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microscope images. Each iteration of AM consists of a linear convolution composed with
a nonlinear thresholding; what makes this process special in our case is the presence of
additive terms whose role is to “skew” the voting when prior information is available. In

Keywords: real-world implementation, the AM algorithm always converges to a fixed point. We study
Active Masks the behavior of AM rigorously and present a proof of this convergence. The key idea is
Cellular automata to formulate AM as a generalized (parallel) majority cellular automaton, adapting proof
Convergence techniques from discrete dynamical systems.

Segmentation © 2012 Elsevier Inc. All rights reserved.

1. Introduction

The Active Masks (AM) algorithm was proposed for the segmentation of biological images [14]. Let the “image” f be
any real-valued function over the domain £2 := ]_[(’13:1 Zn, and refer to the N :=N{N...Np elements of §2 as pixels; here,
Zn, denotes the finite group of integers modulo Ny. A segmentation of f is a label function ¥ : 2 — {1,2,..., M}, or,
equivalently, a collection of M binary masks um : 2 — {0, 1} where, at any given n € §2, we have un(n) =1 if and only if
¥ (n) =m. That is, uy at any iteration i can be defined as

(i):{L Yi(n) =m,
"0, Yi(n) #£m.

In AM, these masks actively evolve according to a given rule. One such is the iterative voting or the repeated application of
the rule:

Iterative Voting: y;(n) = argmax[(u,(j,_l) * g)(m], (1)
1<m<M

where i is the index of the iteration, g: £2 — R is some arbitrarily chosen fixed weighting function and “x” denotes circular

convolution over £2. Iterative voting is referred to as a convolution-threshold scheme since it simplifies to rounding the
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filtered version of ,U,gl) in the special case M = 2. Experimentation reveals that for typical low-pass filters g, repeatedly
applying (1) to a given initial 1 results in a progressive smoothing of the contours between distinctly labeled regions of £2.

The AM algorithm is a generalization of (1) that contains additional image-based terms whose purpose is to drive the
iteration towards a meaningful segmentation. Thus, the AM iteration is:

Active Masks: v;(n) = argmax[(,u,ﬁi_l) * g)(n) + Rm()], (2)

1<mM

where the region-based distributing functions {Rm}n"le can be any image-dependent real-valued functions over 2. These

will be referred to as skew functions in this paper, due to their role to bias the voting.

Experimentation reveals that the AM algorithm indeed often converges to a ¥ which assigns a unique label to each cell
provided the scale of the window g is chosen appropriately [14]; Fig. 1 shows examples in which R; is chosen to be a
soft-thresholded version of the image’s local average brightness, and the remaining Ry;,’s, identically zero.

Goal of this paper: To provide a rigorous investigation of the convergence behavior of the AM algorithm. When vy and
the R;;’s are chosen at random, experimentation reveals that the repeated application of (2) always seems to eventually
produce ; such that ;1 = v;. At the same time, a simple example tempers one’s expectations: taking 2 = Z4, M = 2,
w=248_1+8y+81 and Ry = R, =0, we see that AM will not always converge, as repeatedly applying (2) to ¥o = §p + 2
produces the endless 2-cycle §g + 82 — 81 + 83 — 8o + 82. In summary, even though random experimentation indicates
that AM will almost certainly converge, there exist trivial examples which show that it will not always do so. The central
question that this paper seeks to address is therefore:

Under what conditions on g and {Rm}r"n/’:1 will the AM algorithm always converge to a fixed point of (2)?

Summary of the results: We show that when g is an even function, AM will either converge to a fixed point or will get
stuck in a 2-cycle; no higher-order cycles are possible. We can further rule out 2-cycles whenever g is taken so that the
convolutional operator f +— f x g is positive semidefinite.

The following is a compilation of these results:

Theorem 1.1. Given any 2 := ]_[5:] Zn,, initial segmentation Yo : 2 — {1,..., M} and any real-valued functions {Rm}%':] over §2,
the Active Mask algorithm, namely the repeated application of (2), will always converge to a fixed point of (2) provided the discrete
Fourier transform of g is nonnegative and even.

A preliminary version of the results in this paper appears in the conference proceedings [2].

Significance of the present work: Though the specific AM algorithm was introduced in [14], iterative low-pass filtering has
long been a subject of interest in applied harmonic analysis, having deep connections to continuous-domain ideas such
as diffusion and the maximum principle [8]. For instance, [9] gives an edge detection application of a discretized version
of these ideas. Meanwhile, [6] gives diffusion-inspired conditions under which low-pass filtering is guaranteed to produce
a coarse version of a given image. One way to prove the convergence of iterative convolution-thresholding schemes is to
show that low-pass filtering decreases the number of zero-crossings in a signal; such a condition is equivalent to a version
of the maximum principle [11]. More recently, the continuous-domain version of (1) has been used to model the motion of
interfaces between media [12,13]; in that setting, (1) is known to converge if M = 2. Since the AM algorithm is iterative,
many of the proof techniques we use here were adapted from majority cellular automata (MCA), a well-studied class of
discrete dynamical systems. Indeed, theoretical guarantees on the convergence of a symmetric class of MCA have been
known for several decades; see [3,10], and references therein. Such results were recently generalized to a quasi-symmetric
class via the use of Lyapunov functionals [7]. Whereas much of traditional MCA theory focuses on the convergence of
repeated applications of (1), our work differs due to the presence of the additive Ry, terms in (2).

The paper is organized as follows. In the next section, we use an MCA formulation of AM to prove our main convergence
results. In Section 3, we then briefly discuss the generalization of our main results to a less elegant yet more realistic version
of (2) involving noncircular convolution. We conclude in Section 4 with some examples illustrating our main results, as well
as some experimental results indicating the AM algorithm’s rate of convergence.

2. Active Masks as a majority cellular automaton

Cellular automata are self-evolving discrete dynamical systems [3]. They have been applied in various fields such as
statistical physics, computational biology, and the social sciences. A tremendous amount of work in this area has focused
on studying the convergence behavior of various types of automata. In this section, we formulate the AM algorithm (2) as
an MCA in order to facilitate our understanding of its convergence behavior. To be precise, we consider a generalization
of (2) in which the convolutional operator f — f * g may more broadly be taken to be any linear operator A from £(£2) :=
{fIf : 2 — R} into itself:

(-1) . { 1, i) =m, 3)

Yi(n) = min(arg;nax[(Au,(qifl))(n) + Rm(n)])7 Pm =1 Yio1(n) £m.
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(a) Original image (b) i=0, M=25

scale=4

Gaussian Filter

i=2
i=8
i=14

Final state

(c) Segmentation outcomes for various scales

Fig. 1. Active Mask segmentation of punctate patterns of proteins [14]. (a) Original image (courtesy of Linstedt Lab [1]). (b) Initialization using M = 256
random masks. After one iteration of (2), the background is separated from the foreground by the region-based skew function R;. (c) Segmentation results
using various scales of the voting filter at iterations 2, 8, 14 and at convergence. The first row shows a cross section of three Gaussian filters (scale = 4,
16 and 32 respectively). The second row shows the segmentation result after two iterations of the algorithm. When scale = 4, we observe a large number
of small regions in the foreground. This is contrasted by the fewer number of regions when scale = 16 and scale = 32. Subsequent rows represent the
state of the system at various stages of evolution. The last row represents the convergence states. Note that the algorithm converges regardless of the scale
chosen, but the segmentation is only biologically meaningful at the proper scale of 16; at scales =4, 32 the cells are oversegmented or undersegmented,
respectively.

Here, the contribution of mask m in deciding the outcome at location n at iteration i is (A;Lﬁ,"fl))(n), and any ties are
broken by choosing the smallest m corresponding to a maximal element. Note that given any initial segmentation v,
applying (3) ad infinitum produces a sequence {v;}7°,. However, as there are only MN distinct possible configurations for
¥ 2 — {1,..., M}, this sequence must eventually repeat itself. Indeed, taking minimal indices ip and K > 0 such that
Yig+k = Vi, the deterministic nature of (3) implies that vk = y; for all i > ip. The finite sequence {1//,-}1.0:“;;(_] is called a
cycle of (3) of length K. Note that {v;};°, converges if and only if K =1, which happens precisely when v;, is a fixed point
of (3).
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Thus, from this perspective, proving that (3) always converges is equivalent to proving that K = 1 regardless of one’s
choice of . The following result goes a long way towards this goal, showing that if A is self-adjoint, then for any
we have that the resulting K is necessarily 1 or 2. That is, if A is self-adjoint, then for any v, the sequence {v;}2°, will
either converge in a finite number of iterations, or it will eventually come to a point where it forever oscillates between
two distinct configurations v, and v,1.

Theorem 2.1. If A is self-adjoint, then for any v, the cycle length K of (3) is either 1 or 2.

Proof. As we are not presently concerned with the rate of convergence of (3), but rather the question of whether it does
converge, we may assume without loss of generality that {;}7°, has already entered its cycle. That is, we reindex so that
Yo is the beginning of the K-cycle, and heretofore regard all iteration indices as members of the cyclic group Zg. We argue
by contrapositive, assuming K > 2 and concluding that A is not self-adjoint. For any i =1,..., K, (3) is equivalent to the
system of inequalities:

(AR ) @) + Ry ) > (A V) @) + R(m) i 1< m < (), (42)
(At ) 0 + Ry ) > (Apgin "))+ Rm(0) i i) <m < M. (4b)

Here, (4b) follows from the fact that ;(n) is a value of m that maximizes (A,u“ ]))(n) + R (n). Moreover, in the event of
a tie, ¥j(n) is chosen to be the least of all such maximizing m, yielding the strict inequality in (4a). For any i and n, picking
m=1;_»(n) in (4a) and (4b) leads to the subsystem of inequalities:

1 1 .
(A f/i(n)))(") (Ap (1 )(n))(”) + Ry;ay(M) — Ry, _,my(n) >0 if ;_»(n) < ¥i(n), (5a)
1 1 .
(Al ) ) — (A ‘ _2},1))<n) + Ryymy (M) = Ry =0 if Yri_5(n) = ¥i(n). (5b)
Now since K > 2, there exists a pixel n for which {¥o(n), ¥1(n),...,¥x_1()} is not of the form {a,aq,...,a} nor of the
form {a,b,qa,b,...,a,b}. At such an n, there must exist an i such that v;_»(n) < ¥;(n). Consequently, at least one inequality

in (5) is strict. Thus, summing (5) over all pixels n and all cycle indices i yields:
(i 1) @i-1)
0< 2 2 (Anyw)® =3 > (Aky )@+ D D Rum® =3 ) Ry pm (.
i€Zg nes2 i€Zg nes2 i€Zg nes2 i€Zg nesf2
Since Zg is shift-invariant, } ;7 Ry,m) (M) = > _icz, Ry;_,m(n) for any n € £2, reducing the previous equation to:
(@ 1) i1 (i 1) (l)
0< > > (Anym)® =7 Y (A ) ® =27 D (Attym)m = 3 > (A )0, (6)
i€Zg nes2 i€eZg nes2 i€Zg nes2 i€eZg nes2

where the final equality also follows from the shift-invariance of Zg. To continue, note that for any i, j € Zx we have

,LL,S—],) =1 if and only if ¥j(n) =m and so:

M
(Al ) m=3" Z (A )Y myp) ) = 3~ (Apw ). (7)
nes2 nef2 m=1 m=1

where (f, g):=) .o f(n)g(n) is the standard real inner product over £2. Using (7) in (6) gives:

M M
0~ Z Z AM(’ 1)’%(];) Z Z(AH«%),M% 1) Z Z((A_A*) (i— 1),Mr(7’1))

ieZg m=1 ieZg m=1 i€eZg m=1

implying A — A* #0, and so A is not self-adjoint. O

Theorem 2.1 has strong implications for the AM algorithm (2). Indeed, it is well known that if g is real-valued, then the
adjoint of the convolutional operator Af = f x g is A*f = f x g where g(n) = g(—n) is the reversal of g. As such, if g is an
even function, Theorem 2.1 guarantees that AM will always either converge or enter a 2-cycle.

We now build on the techniques of the previous proof to find additional restrictions on A which suffice to guarantee
convergence:

Theorem 2.2. If A is self-adjoint and (Af, f) > 0 forall f : 2 — {0, 1}, then (3) always converges.
Proof. In light of Theorem 2.1, our goal is to rule out cycles of length K = 2. We argue by contrapositive. That is, we assume

that there exist two distinct configurations ¥ and vy which are successors of each other, and will use this fact to produce
f:£2 — {0,41} such that (Af, f) < 0. Substituting i =0 and m = 1 (n) into (4a) and (4b) yields:
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(A @) = (Aufjf(n))(m + Ry (1) = Ry @) > 0 if Y1 (n) < o (), (8a)

(A1) ) = (Al o)) + Ry (1) = Ry (1) >0 if Y1 () > Yo (n). (8b)
Similarly, letting i =1 and m = yg(n) into (4a) and (4b) yields:

(A0 ) ) = (A ) (1) + Ry (1) — Ry (1) > O if o) < 1 (1), (%)

(ALt ) ) = (AL ) ) + Ry (1) = Rygmy () >0 i o (m) = 91 (). (9b)

Since o and vy are distinct, there exists ng € £2 such that (o) # ¥ (ng). If Yo(no) < ¥1(ng), we sum (8b) and (9a) over
all n € 2. If on the other hand o (ng) > ¥1(ng), we sum (8a) and (9b) over all n € §2. Either way, we obtain:

0<Z Abbgn) @ = (ALt o)1) + (A o)) 1) = (A ) )],

Applying (7) four times then gives:

E

M
0 Sl ) ) A ) . 1) == LA ). 1 = )

As such, there exists at least one index mg such that 0 > (A(u(l) /,L,(—,?g) (M(]) /x,(%)) choose f to be u(l) /,L,(% m|

The most obvious way to ensure that (Af, f) > 0 for all f: £ — {0,+1} is for A to be positive semidefinite, that is,
(Af, f) >0 for all f: £ — R. This in turn can be guaranteed by taking A to be diagonally dominant with nonnegative
diagonal entries, via the Gershgorin circle Theorem [5]. Note that in fact strict diagonal dominance guarantees that iterative
voting (1) always converges in one iteration. More interesting examples can be found in the special case where A is a
convolutional operator Af = f*g. Indeed, letting F be the standard non-normalized discrete Fourier transform (DFT) over &2,
we have:

1
(Af. )= x g f) = 1 (F(f x £).Ff) = ((Ff)(Fg) Ff)= Z(Fg)(n)|(Ff)(n)| (10)

neQ

As such, if g: 2 — R is even and (Fg)(n) > 0 for all n € §2, then A is self-adjoint positive semidefinite. Moreover, it is
well known that g is real-valued and even if and only if Fg is also real-valued and even. Thus, A is self-adjoint positive
semidefinite provided Fg is nonnegative and even. For such g, Theorem 2.2 guarantees that the AM algorithm (2) will
always converge. These facts are summarized in Theorem 1.1, which is stated in the introduction. Examples of g that satisfy
these hypotheses are given in Section 4.

We emphasize that Theorem 2.2 does not require A to be positive semidefinite, but rather only that (Af, f) > 0 for
all f: £ — {0,%1}. In the case of convolutional operators, this means we truly only need (10) to hold for such f’s. As
such, it may be overly harsh to require that (Fg)(n) > 0 for all n € 2. Unfortunately, the problem of characterizing such
g’s appears difficult, as we could find no useful frequency-domain characterizations of {0, +1}-valued functions. A spatial
domain approach is more encouraging: when 2 = Zy, writing f : 2 — {0,£1} as the difference of two characteristic
functions i, x1, : 2 — {0, 1}, we have:

(Af, fY ={Ax, — x1)s (X1, — X1,)) = sum(A1,1) + sum(Az,2) — sum(A1,2) — sum(Az 1),

where sum(A; ;) denotes the sum of all entries of the submatrix of A consisting of rows from I; and columns from I;. As
such, the condition of Theorem 2.2 reduces to showing that 0 < sum(A1,1) + sum(A32) — sum(A1 ) — sum(Az 1) for all
choices of subsets I; and I; of Zy.

We conclude this section by noting that (3) is similar to threshold cellular automata (TCA) [3,4]. In fact, (3) is equivalent
to TCA in the special case of M = 2; in this case, M(l ])(n) =1- u(i_l)(n) for all n € §2, implying:

(A" + Rim) > (ApS D)) + Ro) = [A(™" = w™")]m) + (R1 — Ro)(n) > 0
— AR — (1= 1)) + Ry — Ro)() > 0
(A

— - 1>)(n)+ ~(Ri —Ro— A1)() > 0

— (Anl” 1>)(n)+b(n)>o,

where b(n) := %(R1 — Rg — A1)(n). That is, when M = 2, the AM algorithm is equivalent to a threshold-like decision. But
whereas the traditional method for proving the convergence of TCA involves associated quadratic Lyapunov functionals [4],
our method for proving the convergence of AM is more direct, being closer in spirit to that of [10].
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3. Beyond symmetry

Up to this point, we have focused on the convergence of (3) in the special case where A is self-adjoint. In this section,
we discuss how Theorems 2.1 and 2.2 generalize to the case of quasi-self-adjoint operators, which arise in real-world imple-
mentation of the AM algorithm. To clarify, up to this point, we have let the image f and weights g be functions over the
finite abelian group 2 = ]_[(’],J:1 Zy, and have taken the convolutions in (2) and (3) to be circular. In real-world implementa-
tion, the use of such circular convolutions can result in poor segmentation, as values at one edge of the image are used to
influence the segmentation at the unrelated opposite edge.

One solution to this problem—implemented in [14]—is to redefine the set of pixels as a subset §2 := ]_[521[0, Ng) of the
D-dimensional integer lattice ZP, and regard our image f as a member of £(£2) :={f : ZP — R | f(n) =0 Vn ¢ £2}. Here,
the label function v and masks um, are regarded as {1,..., M}- and {0, 1}-valued members of £(£2), respectively, and the
(noncommutative) convolution of any f, g € £(2) with g € ¢2(ZP) is defined as f g € £(£2),

Frgym = IO o o (11)
(Xe *2) M)

where xg is the characteristic function of £2, and * denotes standard (noncircular) convolution in £2(ZP). For the theory
below, we need to place additional restrictions on g, namely that it belongs to the class:

g(2):={ge*(Z"): (xo xg9)(n) >0Vne 2}.
In this setting, for a given g € G(£2), the AM algorithm (2) becomes:

. . i 1, Yiq(n)=m,
Noncircular Active Masks: ;(n) = argmax | (p &7 n) + Rp(m)], (i=1)._ { ! 12
Vi(n) 1<gm<1v1 [(m  * &)™) + Rn()] Mm 0. Vi_i(n)£m. (12)

Note that the use of the x-convolution in (12) ensures that any “missing votes” are not counted in favor of any label m.
Moreover, the denominator of (11) ensures that when n is close to an edge of §2, the weights in the g-neighborhood of n
are rescaled so as to always sum to one. This rescaling ensures that Zm 1(u(') *xg)(n) =1 for all n € £2, avoiding any need
to modify the skew functions R, near the boundary.

We then ask the question: for what g will (12) always converge? The key to answering this question is to realize that
the x-filtering operation Af = f x g can be factored as A = DB, where B is the standard filtering operator Bf = f * g and
(Df)(n) = Apf (n), where A, = [(xo * g2)(m)]~ 1. Here, A, B and D are all regarded as linear operators from £(£2) into itself.
More generally, we inquire into the convergence of:

(1) — (i—1) i-ny _ |1 Yiaam=m,
viw =argmax | (Apm ") + Rum]. - pam {O, 1) £, (13)

where A= DB and D is positive-multiplicative, that is, (Df)(n) = A, f(n) where A, > 0 for all n € §2. In particular, we fol-
low [7] in saying that A is quasi-self-adjoint if there exists a positive-multiplicative operator D and a self-adjoint operator B
such that A = DB. This definition in hand, we have the following generalization of Theorems 2.1 and 2.2:

Theorem 3.1. Let A be quasi-self-adjoint: A = DB where D is positive-multiplicative and B is self-adjoint. Then for any g, the cycle
length K of (13) is either 1 or 2. Moreover, if B is positive-semidefinite, then (13) always converges.

Proof. We only outline the proof, as it closely follows those of Theorems 2.1 and 2.2. Let (Df)(n) = A, f(n) with A, >0
for all n € 2. We prove the first conclusion by contrapositive, assuming K > 2. Rather than summing (5) over all n and
i directly, we instead first divide each instance of (5) by the corresponding A,, and then sum. The resulting quantity is
analogous to (6):

0<) Z Aty = D Z (ARG @)@ =D 3 (Buy)m = > 3 (Buy) )@, (14)

i€Zy ne.Q i€Zg ne.Q i€Zk nes2 i€Zk nesf2

Simplifying the right-hand side of (14) with (7) quickly reveals that B cannot be self-adjoint, completing this part of the
proof. For the second conclusion, we again prove by contrapositive, assuming K = 2. Dividing (8a), (8b), (9a) and (9b) by A,
and then summing either (8a) and (9b) over all n or (8b) and (9a) over all n gives:

M
0<Z Al )@ = (Al Y ) + (A o)) — (A Y] ==Y (Bl — ). (iin” — i),

implying B is not positive semidefinite. O
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E

argmax

(a) 3-tap filter automaton

argmax %

(b) Moore’s automaton

argmax

(c) von Neumann’s automaton

Fig. 2. An illustration of oscillating states produced by various automata: (a) The 3-tap box filter §_1 + 8o + 81 over 2 = Z4. Using this g in (1) with
Yo = 8o + & results in the endless 2-cycle §g + 82 > 81 + 83 —> 8¢ + 2. This is because at each iteration, each pixel’s two neighbors will outvote him in
deciding his label in the next iteration. (b) Convergence is also an issue in two dimensions, as illustrated by Moore’s automaton—a 3 x 3 box filter—over
2 =74 x Z4. (c) Two-cycles persist in two dimensions even when the box filter is replaced by the smoother “plus” filter of von Neumann’s automaton.
In all three cases, these filters are even and so Theorem 2.1 ensures that the cycle length K of (1) is either 1 or 2. However, none of them are positive
semidefinite, as their DFTs attain negative values. As such, the convergence guarantees of Theorem 2.2 do not hold.

For a result about the convergence of (12), we apply Theorem 3.1 to A = DB where A, = [(xo *g)(m)]~! and Bf = f x g.
Note that we must have g € G(£2) in order to guarantee that D is positive. Moreover, B is self-adjoint if g € £2(ZP) is even;
since g is real-valued, this is equivalent to having its classical Fourier series & € L2(TP) be real-valued and even. Meanwhile,
since:

(Bf, fy=(f*g f)=(f& F) =/§<x>|]‘<x>|2dx,
Td

then B is positive semidefinite if g(x) > 0 for almost every x € TP. To summarize, we have:
Corollary 3.2. If the Fourier series of g € G(§2) is nonnegative and even, then (12) will always converge.

In the next section, we discuss how to construct such windows g, along with other implementation-related issues.
4. Application of the results to AM algorithms in practice

In this section we present a few representative and interesting examples of filter-based cellular automata, and discuss
their behavior in relation with the results we proved in the previous sections. We also present some preliminary experi-
mental findings on the rate of convergence of AM. For ease of understanding, let us for the moment restrict ourselves to
circulant iterative voting (1), namely the version of AM (2) in which all the skew functions Ry, are identically zero. The
simplest nonzero filter is g = 8g. The DFT of 89 has constant value 1, and is therefore nonnegative and even. As such,
Theorem 1.1 guarantees that (1) will always converge. Of course, we already knew that: since f x 8y = f for all f € £(£2),
(1) will always converge in one step; as noted above, the same holds true for any g whose convolutional operator is strictly
diagonally dominant with a nonnegative diagonal: g(0) > Zn;éo |g(n)|.

More interesting examples arise from box filters: symmetric cubes of Dirac §’s. For instance, fix N > 3 and consider (1)
over 2 =7Zy where g =6_1 + dp + 81. Since g is symmetric, Theorem 2.1 guarantees that (1) will either always converge
or will enter a 2-cycle. However, if N is even, then (1) will not always converge, since o = 3o + 82 + - -- + dy— generates
a 2-cycle. This phenomenon is depicted in Fig. 2(a). This simple example shows that symmetry alone does not suffice to
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Fig. 3. An illustration of the zero-crossings in an image with M = 3 masks.
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Fig. 4. The rate of decrease of the AM algorithm in terms of the number of boundary crossings.

guarantee convergence; one truly needs additional hypotheses on g, such as the requirement in Theorem 1.1 that its DFT
is nonnegative. This hypothesis does not hold for g =68_1 + 89 + 81, since (Fg)(n) =1+ 2cos(2”T"). Similar issues arise in
the two-dimensional setting §2 = Zy, x Zn,: both the 3 x 3 box filter (Moore’s automaton, see Fig. 2(b)) and the “plus”
filter (von Neumann’s automaton, see Fig. 2(c)) are symmetric, meaning their cycle lengths are either 1 or 2, but neither
are positive semidefinite, having DFTs of [1 + 2cos(2”"1 M+ 2cos(2”"2)] and 1+ 2cos(2”"1 )+ 2cos(2”"2) respectively.
Indeed, when N and N are even, alternating stripes generate a2- cycle for the box filter, whlle the checkerboard generates
a 2-cycle for the plus filter.

Of course, it is not difficult to find filters g which do satisfy the hypotheses of Theorem 1.1: one may simply let g be
the inverse DFT of any nonnegative even function. More concrete examples, such as a discrete Gaussian over Zy, can be
found using the following process. Let h: R — R be an even Schwartz function whose Fourier transform is nonnegative;
an example of such a function is a continuous Gaussian. Let g be the N-periodization of the integer samples of h, namely

gn):= Zn/:_ooh(n + Nn'). Then g is even, and moreover, by the Poisson summation formula:

N-1 ~
F)m =Y g(n)e” " = Z Z h(n' +Nn")e Z he W = 3 ﬁ<k+ %) >0.
n’=0 0n"= k=—o00 k=—o00

In particular, if g is chosen as a periodized version of the integer samples of any zero-mean Gaussian, then The-
orem 1.1 gives that the AM algorithm (2) necessarily converges. This construction method immediately generalizes to
higher-dimensional settings where D > 1. It also generalizes to the noncircular convolution setting considered in Sec-
tion 3. There, we further restrict h to be strictly positive, and let g be the integer samples of h. The positivity of h implies
(xe *g)(n) > 0 for all n € 2, implying g € G(£2) as needed. Moreover, g is even and the Poisson summation formula gives
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that its Fourier series is nonnegative: g(x) = Y o2 _ ﬁ(k+x) > 0. Any g constructed in this manner satisfies the hypotheses
of Corollary 3.2, implying the corresponding noncirculant AM (12) necessarily converges.

4.1. The rate of convergence of the AM algorithm

Up to this point, we have focused on the question of whether or not the AM algorithm (2) converges. Having settled that
question to some degree, our focus now turns to another question of primary importance in real-world implementation: at
what rate does AM converge? Experimentation reveals that this rate highly depends on the configuration of the boundary
between two distinctly labeled regions of £2. This led us to postulate that the number of boundary crossings (see Fig. 3)
should monotonically decrease with each iteration. Experimentation reveals that this number indeed often decreases ex-
tremely rapidly, regardless of the scale of g. Fig. 4 depicts such an experiment for the fluorescence microscope image shown
in Fig. 1(a). Starting from a random initial configuration of 64 masks, we used a Gaussian filter under three different scales,
with each plot depicting the evolution of 5 independently-initialized runs of the algorithm. We emphasize the algorithm'’s
fast rate of convergence: the vertical axis represents a nested four-fold application of the natural logarithm to the number
of boundary crossings. We leave a more rigorous investigation of the AM algorithm'’s rate of convergence for future work.
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