
the column index is .

For the Princen-Johnson-Bradley LOT (10),

(22)

where .
For the Oddly-Modulated DCT LOT (11),

(23)

where .
In both cases, can be constructed as in Theorem 2

with parameters
for the Princen-Johnson-Bradley LOT; and

for the Oddly-Modulated DCT LOT. These parameters satisfy
condition ii) of the theorem, and thus is paraunitary. By
Corollary 1, is paraunitary as well.

As a consequence, any frame seeded from the above
is tight and equal-norm.

Finally, using Theorem 3 we conclude that any consecutive
seeding of the above yields a maximally robust LTFT,
with vector norm .

As an example, Fig. 5(a) and (b) shows the magnitude re-
sponses of the frame vectors constructed by preserving the first

rows of of size for the Princen-Johnson-
Bradley and the Oddly-Modulated DCT LOTs, respectively.

D. Window Design

We can gain additional freedom in LTFT construction, as well
as improve the frequency behavior of the corresponding filters
in the filter bank, by windowing the constructed LTFTs.

We are interested in one window that modulates all frame
functions at once. That is, we seek to design a diagonal
window matrix that produces a
windowed LTFT

(24)

Fig. 6. Window solution to (25a)–(25b) for (a) � � � and (b) � � �.

We use two different approaches to the window design. The
first one is analytical and uses algebraic conditions that govern
the filter bank. The second one uses optimization techniques
to approximate the frequency behavior of HTFs, as these are
narrow bandpass filters evenly spread across the frequency
domain.

The following derivations apply to all LTFTs seeded from
LOTs. As a running example, we use LTFTs seeded from the
Princen-Johnson-Bradley LOT (10).

Analytical Approach: For a LTFT seeded from the Princen-
Johnson-Bradley LOT, the th element of or
is

for .
Substituting (24) into (4), we get the following system of

equations:

for . It has an infinite set of solutions.
Among them let us consider symmetric ones: .
In this case, as shown in Appendix C, we obtain the following
system of equations:

(25a)

(25b)

for . Fixing , we have
and for .

An example of a symmetric window is shown in Fig. 6. It is
given by

Also, note that conditions (25a)–(25b) hold for anti-sym-
metric windows, for which .

Optimization Approach: We first explore error minimization
algorithms. The procedure finds an optimal window that mini-
mizes the weighted error between an HTF and the frame seeded
from the Princen-Johnson-Bradley LOT in the frequency do-
main as follows:
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Fig. 7. Magnitude responses of the (a) HTF and (b) Princen-Johnson-Bradley
LTFT frame vectors with � � �� � � �; as well as windowed Princen-
Johnson-Bradley LTFT frame vectors also with � � ��� � � with (c)
error-minimization designed window; and (d) a random window.

where is a weight vector, denotes point-wise multiplication,
denotes column-wise convolution, and

is the frame seeded from the Princen-Johnson-Bradley LOT. To
make sizes compatible, we use a stacked version of the HTFs,
that is, we build by stacking two HTF ma-
trices on top of each other. Algorithms used to implement this
procedure include the trust region method [26] and sequential
quadratic programming methods [27], which are gradient de-
scent-based methods. The results we obtain are not satisfac-
tory; indeed, randomly generating the window achieves better
results. Fig. 7(c) and (d) shows the results when using the op-
timized window and a random window, respectively. As a
reference, we give the magnitude responses of the HTF and
Princen-Johnson-Bradley frame vectors in Fig. 7(a) and (b), re-
spectively.

Our second optimization approach relies upon polar decom-
position of matrices and the Fan & Hoffman theorem [28].
Given a matrix , its polar decomposition is

where is a Hermitian positive semi-definite matrix
, and is a unitary matrix with

singular value decomposition

where is the rank of , and the matrices and are such that
the singular value decomposition of is [29]. Note
that is unique if has full rank. Then the best approximation
theorem by Fan & Hoffman [28] states that

(26)

Fig. 8. Magnitude responses of the windowed Princen-Johnson-Bradley LTFT
frame vectors using the polar decomposition method with� � �� � � �, and
(a) �� , (b) �� , and (c) �� .

for any unitarily invariant norm. Thus, by taking
and the window matrix, we have

(27)

Ideally, we would like to have one window vector for the entire
set of LTFT filters (that is, we want to be diagonal). Hence,
we can use in three different ways:

1) ; each column of windows one LTFT filter;
2) is the vector of eigenvalues of windows all LTFT

filters;
3) , with the largest eigenvalue, the corre-

sponding eigenvector of windows all LTFT filters.
Fig. 8 shows the magnitude responses of the Princen-
Johnson-Bradley LTFT filters when windowed by
and , showing a slight improvement over the original
Princen-Johnson-Bradley LTFT in that they have a better
frequency localization, with being the best one.

E. Complex LTFTs

Complex LOTs, such as (12) and (13), do not fit our current
framework since one cannot apply Lemma 2. However, we pos-
tulate that there could be a more general construction method
involving complex matrices, the study of which we leave for fu-
ture work.

Here, we briefly consider seeding the complex bases under-
lying the LOTs (12) and (13). Because of Lemma 1, any seeding
yields a tight frame. In addition, any such frame is equal norm.
To show this, we first compute the respective polyphase ma-
trices. Note that both (12) and (13) show and we have
to compute . Below, the row index is ,
the column index is , and .

For the Young-Kingsbury LOT (12), is given by
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Fig. 9. Magnitude responses of LTFT frame vectors resulting from consecutive
seeding with � � �� � � � of the (a) Young-Kingsbury and (b) Malvar
LOTs. In each case the corresponding filter bank has � � � filters of support
�� � ��.

and for the Malvar LOT (13), is given by

Observe that in both polyphase matrices every entry has the
same norm, and , respectively. Hence, every
seeded frame will be equal norm.

As an example, we consider and seed in both cases
by retaining the first 5 rows to obtain an equal-norm
tight frame. The magnitude responses of the associated analysis
filters for the Young-Kingsbury frame are shown in Fig. 9(a),
and for the Malvar frame are shown in Fig. 9(b).

V. CONCLUSIONS AND FUTURE WORK

We presented a simple and flexible construction method to
generate new LOTs from DFTs and new LTFTs from these new
LOTs. The new LTFTs are tight, equal-norm and under cer-
tain conditions, maximally robust to erasures. We have shown
that some well-known LOTs can be seen as particular cases
constructed with our method, and have studied LTFTs derived
from these LOTs. In addition, although excluded from the cur-
rent framework, we discussed known complex LOT families and
showed that they lead to equal-norm, tight LTFTs.

We intend to extend our construction method to extended
lapped transforms for which the length of the filters is any in-
teger multiple of (in which case contains poly-
nomials of degree ). Moreover, we plan on generalizing the
method to the complex case, by investigating the complex coun-
terparts to Lemma 2 and Theorem 2. For example, we have seen
that, for , the equivalence between unitary and paraunitary
matrices relies on the pair , or, more generally, on any two
roots of unity with an angle between them that differs from
and . Do -tuplets of complex numbers then exist, such that
the same equivalence is preserved in the case where ? An-
other interesting venue would be to generalize our construction
method to include a larger class of LOTs and LTFTs, and to find
the most general sufficient and necessary conditions on the de-
sign of paraunitary submatrices of the DFT.

APPENDIX A
PROOF OF THEOREM 2

According to Lemma 2, to show that is paraunitary, it
is enough to show that and are unitary.

The elements of the matrix are

and .
We first find the conditions for to be unitary. The

th element of is given by

is unitary if and only if for any
, or, equivalently, if and only if is divisible by the

product , but not divisible by for any
such that . This is possible if and only if

. Thus, , and is
unitary if and only if .

We next investigate conditions for to be unitary. The
th element of is

The th element of is
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Since , then for any
with is not divisible by . Thus,

To make a unitary matrix, we choose to impose the con-
dition for any . Here, we consider
the two cases specified by the theorem.

Case (i): If divides , and , then for any

Case (ii): If does not divide , then is equiv-
alent to

for any . This is possible if divides both
and .

Thus, in either of the two cases , and
is unitary.

Since the above conditions make and unitary,
Lemma 2 implies that is paraunitary.

APPENDIX B
PROOF OF THEOREM 3

We use Lemma 3 with , which makes a subma-
trix of . We fix the order of rows and columns
and get

Here, and
are full-rank diagonal matrices, and . Hence, by Propo-
sition 1(iii) we can omit them in studying the seeding of MR
frames.

Setting yields

(28)

Since is a primitive th root of unity, and
thus

(29)

where is the permutation matrix:

(30)

Further, let , and
consider an submatrix of (29), constructed by selecting
rows . Then

(31)

where . Since is
an submatrix of constructed from adjacent rows
(possibly looping around the bottom of the matrix), each
submatrix of it is invertible [20]. It follows from Proposition 1
that each submatrix of is also invertible.

Hence, by Lemma 3, every submatrix of is
nonsingular, and is maximally robust to erasures.

APPENDIX C
DERIVATION OF CONDITIONS (25a)–(25b) FOR THE

SYMMETRIC WINDOW

For a symmetric window, we have

where is a complimentary diagonal matrix:
if and 0 otherwise.

Substituting (24) into (4), we get

(32a)

(32b)

Using , we rewrite (32a) as

(33)

where .
If , then we get

...
. . .

...
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and

...
. . .

...

It follows from (33) that have to satisfy

for . These are exactly conditions
(25a)–(25b).
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[9] A. Chebira and J. Kovačević, “Lapped tight frame transforms,” in Proc.
IEEE Int. Conf. Acoust., Speech, Signal Process. (ICASSP), Honolulu,
HI, Apr. 2007, vol. III, pp. 857–860.

[10] J. Gauthier, L. Duval, and J.-C. Pesquet, “Low redundancy oversam-
pled lapped transforms and application to 3-D seismic data filtering,”
in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process. (ICASSP),
Toulouse, France, May 2006, vol. II, pp. 821–824.

[11] R. W. Young and N. G. Kingsbury, “Frequency-domain motion estima-
tion using a complex lapped transform,” IEEE Trans. Image Process.,
vol. 2, no. 1, pp. 2–17, Jan. 1993.

[12] J. Gauthier, L. Duval, and J.-C. Pesquet, “Oversampled inverse com-
plex lapped transform optimization,” in Proc. IEEE Int. Conf. Acoust.,
Speech, Signal Process., Apr. 2007, vol. I, pp. 549–552.

[13] J. Gauthier, L. Duval, and J.-C. Pesquet, “A non separable 2-D com-
plex modulated lapped transform and its applications to seismic data
filtering,” in Proc. Eur. Signal Process. Conf., Sep. 2005.
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Dr. Kovačević coauthored a top-10 cited paper in the Journal of Applied and
Computational Harmonic Analysis, and the paper for which A. Mojsilovic re-
ceived the Young Author Best Paper Award. Her paper on multidimensional
filter banks and wavelets (with M. Vetterli) was selected as one of the Funda-
mental Papers in Wavelet Theory. She received the Belgrade October Prize in
1986 and the E. I. Jury Award at Columbia University in 1991. She was the Ed-
itor-in-Chief of the IEEE TRANSACTIONS ON IMAGE PROCESSING. She served
as an Associate Editor of the IEEE TRANSACTIONS ON SIGNAL PROCESSING,
as a Guest Co-Editor (with I. Daubechies) of the Special Issue on Wavelets of
the Proceedings of the IEEE, Guest Co-Editor (with M. Vetterli) of the Special
Issue on Transform Coding of the IEEE Signal Processing Magazine, and Guest
Co-Editor (with R. F. Murphy) of the Special Issue on Molecular and Cellular

Bioimaging of the IEEE Signal Processing Magazine. She has been on the Ed-
itorial Boards of the Foundations and Trends in Signal Processing, the SIAM
book series on Computational Science and Engineering, the Journal of Applied
and Computational Harmonic Analysis, the Journal of Fourier Analysis and Ap-
plications, and the IEEE Signal Processing Magazine. She is a regular member
of the NIH Microscopic Imaging Study Section. From 2000 to 2002, she served
as a Member-at-Large of the IEEE Signal Processing Society Board of Gov-
ernors. She is the Chair of the Bio Imaging and Signal Processing Technical
Committee. She was the General Chair of ISBI 2006, General Co-Chair (with
V. Goyal) of the DIMACS Workshop on Source Coding and Harmonic Anal-
ysis, and General Co-Chair (with J. Allebach) of the Ninth IMDSP Workshop.
She was a plenary/keynote speaker at the 20 Years of Wavelets 2009, European
Women in Mathematics 2009, MIAABWorkshop 2007, Statistical Signal Pro-
cessingWorkshop 2007, Wavelet Workshop 2006, NORSIG 2006, ICIAR 2005,
Fields Workshop 2005, DCC 1998, as well as SPIE 1998.

Markus Püschel (M’99–SM’05) received the
Diploma (M.Sc.) degree in mathematics and the
Ph.D. degree in computer science, in 1995 and 1998,
respectively, both from the University of Karlsruhe,
Germany.

From 1998 to 1999, he was a Postdoctoral Re-
searcher at Mathematics and Computer Science,
Drexel University. Since 2000 he has been with
Carnegie Mellon University, Pittsburgh, PA, where
he is currently a Professor of Electrical and Com-
puter Engineering. His research interests include

fast computing, algorithms, applied mathematics, and signal processing
theory/software/hardware.

Dr. Püschel was an Associate Editor for the IEEE TRANSACTIONS ON SIGNAL

PROCESSING and the IEEE SIGNAL PROCESSING LETTERS. He was a Guest Ed-
itor of the Proceedings of the IEEE and the Journal of Symbolic Computation
and served on various program committees of conferences in computing, com-
pilers, and programming languages. He is a recipient (with J. Moura) of the
Outstanding Research Award of the College of Engineering at Carnegie Mellon
and the Eta Kappa Nu Award for Outstanding Teaching. He also holds the title
of Privatdozent (by habilitation) at the University of Technology, Vienna, Aus-
tria. He was a keynote/plenary speaker at the ACM ISSAC 2009, ACM GPCE
2007, iWAPT workshop 2007, and POHLL/IPDPS workshop 2007.


