Letter to the Editor

Guaranteeing convergence of iterative skewed voting algorithms for image segmentation

Doru C. Balcan¹,*, Gowri Srinivasa², Matthew Fickus³, Jelena Kovačević⁴

¹ School of Interactive Computing, Georgia Institute of Technology, Atlanta, GA, USA
² Dept. of Information Science and Engineering, and Center for Pattern Recognition, PES School of Engineering, Bangalore, India
³ Dept. of Mathematics and Statistics, Air Force Institute of Technology, Wright–Patterson AFB, OH, USA
⁴ Dept. of Biomedical Eng., Electrical and Computer Eng. and Center for Bioimage Informatics, Carnegie Mellon University, Pittsburgh, PA, USA

Abstract

In this paper we provide rigorous proof for the convergence of an iterative voting-based image segmentation algorithm called Active Masks. Active Masks (AM) was proposed to solve the challenging task of delineating punctate patterns of cells from fluorescence microscope images. Each iteration of AM consists of a linear convolution composed with a nonlinear thresholding; what makes this process special in our case is the presence of additive terms whose role is to "skew" the voting when prior information is available. In real-world implementation, the AM algorithm always converges to a fixed point. We study the behavior of AM rigorously and present a proof of this convergence. The key idea is to formulate AM as a generalized (parallel) majority cellular automaton, adapting proof techniques from discrete dynamical systems.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

The Active Masks (AM) algorithm was proposed for the segmentation of biological images [14]. Let the “image” \(f \) be any real-valued function over the domain \(\Omega := \prod_{d=1}^{D} \mathbb{Z}_{N_d} \) and refer to the \(N := N_1 N_2 \ldots N_D \) elements of \(\Omega \) as pixels; here, \(\mathbb{Z}_{N_d} \) denotes the finite group of integers modulo \(N_d \). A segmentation of \(f \) is a label function \(\psi : \Omega \to \{1, 2, \ldots, M\} \), or, equivalently, a collection of \(M \) binary masks \(\mu_m : \Omega \to \{0, 1\} \) where, at any given \(n \in \Omega \), we have \(\mu_m(n) = 1 \) if and only if \(\psi(n) = m \). That is, \(\mu_m \) at any iteration \(i \) can be defined as

\[
\mu_m^{(i)} := \begin{cases}
1, & \psi_i(n) = m, \\
0, & \psi_i(n) \neq m.
\end{cases}
\]

In AM, these masks actively evolve according to a given rule. One such is the iterative voting or the repeated application of the rule:

\[
\psi_i(n) = \text{argmax}_{1 \leq m \leq M} \left((\mu_m^{(i-1)} \ast g)(n) \right),
\]

where \(i \) is the index of the iteration, \(g : \Omega \to \mathbb{R} \) is some arbitrarily chosen fixed weighting function and “\(\ast \)" denotes circular convolution over \(\Omega \). Iterative voting is referred to as a convolution–threshold scheme since it simplifies to rounding the
filtered version of $\mu_1^{(i)}$ in the special case $M = 2$. Experimentation reveals that for typical low-pass filters g, repeatedly applying (1) to a given initial ψ_0 results in a progressive smoothing of the contours between distinctly labeled regions of Ω.

The AM algorithm is a generalization of (1) that contains additional image-based terms whose purpose is to drive the iteration towards a meaningful segmentation. Thus, the AM iteration is:

$$
\text{Active Masks: } \psi_t(n) = \arg\max_{1 \leq m \leq M} \left(\mu_m^{(i-1)} \ast g \right)(n) + R_m(n)
$$

where the region-based distributing functions $\{R_m\}_{i=1}^M$ can be any image-dependent real-valued functions over Ω. These will be referred to as skew functions in this paper, due to their role to bias the voting.

Experimentation reveals that the AM algorithm indeed often converges to a ψ which assigns a unique label to each cell provided the scale of the window g is chosen appropriately [14]; Fig. 1 shows examples in which R_1 is chosen to be a soft-thresholded version of the image's local average brightness, and the remaining R_m's, identically zero.

Goal of this paper: To provide a rigorous investigation of the convergence behavior of the AM algorithm. When ψ_0 and the R_m's are chosen at random, experimentation reveals that the repeated application of (2) always seems to eventually produce ψ_t such that $\psi_{t+1} = \psi_t$. At the same time, a simple example tempers one's expectations: taking $\Omega = \mathbb{Z}_4$, $M = 2$, $w = \delta_0 + \delta_1$ and $R_1 = R_2 = 0$, we see that AM will not always converge, as repeatedly applying (2) to $\psi_0 = \delta_0 + \delta_2$ produces the endless 2-cycle $\delta_0 + \delta_2 \mapsto \delta_1 + \delta_3 \mapsto \delta_0 + \delta_2$. In summary, even though random experimentation indicates that AM will almost certainly converge, there exist trivial examples which show that it will not always do so. The central question that this paper seeks to address is therefore:

Under what conditions on g and $\{R_m\}_{i=1}^M$ will the AM algorithm always converge to a fixed point of (2)?

Summary of the results: We show that when g is an even function, AM will either converge to a fixed point or will get stuck in a 2-cycle; no higher-order cycles are possible. We can further rule out 2-cycles whenever $f \ast g$ is positive semidefinite.

The following is a compilation of these results:

Theorem 1.1. Given any $\Omega := \prod_{i=1}^N \mathbb{Z}_{d_i}$, initial segmentation $\psi_0 : \Omega \rightarrow \{1, \ldots, M\}$ and any real-valued functions $\{R_m\}_{i=1}^M$ over Ω, the Active Mask algorithm, namely the repeated application of (2), will always converge to a fixed point of (2) provided the discrete Fourier transform of g is nonnegative and even.

A preliminary version of the results in this paper appears in the conference proceedings [2].

Significance of the present work: Though the specific AM algorithm was introduced in [14], iterative low-pass filtering has long been a subject of interest in applied harmonic analysis, having deep connections to continuous-domain ideas such as diffusion and the maximum principle [8]. For instance, [9] gives an edge detection application of a discretized version of these ideas. Meanwhile, [6] gives diffusion-inspired conditions under which low-pass filtering is guaranteed to produce a coarse version of a given image. One way to prove the convergence of iterative convolution–thresholding schemes is to show that low-pass filtering decreases the number of zero-crossings in a signal; such a condition is equivalent to a version of the maximum principle [11]. More recently, the continuous-domain version of (1) has been used to model the motion of interfaces between media [12,13]; in that setting, (1) is known to converge if $M = 2$. Since the AM algorithm is iterative, many of the proof techniques we use here were adapted from majority cellular automata (MCA), a well-studied class of discrete dynamical systems. Indeed, theoretical guarantees on the convergence of a symmetric class of MCA have been known for several decades; see [3,10], and references therein. Such results were recently generalized to a quasi-symmetric class via the use of Lyapunov functionals [7]. Whereas much of traditional MCA theory focuses on the convergence of repeated applications of (1), our work differs due to the presence of the additive R_m terms in (2).

The paper is organized as follows. In the next section, we use an MCA formulation of AM to prove our main convergence results. In Section 3, we then briefly discuss the generalization of our main results to a less elegant yet more realistic version of (2) involving noncircular convolution. We conclude in Section 4 with some examples illustrating our main results, as well as some experimental results indicating the AM algorithm's rate of convergence.

2. Active Masks as a majority cellular automaton

Cellular automata are self-evolving discrete dynamical systems [3]. They have been applied in various fields such as statistical physics, computational biology, and the social sciences. A tremendous amount of work in this area has focused on studying the convergence behavior of various types of automata. In this section, we formulate the AM algorithm (2) as an MCA in order to facilitate our understanding of its convergence behavior. To be precise, we consider a generalization of (2) in which the convolutional operator $f \mapsto f \ast g$ may more broadly be taken to be any linear operator A from $\ell(\Omega) := \{f : \Omega \rightarrow \mathbb{R}\}$ into itself:

$$
\psi_t(n) := \min_{m} \left(\arg\max_{m} \left(A\mu_m^{(i-1)}(n) + R_m(n) \right) \right), \quad \mu_m^{(i-1)} := \begin{cases} 1, & \psi_{i-1}(n) = m, \\ 0, & \psi_{i-1}(n) \neq m. \end{cases}
$$
Fig. 1. Active Mask segmentation of punctate patterns of proteins [14]. (a) Original image (courtesy of Linstedt Lab [1]). (b) Initialization using $M = 256$ random masks. After one iteration of (2), the background is separated from the foreground by the region-based skew function R_1. (c) Segmentation results using various scales of the voting filter at iterations 2, 8, 14 and at convergence. The first row shows a cross section of three Gaussian filters (scale = 4, 16 and 32 respectively). The second row shows the segmentation result after two iterations of the algorithm. When scale = 4, we observe a large number of small regions in the foreground. This is contrasted by the fewer number of regions when scale = 16 and scale = 32. Subsequent rows represent the state of the system at various stages of evolution. The last row represents the convergence states. Note that the algorithm converges regardless of the scale chosen, but the segmentation is only biologically meaningful at the proper scale of 16; at scales = 4, 32 the cells are oversegmented or undersegmented, respectively.

Here, the contribution of mask m in deciding the outcome at location n at iteration i is $(A \mu_m^{(i-1)}(n)$, and any ties are broken by choosing the smallest m corresponding to a maximal element. Note that given any initial segmentation ψ_0, applying (3) ad infinitum produces a sequence $\{\psi_i\}_{i=0}^\infty$. However, as there are only MN distinct possible configurations for $\psi : \Omega \to \{1, \ldots, M\}$, this sequence must eventually repeat itself. Indeed, taking minimal indices i_0 and $K > 0$ such that $\psi_{i_0+K} = \psi_{i_0}$, the deterministic nature of (3) implies that $\psi_{i+K} = \psi_i$ for all $i \geq i_0$. The finite sequence $\{\psi_i\}_{i=i_0}^{i_0+K-1}$ is called a cycle of (3) of length K. Note that $\{\psi_i\}_{i=0}^\infty$ converges if and only if $K = 1$, which happens precisely when ψ_{i_0} is a fixed point of (3).
Thus, from this perspective, proving that (3) always converges is equivalent to proving that $K = 1$ regardless of one’s choice of ψ_0. The following result goes a long way towards this goal, showing that if A is self-adjoint, then for any ψ_0 we have that the resulting K is necessarily 1 or 2. That is, if A is self-adjoint, then for any ψ_0, the sequence $|\psi_1|_{2}^{\infty}$ will either converge in a finite number of iterations, or it will eventually come to a point where it forever oscillates between two distinct configurations ψ_{i_0} and ψ_{i_0+1}.

Theorem 2.1. If A is self-adjoint, then for any ψ_0, the cycle length K of (3) is either 1 or 2.

Proof. As we are not presently concerned with the rate of convergence of (3), but rather the question of whether it does converge, we may assume without loss of generality that $|\psi_1|_{2}^{\infty}$ has already entered its cycle. That is, we reindex so that ψ_0 is the beginning of the K-cycle, and heretofore regard all iteration indices as members of the cyclic group Z_K. We argue by contrapositive, assuming $K > 2$ and concluding that A is not self-adjoint. For any $i = 1, \ldots, K$, (3) is equivalent to the system of inequalities:

\[
\begin{align*}
(A_{\mu_1}^{(i-1)}(\psi_1(n))) + R_{\psi_0(n)}(n) &> (A_{\mu_1}^{(i-1)}(\psi_1(n))) + R_{\psi_0(n)}(n) &\text{if } 1 \leq m < \psi_1(n), \quad (4a) \\
(A_{\mu_1}^{(i-1)}(\psi_1(n))) + R_{\psi_0(n)}(n) &\geq (A_{\mu_1}^{(i-1)}(\psi_1(n))) + R_{\psi_0(n)}(n) &\text{if } \psi_1(n) \leq m \leq M. \quad (4b)
\end{align*}
\]

Here, (4b) follows from the fact that $\psi_1(n)$ is a value of m that maximizes $(A_{\mu_1}^{(i-1)}(\psi_1(n))) + R_{\psi_0(n)}(n)$. Moreover, in the event of a tie, $\psi_1(n)$ is chosen to be the least of all such maximizing m, yielding the strict inequality in (4a). For any i and n, picking $m = \psi_{i-2}(n)$ in (4a) and (4b) leads to the subsystem of inequalities:

\[
\begin{align*}
(A_{\mu_1}^{(i-1)}(\psi_1(n))) - (A_{\mu_1}^{(i-1)}(\psi_2(n))) + R_{\psi_0(n)}(n) - R_{\psi_{i-2}(n)}(n) &> 0 &\text{if } \psi_{i-2}(n) < \psi_1(n), \quad (5a) \\
(A_{\mu_1}^{(i-1)}(\psi_1(n))) - (A_{\mu_1}^{(i-1)}(\psi_2(n))) + R_{\psi_0(n)}(n) - R_{\psi_{i-2}(n)}(n) &\geq 0 &\text{if } \psi_{i-2}(n) \geq \psi_1(n). \quad (5b)
\end{align*}
\]

Now since $K > 2$, there exists a pixel n for which $\{\psi_0(n), \psi_1(n), \ldots, \psi_{K-1}(n)\}$ is not of the form $\{a, a, \ldots, a\}$ nor of the form $\{a, b, a, b, \ldots, a, b\}$. At such an n, there must exist an i such that $\psi_{i-2}(n) < \psi_1(n)$. Consequently, at least one inequality in (5) is strict. Thus, summing (5) over all pixels n and all cycle indices i yields:

\[
0 < \sum_{i \in Z_K} \sum_{n \in \Omega} (A_{\mu_1}^{(i-1)}(\psi_1(n))) - \sum_{i \in Z_K} \sum_{n \in \Omega} (A_{\mu_1}^{(i-1)}(\psi_2(n))) + \sum_{i \in Z_K} \sum_{n \in \Omega} R_{\psi_0(n)}(n) - \sum_{i \in Z_K} \sum_{n \in \Omega} R_{\psi_{i-2}(n)}(n).
\]

Since Z_K is shift-invariant, $\sum_{i \in Z_K} \sum_{n \in \Omega} R_{\psi_0(n)}(n) = \sum_{i \in Z_K} \sum_{n \in \Omega} R_{\psi_{i-2}(n)}(n)$ for any $n \in \Omega$, reducing the previous equation to:

\[
0 < \sum_{i \in Z_K} \sum_{n \in \Omega} (A_{\mu_1}^{(i-1)}(\psi_1(n))) - \sum_{i \in Z_K} \sum_{n \in \Omega} (A_{\mu_1}^{(i-1)}(\psi_2(n))) + \sum_{i \in Z_K} \sum_{n \in \Omega} (A_{\mu_1}^{(i)}(\psi_1(n))) - \sum_{i \in Z_K} \sum_{n \in \Omega} (A_{\mu_1}^{(i)}(\psi_{i-1}(n)))(n),
\]

where the final equality also follows from the shift-invariance of Z_K. To continue, note that for any $i, j \in Z_K$ we have $

\mu_m^{(j)} = 1$ if and only if $\mu_j(n) = m$ and so:

\[
\sum_{n \in \Omega} (A_{\mu_1}^{(i)}(\psi_1(n))) = \sum_{n \in \Omega} (A_{\mu_1}^{(i)}(\mu_1^{(j)}(n))) = \sum_{n \in \Omega} (A_{\mu_1}^{(i)}(\mu_1^{(j)})) = \sum_{n \in \Omega} (A_{\mu_1}^{(i)}(\mu_1^{(j)})).
\]

where $(f, g) := \sum_{n \in \Omega} f(n)g(n)$ is the standard real inner product over Ω. Using (7) in (6) gives:

\[
0 < \sum_{m \in Z_K} \sum_{n \in \Omega} (A_{\mu_1}^{(i-1)}(\mu_1^{(j)})) - \sum_{m \in Z_K} \sum_{n \in \Omega} (A_{\mu_1}^{(i-1)}(\mu_1^{(j-1)})) = \sum_{m \in Z_K} \sum_{n \in \Omega} ((A - A^*)(\mu_1^{(i-1)}(\mu_1^{(j)})).
\]

implying $A - A^* \neq 0$, and so A is not self-adjoint. □

Theorem 2.1 has strong implications for the AM algorithm (2). Indeed, it is well known that if g is real-valued, then the adjoint of the convolutional operator $Af = f * g$ is $A^*f = f * g$ where $\tilde{g}(n) = g(-n)$ is the reversal of g. As such, if g is an even function, Theorem 2.1 guarantees that AM will always either converge or enter a 2-cycle.

We now build on the techniques of the previous proof to find additional restrictions on A which suffice to guarantee convergence:

Theorem 2.2. If A is self-adjoint and $(Af, f) \geq 0$ for all $f : \Omega \to \{0, \pm1\}$, then (3) always converges.

Proof. In light of Theorem 2.1, our goal is to rule out cycles of length $K = 2$. We argue by contrapositive. That is, we assume that there exist two distinct configurations ψ_0 and ψ_1, which are successors of each other, and will use this fact to produce $f : \Omega \to \{0, \pm1\}$ such that $(Af, f) < 0$. Substituting $i = 0$ and $m = \psi_1(n)$ into (4a) and (4b) yields:
(Aμ^{(1)}_{ψ_{0}(n)}) - (Aμ^{(1)}_{ψ_{1}(n)}) + R_{ψ_{0}(n)} - R_{ψ_{1}(n)} > 0 \quad \text{if } ψ_{1}(n) < ψ_{0}(n). \quad (8a)

(Aμ^{(1)}_{ψ_{0}(n)}) - (Aμ^{(1)}_{ψ_{1}(n)}) + R_{ψ_{0}(n)} - R_{ψ_{1}(n)} \geq 0 \quad \text{if } ψ_{1}(n) \geq ψ_{0}(n). \quad (8b)

Similarly, letting i = 1 and m = ψ_{0}(n) into (4a) and (4b) yields:

(Aμ^{(0)}_{ψ_{1}(n)}) - (Aμ^{(0)}_{ψ_{0}(n)}) + R_{ψ_{1}(n)} - R_{ψ_{0}(n)} > 0 \quad \text{if } ψ_{0}(n) < ψ_{1}(n). \quad (9a)

(Aμ^{(0)}_{ψ_{1}(n)}) - (Aμ^{(0)}_{ψ_{0}(n)}) + R_{ψ_{1}(n)} - R_{ψ_{0}(n)} \geq 0 \quad \text{if } ψ_{0}(n) \geq ψ_{1}(n). \quad (9b)

Since ψ_{0} and ψ_{1} are distinct, there exists n_{0} ∈ Ω such that ψ_{0}(n_{0}) ≠ ψ_{1}(n_{0}). If ψ_{0}(n_{0}) < ψ_{1}(n_{0}), we sum (8b) and (9a) over all n ∈ Ω. If on the other hand ψ_{0}(n_{0}) > ψ_{1}(n_{0}), we sum (8a) and (9b) over all n ∈ Ω. Either way, we obtain:

0 < \sum_{n=1}^{N} [(Aμ^{(1)}_{ψ_{0}(n)}) - (Aμ^{(1)}_{ψ_{1}(n)}) + (Aμ^{(0)}_{ψ_{1}(n)}) - (Aμ^{(0)}_{ψ_{0}(n)})].

Applying (7) four times then gives:

0 < \sum_{m=1}^{M} [(Aμ_{m}^{(1)} - μ_{m}^{(0)}) + (Aμ_{m}^{(1)} - μ_{m}^{(0)}) = - \sum_{m=1}^{M} (A(μ_{m}^{(1)} - μ_{m}^{(0)}), (μ_{m}^{(1)} - μ_{m}^{(0)})).

As such, there exists at least one index m_{0} such that 0 > (A(μ_{m_{0}}^{(1)} - μ_{m_{0}}^{(0)}), (μ_{m_{0}}^{(1)} - μ_{m_{0}}^{(0)})); choose f to be μ_{m_{0}}^{(1)} - μ_{m_{0}}^{(0)}. □

The most obvious way to ensure that (Af, f) ≥ 0 for all f : Ω → [0, ±1] is for A to be positive semidefinite, that is, (Af, f) ≥ 0 for all f : Ω → R. This in turn can be guaranteed by taking A to be diagonally dominant with nonnegative diagonal entries, via the Gershgorin circle Theorem [5]. Note that in fact strict diagonal dominance guarantees that iterative voting (1) always converges in one iteration. More interesting examples can be found in the special case where A is a convolutional operator Af = f ∗ g. Indeed, letting F be the standard non-normalized discrete Fourier transform (DFT) over Ω, we have:

\langle Af, f \rangle = \langle f ∗ g, f \rangle = \frac{1}{N} \langle F(f ∗ g), Ff \rangle = \frac{1}{N} \langle FFg, Ff \rangle = \frac{1}{N} \sum_{n∈Ω} \langle Fg(n), Ff(n) \rangle^2. \quad (10)

As such, if g : Ω → R is even and (Fg)(n) ≥ 0 for all n ∈ Ω, then A is self-adjoint positive semidefinite. Moreover, it is well known that g is real-valued and even if and only if Fg is also real-valued and even. Thus, A is self-adjoint positive semidefinite provided Fg is nonnegative and even. For such g, Theorem 2.2 guarantees that the AM algorithm (2) will always converge. These facts are summarized in Theorem 1.1, which is stated in the introduction. Examples of g that satisfy these hypotheses are given in Section 4.

We emphasize that Theorem 2.2 does not require A to be positive semidefinite, but rather only that (Af, f) ≥ 0 for all f : Ω → [0, ±1]. In the case of convolutional operators, this means we truly only need (10) to hold for such f’s. As such, it may be overly harsh to require that (Fg)(n) ≥ 0 for all n ∈ Ω. Unfortunately, the problem of characterizing such g’s appears difficult, as we could find no useful frequency-domain characterizations of [0, ±1]-valued functions. A spatial domain approach is more encouraging: when Ω = Z_{N}, writing f : Ω → [0, ±1] as the difference of two characteristic functions χ_{1}, χ_{2} : Ω → [0, 1], we have:

\langle Af, f \rangle = \langle A(χ_{1} - χ_{2}), (χ_{1} - χ_{2}) \rangle = \sum(A_{1,1}) + \sum(A_{1,2}) = \sum(A_{2,2}) - \sum(A_{1,2}) - \sum(A_{2,1}),

where sum(A_{i,j}) denotes the sum of all entries of the submatrix of A consisting of rows from i_{j} and columns from j_{i}. As such, the condition of Theorem 2.2 reduces to showing that 0 ≤ \sum(A_{1,1}) + \sum(A_{2,2}) - \sum(A_{1,2}) - \sum(A_{2,1}) for all choices of i_{1} and j_{2} of Z_{N}.

We conclude this section by noting that (3) is similar to threshold cellular automata (TCA) [3,4]. In fact, (3) is equivalent to TCA in the special case of M = 2; in this case, μ_{0}^{(1)}(n) = 1 - μ_{1}^{(1)}(n) for all n ∈ Ω, implying:

(Aμ_{i}^{(1)}(n) + R_{1}(n) > (Aμ_{0}^{(1)}(n) + R_{0}(n) \iff \left[A(μ_{1}^{(1)} - μ_{0}^{(1)}) + (R_{1} - R_{0})(n) > 0 \right.

\iff \left[A(μ_{1}^{(1)} - μ_{0}^{(1)}) + (R_{1} - R_{0})(n) > 0 \right.

\iff \left. (Aμ_{1}^{(1)}(n) + \frac{1}{2}(R_{1} - R_{0} - A1)(n) > 0 \right.

\iff \left. (Aμ_{1}^{(1)}(n) + b(n) > 0, \right.

where b(n) := \frac{1}{2}(R_{1} - R_{0} - A1)(n). That is, when M = 2, the AM algorithm is equivalent to a threshold-like decision. But whereas the traditional method for proving the convergence of TCA involves associated quadratic Lyapunov functionals [4], our method for proving the convergence of AM is more direct, being closer in spirit to that of [10].
3. Beyond symmetry

Up to this point, we have focused on the convergence of (3) in the special case where A is self-adjoint. In this section, we discuss how Theorems 2.1 and 2.2 generalize to the case of quasi-self-adjoint operators, which arise in real-world implementation of the AM algorithm. To clarify, up to this point, we have let the image f and weights g be functions over the finite abelian group $\Omega = \prod_{d=1}^{D} \mathbb{Z}_{N_d}$ and have taken the convolutions in (2) and (3) to be circular. In real-world implementation, the use of such circular convolutions can result in poor segmentation, as values at one edge of the image are used to influence the segmentation at the unrelated opposite edge.

One solution to this problem—implemented in [14]—is to redefine the set of pixels as a subset $\Omega := \prod_{d=1}^{D} [0, N_d)$ of the D-dimensional integer lattice \mathbb{Z}^D, and regard our image f as a member of $\ell(\Omega) := \{ f : \mathbb{Z}^D \to \mathbb{R} | f(n) = 0 \text{ \forall } n \not\in \Omega \}$. Here, the label function ψ and masks μ_m are regarded as $\{1, \ldots, M\}$- and $[0, 1]$-valued members of $\ell(\Omega)$, respectively, and the (noncommutative) convolution of any $f, g \in \ell(\Omega)$ with $g \in \ell^2(\mathbb{Z}^D)$ is defined as $f * g \in \ell(\Omega)$,

$$
(f * g)(n) := \frac{(f * g)(n)}{(\chi_\Omega * g(n))}, \quad \forall n \in \Omega,
$$

where χ_Ω is the characteristic function of Ω, and $*$ denotes standard (noncircular) convolution in $\ell^2(\mathbb{Z}^D)$. For the theory below, we need to place additional restrictions on g, namely that it belongs to the class:

$$
\mathcal{G}(\Omega) := \{ g \in \ell^2(\mathbb{Z}^D) : (\chi_\Omega * g(n)) > 0 \text{ \forall } n \in \Omega \}.
$$

In this setting, for a given $g \in \mathcal{G}(\Omega)$, the AM algorithm (2) becomes:

Noncircular Active Masks:

$$
\psi_i(n) = \arg\max_{1 \leq m \leq M} \left[(\mu_m(i-1) * g)(n) + R_m(n) \right], \quad \mu_m(i-1) := \begin{cases} 1, & \psi_{i-1}(n) = m, \\ 0, & \psi_{i-1}(n) \neq m. \end{cases}
$$

Note that the use of the $*$-convolution in (12) ensures that any “missing votes” are not counted in favor of any label m. Moreover, the denominator of (11) ensures that when n is close to an edge of Ω, the weights in the g-neighborhood of n are rescaled so as to always sum to one. This rescaling ensures that $\sum_{m=1}^{M} (\mu_m(i) * g)(n) = 1$ for all $n \in \Omega$, avoiding any need to modify the skew functions R_m near the boundary.

We then ask the question: for what g will (12) always converge? The key to answering this question is to realize that the $*$-filtering operation $Af = f * g$ can be factored as $A = DB$, where B is the standard filtering operator $Bf = f * g$ and $(Df)(n) = \lambda_n f(n)$, where $\lambda_n = (\chi_\Omega * g(n))^{-1}$. Here, A, B and D are all regarded as linear operators from $\ell(\Omega)$ into itself. More generally, we inquire into the convergence of:

$$
\psi_i(n) = \arg\max_{1 \leq m \leq M} \left[(A\mu_m(i-1))(n) + R_m(n) \right], \quad \mu_m(i-1) := \begin{cases} 1, & \psi_{i-1}(n) = m, \\ 0, & \psi_{i-1}(n) \neq m, \end{cases}
$$

where $A = DB$ and D is positive-multiplicative, that is, $(Df)(n) = \lambda_n f(n)$ where $\lambda_n > 0$ for all $n \in \Omega$. In particular, we follow [7] in saying that A is quasi-self-adjoint if there exists a positive-multiplicative operator D and a self-adjoint operator B such that $A = DB$. This definition in He have the following generalization of Theorems 2.1 and 2.2:

Theorem 3.1. Let A be quasi-self-adjoint: $A = DB$ where D is positive-multiplicative and B is self-adjoint. Then for any ψ_0, the cycle length K of (13) is either 1 or 2. Moreover, if B is positive-semidefinite, then (13) always converges.

Proof. We only outline the proof, as it closely follows those of Theorems 2.1 and 2.2. Let $(Df)(n) = \lambda_n f(n)$ with $\lambda_n > 0$ for all $n \in \Omega$. We prove the first conclusion by contrapositive, assuming $K > 2$. Rather than summing (5) over all n and i directly, we instead first divide each instance of (5) by the corresponding λ_n, and then sum. The resulting quantity is analogous to (6):

$$
0 < \sum_{i \in \mathbb{Z}_K} \sum_{n \in \Omega} \frac{1}{\lambda_n} (A\mu_{\psi_{i-1}(n)}(i))(n) - \sum_{i \in \mathbb{Z}_K} \sum_{n \in \Omega} \frac{1}{\lambda_n} (A\mu_{\psi_{i-1}(n)}(i))(n) = \sum_{i \in \mathbb{Z}_K} \sum_{n \in \Omega} (B\mu_{\psi_{i-1}(n)}(i))(n) - \sum_{i \in \mathbb{Z}_K} \sum_{n \in \Omega} (B\mu_{\psi_{i-1}(n)}(i))(n). \quad (14)
$$

Simplifying the right-hand side of (14) with (7) quickly reveals that B cannot be self-adjoint, completing this part of the proof. For the second conclusion, we again prove by contrapositive, assuming $K = 2$. Dividing (8a), (8b), (9a) and (9b) by λ_n and then summing either (8a) and (8b) or (9a) over all n gives:

$$
0 < \sum_{n=1}^{N} \frac{1}{\lambda_n} \left[(A\mu_{\psi_{i}(n)}(1))(n) - (A\mu_{\psi_{i}(n)}(0))(n) + (A\mu_{\psi_{i}(n)}(0))(n) - (A\mu_{\psi_{i}(n)}(1))(n) \right] = \sum_{m=1}^{M} [-B(\mu_{m} - \mu_{0}), (\mu_{m} - \mu_{0})],
$$

implying B is not positive semidefinite. \(\square\)
Fig. 2. An illustration of oscillating states produced by various automata: (a) The 3-tap box filter $\delta_{-1} + \delta_0 + \delta_1$ over $\Omega = \mathbb{Z}_4$. Using this g in (1) with $\psi_0 = \delta_0 + \delta_2$ results in the endless 2-cycle $\delta_0 + \delta_2 \mapsto \delta_1 + \delta_3 \mapsto \delta_0 + \delta_2$. This is because at each iteration, each pixel’s two neighbors will outvote him in deciding his label in the next iteration. (b) Convergence is also an issue in two dimensions, as illustrated by Moore’s automaton—a 3 \times 3 box filter—over $\Omega = \mathbb{Z}_4 \times \mathbb{Z}_4$. (c) Two-cycles persist in two dimensions even when the box filter is replaced by the smoother “plus” filter of von Neumann’s automaton. In all three cases, these filters are even and so Theorem 2.1 ensures that the cycle length K of (1) is either 1 or 2. However, none of them are positive semidefinite, as their DFTs attain negative values. As such, the convergence guarantees of Theorem 2.2 do not hold.

For a result about the convergence of (12), we apply Theorem 3.1 to $A = \mathcal{D} \mathcal{B}$ where $\lambda_m = \left((\chi_\Omega \ast g)(m) \right)^{-1}$ and $Bf = f \ast g$. Note that we must have $g \in \mathcal{G}(\Omega)$ in order to guarantee that D is positive. Moreover, B is self-adjoint if $g \in \ell^2(\mathbb{Z}^D)$ is even; since g is real-valued, this is equivalent to having its classical Fourier series $\hat{g} \in L^2(\mathbb{T}^D)$ be real-valued and even. Meanwhile, since:

$$\langle Bf, f \rangle = \langle f \ast g, f \rangle = \langle \hat{f} \hat{g}, \hat{f} \rangle = \int_{\mathbb{T}^D} \left| \hat{g}(x) \right|^2 |\hat{f}(x)|^2 dx,$$

then B is positive semidefinite if $\hat{g}(x) \geq 0$ for almost every $x \in \mathbb{T}^D$. To summarize, we have:

Corollary 3.2. If the Fourier series of $g \in \mathcal{G}(\Omega)$ is nonnegative and even, then (12) will always converge.

In the next section, we discuss how to construct such windows g, along with other implementation-related issues.

4. Application of the results to AM algorithms in practice

In this section we present a few representative and interesting examples of filter-based cellular automata, and discuss their behavior in relation with the results we proved in the previous sections. We also present some preliminary experimental findings on the rate of convergence of AM. For ease of understanding, let us for the moment restrict ourselves to circulant iterative voting (1), namely the version of AM (2) in which all the skew functions R_m are identically zero. The simplest nonzero filter is $g = \delta_0$. The DFT of δ_0 has constant value 1, and is therefore nonnegative and even. As such, Theorem 1.1 guarantees that (1) will always converge. Of course, we already knew that: since $f \ast \delta_0 = f$ for all $f \in \ell(\Omega)$, (1) will always converge in one step; as noted above, the same holds true for any g whose convolutional operator is strictly diagonally dominant with a nonnegative diagonal: $g(0) \geq \sum_{n \neq 0} |g(n)|$.

More interesting examples arise from box filters: symmetric cubes of Dirac δ’s. For instance, fix $N \geq 3$ and consider (1) over $\Omega = \mathbb{Z}_N$ where $g = \delta_{-1} + \delta_0 + \delta_1$. Since g is symmetric, Theorem 2.1 guarantees that (1) will either always converge or will enter a 2-cycle. However, if N is even, then (1) will not always converge, since $\psi_0 = \delta_0 + \delta_2 + \cdots + \delta_{N-2}$ generates a 2-cycle. This phenomenon is depicted in Fig. 2(a). This simple example shows that symmetry alone does not suffice to
Fig. 3. An illustration of the zero-crossings in an image with \(M = 3 \) masks.

Fig. 4. The rate of decrease of the AM algorithm in terms of the number of boundary crossings.

guarantee convergence; one truly needs additional hypotheses on \(g \), such as the requirement in Theorem 1.1 that its DFT is nonnegative. This hypothesis does not hold for \(g = \delta_{-1} + \delta_0 + \delta_1 \), since \((Fg)(n) = 1 + 2\cos(\frac{2\pi n}{N})\). Similar issues arise in the two-dimensional setting \(\Omega = Z_{N_1} \times Z_{N_2} \); both the \(3 \times 3 \) box filter (Moore's automaton, see Fig. 2(b)) and the “plus” filter (von Neumann's automaton, see Fig. 2(c)) are symmetric, meaning their cycle lengths are either 1 or 2, but neither are positive semidefinite, having DFTs of \([1 + 2\cos(\frac{2\pi n_1}{N_1})]\)[1 + 2\cos(\frac{2\pi n_2}{N_2})] and \(1 + 2\cos(\frac{2\pi n_1}{N_1}) + 2\cos(\frac{2\pi n_2}{N_2})\), respectively. Indeed, when \(N_1 \) and \(N_2 \) are even, alternating stripes generate a 2-cycle for the box filter, while the checkerboard generates a 2-cycle for the plus filter.

Of course, it is not difficult to find filters \(g \) which do satisfy the hypotheses of Theorem 1.1: one may simply let \(g \) be the inverse DFT of any nonnegative even function. More concrete examples, such as a discrete Gaussian over \(Z_N \), can be found using the following process. Let \(h : \mathbb{R} \to \mathbb{R} \) be an even Schwartz function whose Fourier transform is nonnegative; an example of such a function is a continuous Gaussian. Let \(g \) be the \(N \)-periodization of the integer samples of \(h \), namely \(g(n) := \sum_{n' = -\infty}^{\infty} h(n + Nn') \). Then \(g \) is even, and moreover, by the Poisson summation formula:

\[
(Fg)(n) = \sum_{n' = 0}^{N-1} g(n')e^{-2\pi i mn'/N} = \sum_{n' = 0}^{N-1} \sum_{n'' = -\infty}^{\infty} h(n' + Nn'')e^{-2\pi i n'n'/N} = \sum_{k = -\infty}^{\infty} h(k)e^{-2\pi i nk/N} = \sum_{k = -\infty}^{\infty} \hat{h}(k + \frac{n}{N}) \geq 0.
\]

In particular, if \(g \) is chosen as a periodized version of the integer samples of any zero-mean Gaussian, then Theorem 1.1 gives that the AM algorithm (2) necessarily converges. This construction method immediately generalizes to higher-dimensional settings where \(D > 1 \). It also generalizes to the noncircular convolution setting considered in Section 3. There, we further restrict \(h \) to be strictly positive, and let \(g \) be the integer samples of \(h \). The positivity of \(h \) implies \((\chi_{\Omega} * g)(n) > 0\) for all \(n \in \Omega \), implying \(g \in \mathcal{G}(\Omega) \) as needed. Moreover, \(g \) is even and the Poisson summation formula gives
that its Fourier series is nonnegative: \(\hat{g}(x) = \sum_{k=-\infty}^{\infty} \hat{h}(k+x) \geq 0 \). Any \(g \) constructed in this manner satisfies the hypotheses of Corollary 3.2, implying the corresponding noncirculant AM (12) necessarily converges.

4.1. The rate of convergence of the AM algorithm

Up to this point, we have focused on the question of whether or not the AM algorithm (2) converges. Having settled that question to some degree, our focus now turns to another question of primary importance in real-world implementation: at what rate does AM converge? Experimentation reveals that this rate highly depends on the configuration of the boundary between two distinctly labeled regions of \(\Omega \). This led us to postulate that the number of boundary crossings (see Fig. 3) should monotonically decrease with each iteration. Experimentation reveals that this number indeed often decreases extremely rapidly, regardless of the scale of \(g \). Fig. 4 depicts such an experiment for the fluorescence microscope image shown in Fig. 1(a). Starting from a random initial configuration of 64 masks, we used a Gaussian filter under three different scales, with each plot depicting the evolution of 5 independently-initialized runs of the algorithm. We emphasize the algorithm’s fast rate of convergence: the vertical axis represents a nested four-fold application of the natural logarithm to the number of boundary crossings. We leave a more rigorous investigation of the AM algorithm’s rate of convergence for future work.

Acknowledgments

We thank Prof. Adam D. Linstedt and Dr. Yusong Guo for providing the biological images which were the original inspiration for the AM algorithm and this work. Fickus and Kovačević were jointly supported by NSF CCF 1017278. Fickus received additional support from NSF DMS 1042701 and AFOSR FAATA00183G003, FAATA00083G004 and FAATA0035J001. Kovačević also received support from NIH R03-EB008870. The views expressed in this article are those of the authors and do not reflect the official policy or position of the United States Air Force, Department of Defense, or the U.S. Government.

References