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Abstract—We present a signal processing framework for the
analysis of discrete signals represented as linear combinations
of orthogonal polynomials. We demonstrate that this represen-
tation implicitly changes the associated shift operation from the
standard time shift to the nearest-neighbor shift introduced in
this paper. Using the algebraic signal processing theory, we
construct signal models based on this shift and derive their
corresponding signal processing concepts, including the proper
notions of signal and filter spaces,z-transform, convolution,
spectrum, and Fourier transform. The presented results extend
the algebraic signal processing theory and provide a general
theoretical framework for signal analysis using orthogonal poly-
nomials.

Index Terms—Signal model, Fourier transform, orthogonal
polynomials, Hermite polynomials, Legendre polynomials,La-
guerre polynomials, signal representation, filter, shift, convolu-
tion, algebra, module.

I. I NTRODUCTION

Traditional discrete-time signal processing (SP) is basedon
a set of fundamental concepts including time shift, signals,
filters, z-transform, convolution, spectrum, and Fourier trans-
form. These concepts come in two variants: one for infinite
signals and one for finite (usually periodically extended)
signals. The algebraic signal processing (ASP) theory [1] has
shown that the exact form of these and other concepts can
be derived from the discrete-time shift operator, and that the
same derivation can be used to obtain SP frameworks for shift
operators different from the time shift.

As an illustration, consider Table I. The first column of the
table lists several basic SP concepts. The second column shows
their instantiation for discrete-time SP. The first conceptis the
shift, visualized as an operator moving a time point to the
next one. For simplicity, we denote the shift withx instead of
z−1 as usually done in time SP [2]. Solving the corresponding
equationxpk = pk+1 yields the basis polynomialspk = xk

and leads to the traditionalz-transform (by substitutingx =
z−1) and linear convolution. The Fourier transform can then
be constructed as a projection of a signal on the eigenfunctions
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of the shift operator. This brief discussion omits many details
that can be found in [1].

One interesting aspect of this approach is that one can think
of changing the notion of the shift operation to obtain SP
theories that are different from the standard time SP, but still
possess all relevant concepts. This was done in [3], [4], where
a theory of 1-D space1 SP was derived based on the symmetric
space shift operator shown in the third column of Table I.
The basis polynomials for these models are now Chebyshev
polynomials, which changes the notion of convolution. The
space shift also changes the associated eigenfunctions andthus
the corresponding Fourier transforms. In the finite case, itturns
out that the Fourier transforms are the well-known discrete
cosine and sine transforms (DCTs and DSTs), which were
originally derived using statistical SP [5].

The described approach can also be used in 2-D SP, as
demonstrated in [6] for a hexagonal space shift and in [7] for
a quincunx shift.

Contribution. We derive a 1-D SP framework, called
discrete-nearest-neighbor (discrete-NN) SP, that is based on
the nearest-neighbor shift shown in the last column of TableI.
As indicated in the table, the basis polynomials now are
orthogonal polynomials on a real line. Background for these
polynomials is provided in Appendix A. Discrete-space SP is
a special case, but discrete-NN SP extends far beyond. As
we demonstrate, discrete-NN SP is equivalent to assuming
that signals reside on a weighted line graph; directed and
undirected graphs are possible. We provide a set of funda-
mental concepts for discrete-NN SP, including the notions of
z-transform, convolution, spectrum, frequency response, and
Fourier transforms for both infinite and finite cases.

The platform for our work is the ASP theory, an axiomatic
approach to and a generalization of linear SP [1], [3], [8], [9].
This paper extends and completes the preliminary discussion
of discrete-NN shifts in [8] (where they were called generic
nearest neighbor shifts).

Related work. Orthogonal polynomials have been previ-
ously used in signal analysis and processing, primarily as
suitable bases for signal representation. Laguerre polynomials
have been proposed for use in representation of exponentially
decaying signals and speech coding [10], [11]. Sampled Leg-
endre polynomials have been used for numerical approxima-
tion in climate modeling [12], [13]. Bases of continuous and
discretized Hermite polynomials have been proposed for the
electrophysiological signal compression [14]–[18], and image

1It is called spacesince the shift operator is non-directional.
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TABLE I
ASPENABLES THE DERIVATION OF DIFFERENTSPFRAMEWORKS BY CHANGING THE NOTION OF SHIFT. THE STANDARD TIME SHIFT YIELDS

TRADITIONAL TIME SP,AND THE SPACE SHIFT YIELDS SPACESPASSOCIATED WITH THEDCTS AND DSTS. IN THIS PAPER, WE CONSIDER THE
NEAREST-NEIGHBOR SHIFT.

Concept Discrete-time SP [1] Discrete-space SP [3] Discrete-NN SP (this paper)

Shift:

visualization s s

pk pk+1

1
s s s

pk−1 pk pk+1

1

2

1

2
s s s

pk−1 pk pk+1

ak−1

bk

ck

as operatorx xpk = pk+1 xpk = 1

2
pk−1 + 1

2
pk+1 xpk = ak−1pk−1 + bkpk + ckpk+1

Basis polynomials pk(x) = xk (x = z−1) pk(x) = Ck(x) (Chebyshev polynomials) pk(x) = Pk(x) (orthogonal polynomials)

“z-transform” (sk) →
∑

skx
k (sk) →

∑
skCk(x) (sk) →

∑
skPk(x)

Fourier transform (infinite) DTFT Discrete-space Fourier transforms Section III

Fourier transform (finite) DFT DCTs/DSTs Section IV

processing [19]–[21]. The analysis of birth-death processes
and queueing theory have also been interpreted in terms of
the associated orthogonal polynomials [22], [23]. However,
to the best of our knowledge, there is no general framework
for the use of orthogonal polynomials in SP. In this paper
we provide such a framework and show that it is equivalent
to standard time SP but based on a changed notion of shift
operation. Using this insight we derive a complete set of
associated basic SP concepts and show that the expansion into
orthogonal polynomials is equivalent to the Fourier transform
in this framework.

As mentioned above, discrete-space SP [3] is a special case
of discrete-NN SP based on specific orthogonal polynomials
called Chebyshev polynomials. The associated SP framework
has been derived and used for the construction of fast algo-
rithms for DCTs and DSTs [9], [24].

Finally, a connection between Gauss-Markov random fields
and signal processing based on NN shifts has been identified
in [8], [25], [26].

II. A LGEBRAIC SIGNAL PROCESSINGTHEORY

The ASP theory [1], [3], [8] is both a generalization of and
an axiomatic approach to the standard linear signal processing
theory. ASP is based on the concept of a signal model defined
as a triple(A,M,Φ), whereA andM are, respectively, filter
and signal space, andΦ is a generalization of thez-transform.
Each signal model has its own notion of the shift, filtering or
convolution, thez-transform, the Fourier transform, and other
concepts.

In this section, we discuss the main ASP concepts for 1-D
SP and, as examples, demonstrate their instantiations for tra-
ditional infinite and finite discrete-time SP. We also introduce
several terms and concepts that have not been defined before,
so this section is both a review of and a complement to the
ASP theory discussed in [1], [3], [8].

A. Infinite Discrete Models

Signal model. Infinite discrete signals are typically repre-
sented as sequences of numbers from some vector spaceV :

s =
(

sk
)

k∈Z
∈ V ⊆ CZ. The purpose of a signal model is to

formally assign toV a signal space and a filter space and to
define the notion of filtering.

The common assumptions underlying (linear) SP [2] allow
filters to be connected serially and in parallel, and to be
amplified. These operations satisfy distributivity laws and
other properties. If we call these operations, respectively,
multiplication, addition, and scalar multiplication, then the
filter spaceA becomes simultaneously a ring and a vector
space, i.e., analgebra. We denote its elements withh.

The signal space is also a vector space whose elements
we will denote withs. The signal space permits an operation
(filtering) of A that we also write as multiplication2: hs means
s filtered with h. These properties make the signal space an
A-module that we denote withM.

The third component of the signal model is a mappingΦ
that maps discrete sequencess ∈ V to the signalss ∈ M. The
mapping generalizes the concept of az-transform. Together,
A, M, andΦ form the signal model:

Definition 1 A signal modelfor a vector spaceV is a triple
(A,M,Φ), whereA is a filter algebra,M is an associated
A-module of signals, andΦ is a bijective mapping fromV to
M.

The signal model is best understood by considering the
example of discrete-time SP. In this case, the signals and filters
are represented by finite-energy and finite-power sequences,

2In mathematically terms, despite being called addition, multiplication, and
scalar multiplication, these operations may be instantiated in various ways,
not necessarily through the traditional addition and multiplication. However,
all signal models considered in this paper, have filtersh = h(x) and signals
s = s(x) represented by series or polynomials inx. For all models, the
above operations are instantiated as the addition and multiplication of series
or polynomials.
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Fig. 1. Visualization of the 1-D infinite discrete-time model. The weight on
each edge is1.

respectively:3

A = {h =
∑

m∈Z
hmxm | h =

(

. . . , h0, h1, . . .
)T ∈ ℓ1(Z)},

M = {s = ∑

k∈Z
skx

k | s =
(

. . . , s0, s1, . . .
)T ∈ ℓ2(Z)},

Φ : ℓ2(Z) → M, s → s =
∑

k∈Z
skx

k.
(1)

Hence,Φ is the standardz-transform (we substitutex = z−1),
and A and M are defined in thez-domain. Its elemnts are
primarily viewed as series (infinite polynomials) rather than
as functions.

The motivation for the signal model definition is that all
other basic SP concepts can be derived from it as explained
below. But first we briefly discuss how the discrete-time signal
model (1) can be derived from the discrete-time shift operator
[1]. This will later allow us to derive the discrete-NN model
from the NN shift analogously.

Consider discrete-time pointspk, k ∈ Z. The time shift
movespk to pk+1 (see the second column of Table I). Calling
the shiftx, this can be written as an operation

xpk = pk+1, k ∈ Z.

Assuming p0 = 1, the solutions of this recurrence are
polynomialspk = pk(x) = xk, k ∈ Z. The signal space
M now consists of linear combinations ofpk. The associated
filter space isgeneratedby the shift, i.e., it consists of linear
combinations ofk-fold shifts xk. This yieldsM and A as
shown in (1). The restriction toℓ2(Z) andℓ1(Z) ensures that
filtering a signal inM yields again a signal inM:

hs ∈ M, for h ∈ A, s ∈ M.

The visualizationof a signal model is the graph associated
with the operation of the shift on the basis polynomials inM.
For the time model, the visualization is shown in Fig. 1.

Convolution. As explained above, filtering a signals ∈ M
with a filter h ∈ A is written as multiplication:hs = t ∈ M.
The coefficients oft are given byt =

(

. . . , t0, t1, . . .
)T

=
Φ−1(hs).

For the infinite time model (1), filtering is defined by the
multiplication ofh(x) ∈ A ands(x) ∈ M:

t(x) =
∑

k∈Z

tkx
k = h(x)s(x),

which in coordinate form yields the standard linear convolu-
tion t = h ∗ s, wheretk =

∑

m∈Z
hmsk−m.

Spectrum. The spectrumassociated with a signal model
is a collection of spectral components that areirreducible
submodulesMω ≤ M. These are subspaces ofM that are

3Throughout this paper, spaces are denoted with calligraphic letters, abstract
signals and filters (elements ofM andA) with italic letters, and coordinate
vectors and matrices with boldface letters. The symbol→ indicates a mapping.

closed under filtering withh ∈ A. The indexω is called the
frequency.

In all models considered in this paper, the spectral compo-
nentsMω have dimension one and are thus of the form

Mω =
{

c · fω(x) | c ∈ C

}

,

wherefω(x) is an eigenfunction for all filtersh = h(x) =
∑

m hmxm ∈ A. In particular, forh(x) = x, this means

xfω(x) = λωfω(x)

for someλω ∈ C. Thus, by linearity, for anyh(x) ∈ A
h(x) · fω(x) = h(λω)fω(x). (2)

For the infinite time model (1), the eigenfunctions are

fa(x) =
∑

k∈Z

akxk, a ∈ C, (3)

sincex · fa(x) = a−1fa(x). Hence, for anyh(x) ∈ A,

h(x) · fa(x) = h(a−1) · fa(x). (4)

Fourier transform. The Fourier transform for a signal
model is constructed by projecting a signal onto the spectral
componentsMω. It may not be necessary to use all spectral
components to obtain an invertible transform.

For example, for the infinite time model (1), it is sufficient
to consider only the eigenfunctionsfa(x) in (3) for |a| = 1,
i.e., those located on the unit circle, which is the intervalof
orthogonality of the basis functionsxk: if we parameterize
x = ejω, ω ∈ [0, 2π), then

∫ 2π

0

ejωk(ejωm)∗dω =

∫ 2π

0

ejω(k−m)dω = 2πδk−m.

Hence, the associated eigenfunctions (3) are4

fω(x) =
∑

k∈Z

ejωkxk,

and they satisfy

x · fω(x) = e−jωfω(x). (5)

The resulting Fourier transform is the standard discrete-time
Fourier transform:

S(ω) = 〈s, fω(x)〉 =
∑

k∈Z

ske
−jωk,

sk =
1

2π

∫ 2π

0

S(ω)ejωkdω.

Frequency response.The frequency response of a filter
h ∈ A is defined by its action on the spectral components
Mω. It is directly obtained from (2) as

H(ω) = h(λω).

As follows from (4) and (5), the frequency response
for the infinite time model (1) isH(ω) = h(e−jω) =
∑

m∈Z
hme−jωm, ω ∈ [0, 2π).

Convolution theorem. Once the Fourier transform and

4By convention, we writefω instead off
ejω
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the frequency response are defined for a signal model, the
convolution of a signals ∈ M with a filter h ∈ A can
be expressed via the product of their Fourier transform and
frequency response (convolution theorem).

For the infinite time model (1), it follows from the defini-
tions of the discrete-time Fourier transform and the frequency
response that the convolution ofs(x) ∈ M and h(x) ∈ A
corresponds to the product ofS(ω) andH(ω):

t(x) = h(x)s(x) ⇔ T (ω) = H(ω)S(ω).

Parseval equality. The Parseval equality establishes the
connection between the energy of the signal and the energy of
its Fourier transform. For infinite discrete-time signals,it has
the form [2]

∑

k∈Z

|sk|2 =
1

2π

∫ 2π

0

|S(ω)|2dω.

Frequency domain. We call the space of the Fourier
transformsS(ω) for all s(x) ∈ M the frequency domain. For
the infinite discrete-time model (1), the frequency domain is
a Hilbert space of continuous finite-energy functions defined
on [0, 2π), with the inner product

〈u, v〉 =
∫ 2π

0

u(ω)v∗(ω)dω.

The set
(

ejωm
)

m∈Z
, whereω ∈ [0, 2π), is an orthogonal basis

in this frequency domain.

B. Finite Discrete Models

As demonstrated in [1], [8], 1-D linear shift-invariant mod-
els for finite discrete signals necessarily haveA = M =
C[x]/p(x). Here, C[x]/p(x) denotes a polynomial algebra,
which is a set of polynomials of degree less thann = deg(p)
with polynomial multiplication (i.e., filtering and serialcon-
nection of filters) performed modulop(x).

Signal model. Assuming 1-D and shift-invariance, the
generic signal model for finite discrete signals has the form

A = M = C[x]/p(x),

Φ : Cn → M, s →
∑n−1

k=0 skpk(x),
(6)

whereb =
(

pk(x)
)

0≤k<n
is a chosen basis forM.

The model commonly assumed for finite discrete-time sig-
nals is

A = M = C[x]/(xn − 1),

Φ : Cn → M, s → ∑n−1
k=0 skx

k.
(7)

It can be obtained from the infinite model (1) by imposing the
periodic boundary conditionxn = x0 = 1, i.e.,xn−1 = 0 [1],
[8]. The visualization of this model, obtained from the action
of the time shiftx on the basisb =

(

x0, x1, . . . , xn−1
)

, is
shown in Fig. 2. The periodic boundary condition is captured
by the arrow that connects the boundary points of the graph.

Convolution. Filtering in the finite model (6) has the form

t(x) = h(x)s(x) mod p(x). (8)

b b b b b b b b b b b

x0 x1 x2 xn−3 xn−2 xn−1

Fig. 2. Visualization of the 1-D finite discrete-time model.

In the case of the finite time model (7), this means

t(x) =

n−1
∑

k=0

tkx
k = h(x)s(x) mod (xn − 1),

which, in the coordinate form, becomes the standard circular
convolutiont = h⊛s, so thattk =

∑

0≤m<n h(k−m) modnsm.

Spectrum. We assume that the polynomialp(x) = (x −
α0) . . . (x − αn−1) is a separable polynomial, i.e. its zeros
are distinct:αk 6= αm for k 6= m. Let α =

(

α0, . . . , αn−1

)

.
The spectrum is obtained from the Chinese Remainder Theo-
rem [27] as the decomposition of the signal moduleM =
C[x]/p(x) into the direct sum of irreducible submodules
C[x]/(x− α0), . . . , C[x]/(x− αn−1):

C[x]/p(x) → C[x]/(x− α0)⊕ · · · ⊕ C[x]/(x− αn−1),

s(x) →
(

s(α0), s(α1), . . . , s(αn−1)
)T

.
(9)

Hence, the spectral components of the model (6) are given by
Mk = C[x]/(x− αk), 0 ≤ k < n.

In particular, the spectrum of the finite time model (7) is
given byMk = C[x]/(x − e−j2πk/n), 0 ≤ k < n.

Fourier transform. The mapping (9) defines the Fourier
transform associated with the signal model (6). With respect
to the basisb in M, it is given by the matrix

Pb,α =
[

pm(αk)
]

0≤k,m<n
(10)

=











p0(α0) p1(α0) . . . pn−1(α0)
p0(α1) p1(α1) . . . pn−1(α1)

...
...

...
p0(αn−1) p1(αn−1) . . . pn−1(αn−1)











.

This means the Fourier transform (9) of a signalΦ(s) =
s(x) =

∑n−1
k=0 skpk(x) ∈ M and its inverse can be computed

as the matrix-vector products

S = Pb,α · s, (11)

s = P−1
b,α ·S,

wheres = (s0, . . . , sn−1)
T andS = (S0, . . . , Sn−1)

T .

As follows from (10), the Fourier transform for the finite
time model (7) is the well-known discrete Fourier transform
(DFT):

Pb,α =
[

e−j2πkm/n
]

0≤k,m<n
= DFTn . (12)

Frequency response.We obtain from (9) that the projection
of s(x) ∈ M on a spectral componentMk = C[x]/(x− αk)
is the evaluations(αk), since

s(x) ≡ s(αk) mod (x− αk).
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Hence,h(x)s(x) ≡ h(x)s(αk) ≡ h(αk)s(αk) mod (x−αk),
and the frequency response of a filterh(x) ∈ A at αk is

Hk = h(αk). (13)

For the finite time model (7), the frequency response of a fil-
ter h(x) =

∑n−1
m=0 hmxm ∈ A is henceHk = h(e−j2πk/n) =

∑n−1
m=0 hme−j2πkm/n and thus takes the same form as the

discrete Fourier transform of a signal.
Convolution theorem.The general convolution theorem for

finite discrete signal models, proven in [1], [8], establishes that
the convolution (8) can be expressed via the Fourier trans-
form (11) and the frequency response (13) as the product of
the discrete Fourier transformSk and the frequency response
Hk:

t(x) = h(x)s(x) mod p(x) ⇔ Tk = HkSk.

In particular, the convolution ofs(x) ∈ M andh(x) ∈ A
in the finite time model (7) corresponds to

t(x) = h(x)s(x) mod (xn − 1) ⇔ Tk = h(e−j2πk/n)Sk.

Parseval equality.The energy of the signals and its Fourier
transformS can be calculated as|| s ||2 = (s∗ s)1/2, and
||S ||2 = (S∗ S)1/2 = (s∗ P∗

b,α Pb,α s)1/2.
For the finite time model (7), we obtain||S ||2 =

√
n|| s ||2,

sinceP∗
b,α Pb,α = DFT∗

n DFTn = n In .
Frequency domain. The frequency domain of the finite

discrete model (6) can be viewed as the frequency domain of
the infinite discrete model sampled at frequenciesωk = αk.

For example, the frequency domain of the finite time
model (7) is the frequency domain of the infinite time
model (1) sampled at frequenciesωk = 2πk/n [2], [4].
The orthogonal basis of this domain is formed byejωm,
0 ≤ m < n, sampled atωk: the mth basis function is
(

1, e−j2πm/n, . . . , e−j2πm(n−1)/n
)

.

III. I NFINITE DISCRETE-NN MODEL

In this section, we construct the 1-D infinite discrete-
NN signal model based on the discrete-NN shift. We then
derive the associated SP concepts and properties for the new
model, exactly in parallel with the discussion in Section II.
In particular, we will see that the SP framework for infinite
discrete-NN signal model contains all basic concepts, but
considerably differs from the traditional infinite discrete-time
SP.

We start with the discrete-NN shift shown in the fourth
column of Table I. Calling the shiftx and assuming that it
operates on pointspk, the shift operation can be written as

x · pk = ak−1pk−1 + bkpk + ckpk+1. (14)

If we assume that the coefficientsak, bk, ck ∈ R satisfy the
condition5 akck > 0 for k ≥ 0, and p0 = 1 and p−1 =
0, then the solution to the recurrence (14) is a familypk =
pk(x) = Pk(x), k ≥ 0, of orthogonal polynomials[28], [29].

5Definitions of orthogonal polynomials may specify separateconditions for
ak and ck [28], [29]. The conditionakck > 0 is more convenient for our
purposes in this paper; it is equivalent to conditions in other definitions, as
can be shown, for example, using Theorem 1.27 in [29].

s s s

c0 c1 c2

a0 a1 a2

b0 b1 b2

P0 P1 P2

p p p

Fig. 3. Visualization of the 1-D infinite discrete-NN signalmodel.

These polynomials are reviewed in Appendix A. We note that
alternative initial conditions onp0 andp−1 are also possible;
we discuss them at the end of this section.

We denote the orthogonality interval forPk(x) as I ⊆ R

and the weight function asµ(x). The orthogonality condition
is ∫

I

Pk(x)Pm(x)µ(x)dx = µkδk−m.

Signal model. Given a sequence(Pk)k≥0 of orthogonal
polynomials that satisfy (14), we construct theinfinite discrete-
NN signal modelfrom the NN shift the same way we con-
structed the infinite discrete-time model (1) from the time
shift, but for infinite right-sided signals only (sincePk(x) are
defined only fork ≥ 0):

A = {h =
∑

m≥0 hmxm | h =
(

h0, h1, . . .
)

∈ ℓ1(N0)},
M = {s =

∑

k≥0 skPk(x) | s =
(

s0, s1, . . .
)

∈ ℓ2φ(N0)},
Φ : ℓ2φ(N0) → M, s → ∑

k≥0 skPk(x).
(15)

Here,N0 is the set of non-negative integers; and

ℓ2φ(N0) = {s | s ∈ ℓ2(N0) andφ(x) s ∈ ℓ2(N0)} ⊆ ℓ2(N0)

is the vector space of finite-energy signals that preserve the
finite-energy property when multiplied by the matrix

φ(x) =













b0 a0
c0 b1 a1

c1 b2
. . .

. . .
. . .













. (16)

φ(x) is called thematrix representation ofx and satisfies [8]

Φ(φ(x) s) = x · s(x). (17)

By the Cauchy–Schwarz inequality [30],ℓ2φ(N0) is closed
under addition and scalar multiplication; hence, it is a vector
space. Furthermore, by induction, anys ∈ ℓ2φ(N0) satisfies
φk(x) s ∈ ℓ2φ(N0) for anyk ≥ 1. Then it follows from (17) that
for anys(x) ∈ M andh(x) ∈ A, the producth(x)s(x) ∈ M,
and henceM is anA-module as required.

The visualization of the model is shown in Fig. 3. It starts
with P0(x) and has the left boundary conditionP−1(x) = 0.

Note that here we choosex0, x1, x2, . . . as a basis of the
filter algebraA. Other choices are also possible. For example,
if Pk(x) are Chebyshev polynomials, it is more convenient to
use Chebyshev polynomials of the first kindTm(x) as a basis
of A [3], [8].

Convolution. Filtering in the infinite NN model (15) is
defined as the product of a signals(x) ∈ M with a filter
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h(x) ∈ A:

t(x) =
∑

k≥0

tkPk(x) = h(x)s(x).

Unfortunately, no general closed-form expression exists that
directly describestk via sk andhm. The coefficientstk can
be obtained either from a direct expansion ofh(x)s(x) into
the basis ofPk(x), or using the convolution theorem discussed
below.

Spectrum. As discussed in Section II-A, to derive the ap-
propriate Fourier transform for the infinite NN model, we first
need to identify the spectrum ofM, i.e., the eigenfunctions
fω under the discrete-NN shift.

Theorem 1 Let

ηk =
k−1
∏

m=0

cm
am

. (18)

The eigenfunctions for the infinite NN model have the form

fω(x) =
∑

k≥0

ηkPk(ω)Pk(x). (19)

For anyω ∈ R, they satisfy

x · fω(x) = ω · fω(x) (20)

Proof: For convenience, we setc−1 = 0. As follows
from (14) and (17), any signal

∑

k≥0 skPk(x) ∈ M satisfies

x ·
∑

k≥0

skPk(x) =
∑

k≥0

(

ck−1sk−1 + bksk + aksk+1

)

Pk(x).

Applying this tofω(x) in (19) yields

x · fω(x) =
∑

k≥0

(

ck−1ηk−1Pk−1(ω) + bkηkPk(ω)

+ akηk+1Pk+1(ω)
)

Pk(x)

=
∑

k≥0

(

ak−1Pk−1(ω) + bkPk(ω)

+ ckPk+1(ω)
)

ηkPk(x)

=
∑

k≥0

(

ω · Pk(ω)
)

ηkPk(x)

= ω · fω(x).

For the spectrum we only select a subset of eigenfunctions
sufficient to obtain an invertible transform. For the infinite
NN model (15), it is sufficient to consider only frequencies
ω from the interval of orthogonalityI, since the orthogonal
polynomials Pk(x) form an orthogonal basis overI, as
discussed in Appendix A.

Hence, the spectral components, indexed byω ∈ I, are

Mω = {c ·
∑

k≥0

ηkPk(ω)Pk(x) | c ∈ C}.

Fourier transform. The Fourier transform for the infinite
NN model (15) projects a signals(x) onto the eigenfunctions

fω(x):

S(ω) = 〈s(x), fω(x)〉 =
∑

k≥0

skηkPk(ω), (21)

whereω ∈ I. We call (21) thediscrete-NN Fourier transform.
The corresponding inverse transform is

sk =
1

µkηk

∫

I

S(ω)Pk(ω)µ(ω)dω. (22)

It follows from the equality

1

µkηk

∫

I

S(ω)Pk(ω)µ(ω)dω

=
1

µkηk

∫

I

(

∑

m≥0

smηmPm(ω)
)

Pk(ω)µ(ω)dω

=
1

µkηk

∑

m≥0

sm

(

∫

I

Pm(ω)Pk(ω)ηmµ(ω)dω
)

=
1

µkηk
skµkηk = sk.

Frequency response.As follows from (20) and the linearity
of filtering, any filterh(x) ∈ A satisfies

h(x)fω(x) = h(ω)fω(x).

Hence, the frequency response ofh(x) ∈ A in the infinite NN
model (15) is

H(ω) = h(ω) =
∑

m≥0

hmωm. (23)

Convolution theorem. The convolution theorem for the
discrete-NN model follows from the definitions of the discrete-
NN Fourier transform (21) and the frequency response (23).

Theorem 2 Given the filtered signalt(x) = h(x)s(x) and
the original signal s(x), define scaled signalŝt(x) =
∑

k≥0 t̂kPk(x) and ŝ(x) =
∑

k≥0 ŝkPk(x), wheret̂k = tk/ηk
and ŝk = sk/ηk. Then, their discrete-NN Fourier transforms
T̂ (ω) =

∑

k t̂kηkPk(ω) and Ŝ(ω) =
∑

k ŝkηkPk(ω) satisfy

t(x) = h(x)s(x) ⇔ T̂ (ω) = H(ω)Ŝ(ω).

Parseval equality. The Parseval equality for the infinite
discrete-NN signal model takes the following form.

Theorem 3 A signals(x) =
∑

k≥0 skPk(x) and its discrete-
NN Fourier transformS(ω) satisfy the property

∑

k≥0

|sk|2µkη
2
k =

∫

I

|S(ω)|2µ(ω)dω. (24)
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Fig. 4. Visualization of the finite discrete-NN signal model.

Proof: The Parseval equality (24) follows from
∫

I

|S(ω)|2µ(ω)dω =

∫

I

S(ω)S∗(ω)µ(ω)dω

=

∫

I

S(ω)
(

∑

k≥0

s∗kηkPk(ω)
)

µ(ω)dω

=
∑

k≥0

s∗kηk

∫

I

S(ω)Pk(ω)µ(ω)dω

=
∑

k≥0

s∗kηkµkηksk =
∑

k≥0

|sk|2µkη
2
k.

Frequency domain.The frequency domain for the infinite
NN model is the Hilbert space of all polynomials defined on
the intervalI, with the inner product

〈u, v〉 =
∫

I

u(ω)v(ω)µ(ω)dω. (25)

The orthogonal polynomialsPk(ω), k ≥ 0, form an orthogonal
basis of this domain.

Alternative infinite NN models. Infinite NN models can be
generalized by allowing more general left boundary conditions
P−1(x) = bP0(x) or P−1(x) = cP1(x) instead ofP−1 = 0,
whereb ∈ R andc satisfies the conditiona0(c0+ c) > 0. The
appropriate model (15) can be constructed by replacingb0 with
b0 + b or c0 with c0 + c, respectively, in the recurrence (14).

IV. F INITE DISCRETE-NN MODEL

From Section II-B any finite 1-D linear shift-invariant
discrete signal model necessarily hasA = M = C[x]/p(x). In
this section, we consider the casep(x) = Pn(x) (other cases
are discussed at the end of the section). The signal spaceM
has a basisb =

(

P0(x), P1(x), . . . , Pn−1(x)
)

of orthogonal
polynomials that satisfy recursion (14). As explained in Ap-
pendix A, the polynomialPn(x) has exactlyn distinct real
zerosα =

(

α0, . . . , αn−1

)

, and they all lie inside the interval
of orthogonalityI.

Signal model.We define thefinite discrete-NN signal model
with the right boundary conditionPn(x) = 0 as

A = M = C[x]/Pn(x),

Φ : Cn → M, s → s(x) =
∑

0≤k<n skPk(x).
(26)

This model is obtained from the corresponding infinite NN
model (15) by imposing the zero boundary conditionPn(x) =
0. The visualization of the model is shown in Fig. 4. The right
boundary condition is indicated by the absence of correspond-
ing edges at the right boundary point.

Convolution. Filtering in the finite NN model (26) is
defined as the product ofs(x) andh(x) moduloPn(x):

t(x) =
n−1
∑

k=0

tkPk(x) = h(x)s(x) mod Pn(x). (27)

As in Section III, there is no general closed-form expression
to describetk via sk and hm. The coefficientstk can be
found either directly from the producth(x)s(x) mod Pn(x)
or using the convolution theorem discussed below.

Spectrum. From Section II-B, the spectrum of the finite
discrete-NN model is the set of spectral components

Mk = C[x]/(x− αk),

whereαk, 0 ≤ k < n, are roots ofPn(x).
Fourier transform. From Section II-B, the Fourier trans-

form for a finite discrete model is described by the matrix
Pb,α in (10), whereb =

(

P0(x), . . . , Pn−1(x)
)

is the basis
of M in (26). For the finite discrete-NN model, we call the
correspondingPb,α the discrete-NN transform.

This transform can be easily orthogonalized, as stated in the
following theorem.

Theorem 4 Consider the diagonal matrices

D = cn−1ηn−1 · diag (Pn−1(αk)P
′
n(αk))0≤k<n ,

E = diag (ηk)0≤k<n , (28)

whereηk is defined in(18), andP ′
n(x) denotes the derivative

of Pn(x). Then
D−1/2 Pb,α E1/2 (29)

is an orthogonal matrix.

Proof: This result can be obtained from Theorem 16 in [8]
using the following two facts. First, as shown in Appendix A,
the weightsµk can be expressed as

µk = µ0 ·
k−1
∏

i=0

ai
ci

=
µ0

ηk
, (30)

whereηk is defined in (18).
Second, the recurrence (14) for polynomialsPk(x) can be

written as

Pk(x) =
x

ck−1
Pk−1(x)−

bk−1

ck−1
Pk−1(x) −

ak−2

ck−1
Pk−2(x).

If βn denotes the leading coefficient ofPn(x), it follows that
βn−1/βn = cn−1. Hence,

βn−1

βnµn−1
=

µ0

cn−1ηn−1
. (31)

By using (30) and (31) in the corresponding places of
Theorem 16 in [8], we conclude that (29) is indeed an
orthogonal matrix6.

Frequency response.The frequency response of a filter

6In this paper, we use a notation and indexing that is slightlydifferent from
the one in [8].
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h(x) =
∑n−1

m=0 hmxm ∈ A, given by (13), is

Hk = h(αk) =

n−1
∑

m=0

hmαm
k .

Convolution theorem. As follows from Section II-B, the
convolution (27) satisfies

t(x) = h(x)s(x) mod Pn(x) ⇔ Tk = HkSk.

Hence, the coordinate vectort =
(

t0, . . . , tn−1

)T
of the

filtered signalt(x) can be calculated as

t = P−1
b,α diag (H0, . . . , Hn−1)Pb,α s

= EPT
b,α D−1 diag (H0, . . . , Hn−1)Pb,α s .

The matricesD andE are specified in (28).
Parseval equality. The following theorem relates the

weighted ℓ2-norms of the signal and its Fourier transform.
It follows from the orthogonality property (29) ofPb,α and
the structure of matricesD andE in (28).

Theorem 5 A signals =
(

s0, . . . , sn−1

)

and its discrete-NN
transformS = Pb,α s =

(

S0, . . . , Sn−1

)

satisfy the property

s∗ E−1 s = S∗ D−1 S .

Equivalently,

n−1
∑

k=0

|sk|2
ηk

=
1

cn−1ηn−1

n−1
∑

k=0

|Sk|2
Pn−1(αk)P ′

n(αk)
.

Frequency domain. The frequency domain of the finite
NN model (26) is the frequency domain of the infinite NN
model (15) sampled at frequenciesωk = αk. In particular,
the polynomialsP0(x), . . . , Pn−1(x) sampled atα0, . . . , αn−1

yield basis functions for this frequency domain; themth basis
function is

(

Pm(α0), . . . , Pm(αn−1)
)T

.

This basis is not orthogonal. To construct an orthogonal basis
for the frequency domain, one can apply the Gram-Schmidt
procedure to the above basis. This construction is beyond the
scope of this paper and can be found, for example, in [31].

Alternative finite NN models. The finite NN model (26)
can be generalized by assuming any right boundary condition
Pn(x) =

∑n−1
m=0 γmPm(x). The corresponding model is

A = M = C[x]/(Pn(x) −
∑n−1

m=0 γmPm(x)),

Φ : Cn → M, s → s(x) =
∑

0≤k<n skPk(x).
(32)

The discrete-NN transform has the form (10), provided
Pn(x) −

∑n−1
m=0 γmPm(x) is a separable polynomial withn

distinct zerosα0, . . . , αn−1.
The alternative left boundary conditions discussed in Sec-

tion III can also be applied to finite NN models and change
the basis of the signal module.

V. UNDIRECTED NN MODELS

A. Normalized Orthogonal Polynomials

In general, orthogonal polynomialsPk(x) have different
norms:µk 6= µm for k 6= m. They can be normalized as

µ
−1/2
k Pk(x) to have the same norm1 for all k ≥ 0.
Normalized polynomials also satisfy a recursion of the

form (14). The following theorem establishes whenPk(x)
have equal norms for allk ≥ 0 and shows how to construct
normalized polynomials from any family of orthogonal poly-
nomials.

Theorem 6 Orthogonal polynomialsPk(x) have the same
norm ||Pk(x)||2,µ = ||P0(x)||2,µ, if they satisfy a recurrence
of the form

x · Pk(x) = ak−1Pk−1(x) + bkPk(x) + akPk+1(x), (33)

with P0(x) = 1 and P−1(x) = 0. That is, the coefficients
in (14) satisfyak = ck for all k ≥ 0.

Alternatively, if polynomialsPk(x) satisfy (14), then the
normalized polynomials̃Pk(x) = µ

−1/2
k Pk(x) satisfy

x · P̃k(x) =
√
ak−1ck−1P̃k−1(x)

+ bkP̃k(x) +
√
akckP̃k+1(x). (34)

Proof: Theorem 7 and (18) show thatµk = µ0/ηk.
Hence, if ak = ck for all k ≥ 0, then ηk = 1, µk = µ0,
and ||Pk(x)||2,µ = ||P0(x)||2,µ.

Next, observe that
µk+1

µk
=

ak
ck

.

Then the normalized polynomials̃Pk(x) = µ
−1/2
k Pk(x) sat-

isfy the recurrence

x · P̃k(x)

= x · µ−1/2
k Pk(x)

= µ
−1/2
k

(

ak−1Pk−1(x) + bkPk(x) + ckPk+1(x)
)

= ak−1

√

µk−1

µk
P̃k−1(x) + bkP̃k(x) + ck

√

µk+1

µk
P̃k+1(x)

=
√
ak−1ck−1P̃k−1(x) + bkP̃k(x) +

√
akckP̃k+1(x).

B. Undirected Models

The “symmetric” NN shift (33) leads to the definition of
a special class of NN models. We call themundirectedNN
models, since they are associated with undirected visualiza-
tions, i.e., signals residing on undirected graphs as shownin
Fig. 5.

Theorem 6 allows us to construct infinite and finite undi-
rected NN models. Their associated signal processing concepts
have simpler forms. For example, for the undirected infinite
NN model, the discrete-NN Fourier transform (21) and its
inverse (22) have the form

S(ω) =
∑

k≥0

skPk(ω),

sk =
1

µ0

∫

I

S(ω)Pk(ω)µ(ω)dω.

The convolution theorem becomes

t(x) = h(x)s(x) ⇔ T (ω) = H(ω)S(ω),
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Fig. 5. Visualizations of undirected discrete-NN signal models.

and the Parseval equality becomes
∑

k≥0

s2k =
1

µ0

∫

I

S2(ω)µ(ω)dω.

For the undirected finite NN model, the matrixE in the
orthogonal discrete-NN transform (29) becomes an identity
matrix. The Parseval equality becomes

n−1
∑

k=0

|sk|2 =
1

cn−1

n−1
∑

k=0

|Sk|2
Pn−1(αk)P ′

n(αk)
.

VI. A PPLICATIONS

In this section, we discuss potential applications for discrete-
NN models. Some of the orthogonal polynomials considered
in this section, such as Chebyshev, Hermite, and Laguerre
ones, are well-known; others are constructed with the recur-
rence (14) using application-specific coefficientsak, bk, and
ck.

A. Signal representation

We could argue that the immediate motivation for novel
signal models is their suitability for the description and analy-
sis of certain classes of signals. The advantage of proposed
models can be related to the improved characterization of
signal properties and efficient signal processing tools they
produce.

Bases of orthogonal polynomials for the representation of
diverse functions have been proposed in numerous studies,
some of which we discuss below. Two common applications
are the representation of continuous functions using orthog-
onal polynomials and the representation of discrete functions
using sampled orthogonal polynomials. The properties of these
bases, including the calculation of projection coefficients and
approximation error analysis, are discussed in [28], [29],[31].
Furthermore, for different functions, the choice of orthogonal
polynomials may not be obvious and may depend on the
application.

The projection coefficients in both cases can be viewed and
manipulated as signals from infinite and finite discrete-NN
models (15) and (26), respectively. Besides deeper insight, our
framework also offers additional tools for the processing of
signals based on orthogonal polynomials. For instance, since
the framework defines the concepts of filtering, spectrum, and
frequency response, one can potentially construct frequency-
selective filters, or even filter banks, to facilitate signalanalysis
and processing [32].

Below, we discuss several applications that are based on the
expansion of finite discrete functions into sampled orthogonal
polynomials.

Electrocardiographic signal processing. We consider
discrete-NN models based on Hermite polynomialsHk(x).
For the infinite model, the associated discrete-NN Fourier
transform (21) is

S(ω) =
∑

k≥0

1

2kk!
skHk(ω),

sk =
1√
π

∫

R

S(ω)Hk(ω)e
−ω2

dω. (35)

For the finite model, the discrete-NN transform (10) is orthog-
onalized with

D = n · diag (Hn−1(αk)H
′
n(αk))0≤k<n , (36)

E = diag
(

1/(2kk!)
)

0≤k<n
. (37)

The expansion of signals into continuous and sampled
Hermite polynomials has been proposed for image analy-
sis and processing [19], [20] and electrophysiological sig-
nal compression [14]–[18]. For example, in [17], [18], we
used the basis of Hermite polynomialsH0(x), . . . , Hn−1(x)
sampled at the roots ofHn(x) to efficiently represent and
compress electrocardiographic signals. Analyzing the corre-
sponding finite NN model, we concluded that sampling the
electrocardiographic signals at time points proportionalto the
roots of Hermite polynomials is more efficient than sampling
at equal time intervals. Moreover, the proposed expansion
led to a significantly improved compression algorithm for
electrocardiographic signals.

Speech signal analysis.Similarly to the above expansion of
signals into Hermite polynomials, signals can also be expanded
into Laguerre polynomialsLk(x) using the corresponding
discrete-NN Fourier transform

S(ω) =
∑

k≥0

skLk(ω),

sk =

∫ ∞

0

S(ω)Lk(ω)e
−ωdω,

or the discrete-NN transform orthogonalized withE equal to
an identity matrix and

D = −n · diag (Ln−1(αk)L
′
n(αk))0≤k<n ,

Speech coding and a representation of exponentially-
decaying signals using sampled Laguerre polynomials has
been studied in [10], [11]. The analysis of the corresponding
NN model may offer valuable insights for improved analysis
and efficient processing of these classes of signals.

Image compression.Image compression is an extensive
research area in signal processing. Multiple approaches, algo-
rithms, and standards have been proposed for efficient image
processing, compression, transmission, and storage (see [33]
and references therein).

In [34], we consider the compression of multiple images
with similar structures, such as faces, handwritten digits, etc.
Since images are finite discrete two-dimensional signals, the
corresponding NN signal model can be represented as a tensor
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product of two 1-D finite NN models [8], [35]. For both
models, the recursion coefficientsak, bk, ck in (14), and
hence, the corresponding orthogonal polynomialsPk(x), can
be obtained by solving anℓ2-minimization problem, and are
dependent on images of interest.

The experimental results in [34] have demonstrated that
the sampled orthogonal polynomials provide a suitable basis
for the images of interest. In particular, a lossy image com-
pression, implemented by preserving projection coefficients
with the largest magnitudes only, achieves low error rates
comparable with those for the principal component analysis
and significantly lower than for other standard transforms in
image coding, such as DCT and discrete wavelet transform.

Correlation analysis of Gauss-Markov random fields.
Finite discrete-NN models (26) can also be relevant to the anal-
ysis of Gauss-Markov random fields [8], [25], [26]. Consider
n random variablesξ0, . . . , ξn−1 that satisfy the difference
equation

ξk = vk−1ξk−1 + ukξk + vkξk+1 + νk, (38)

whereνk is a zero-mean Gaussian noise, andvk, uk ∈ R are
real-valued coefficients. The set

(

ξk
)

0≤k<n
is called afirst-

order Gauss-Markov random fielddefined on the finite lattice
0 ≤ k < n. We assume zero (Dirichlet) boundary conditions
ξ−1 = 0 andξn = 0.

The Karhunen-Loève transform (KLT), described by the
eigenvector matrix of the covariance matrixΣ, decorrelates
the signals =

(

ξ0 . . . , ξn−1

)T
. Under certain conditions, it is

considered to be the optimal transform for signal compression;
however, there is no general efficient algorithm to compute this
transform [36].

As demonstrated in [25], [26], the inverse of the covariance
matrix Σ for the above Gauss-Markov random field is

Σ−1 =













u0 v0

v0 u1
. . .

. . .
. . . vn−2

vn−2 un−1













.

Let us set the values of coefficientsak andbk in recursion (33)
to ak = vk and bk = uk, and construct the corresponding
family of normalized orthogonal polynomialsPk(x). If Pb,α is
the discrete-NN transform for the finite NN model (26) based
on the above polynomialsPk(x), thenΣ−1 can be factored
as [8]

Σ−1 = PT
b,α D−1/2 diag (α0, . . . , αn−1)D

−1/2 Pb,α,

Hence,D−1/2 Pb,α is precisely the KLT for the above random
field. This result implies that an instantiation of the random
variablesξ0, . . . , ξn−1 can be viewed, analyzed, and processed
as Fourier transform coefficients in the constructed finite NN
model.

B. Fast signal transforms

An invertible transformation of a signal is a standard pro-
cedure in signal processing. Examples include, but are not

limited to DFT, DCTs and DSTs, discrete Hartley transform,
discrete Hankel transform, and KLT.

Efficient and fast implementations of these transforms is
an important research problem that can be addressed using
multiple approaches. One of them is based on the recognition
of a transform as a polynomial transform for a finite discrete
signal model (6). In this case, a decomposition of the model
into a combination of simpler models corresponds to a fac-
torization of the transform into a series of simpler transforms
that may yield efficient and fast computational algorithms.The
general theory of this approach has been discussed in [9], [24],
[37]; early work on using polynomial transforms to derive
algorithms for the DFT was done in [38].

Fast algorithms for DCTs and DSTs. In [3], [9], we
demonstrated that the discrete trigonometric transforms (DCTs
and DSTs) are Fourier transforms for the 1-D space model, a
special kind of discrete NN-model (26) based on four kinds
of Chebyshev polynomials. By exploiting the structure of the
underlying signal models, in particular the polynomial algebras
A = M, we derived a large class of fast algorithms, including
several new ones, that requireO(n log(n)) additions and
multiplications for a transform of sizen. The derivation uses
a small number of decomposition theorems for polynomial
algebras.

Fast algorithms for other discrete-NN transforms.As we
discussed above, discrete-NN transforms based on orthogonal
polynomials different from the Chebyshev polynomials do
arise and are used in various applications. Some of them are
based on known orthogonal polynomials, such as Hermite or
Laguerre; others are based on application-specific polynomi-
als, such as the ones related to Gauss-Markov random fields.
Overall, with the current state of knowledge, the asymptotic
computational cost for a general discrete-NN transform is
O(n log2(n)) operations. This cost is slightly higher than
O(n log(n)) operations required for the widely-used DFT,
DCTs, and DSTs.

Specifically, anO(n log2(n)) algorithm was derived in [39]
for discrete-NN transforms for arbitrary orthogonal polyno-
mials, but with the right boundary condition defined by a
Chebyshev polynomial. It applies to finite NN models (32)
with Pn(x)−

∑n−1
m=0 γmPm(x) equal to a Chebyshev polyno-

mial. Also, anO(n log2(n))) algorithm for a general discrete-
NN transform with an arbitrary right boundary condition was
constructed in [40]. In this case, the polynomialPn(x) −
∑n−1

m=0 γmPm(x) in (32) can be any separable polynomial.
The constructed algorithm, however, can be numerically un-
stable. Finally, anO(n log(n)) approximation algorithm was
proposed in [41] for a discrete-NN transform based on Leg-
endre polynomials with the boundary condition defined by a
Chebyshev polynomial. Other work can also be found in the
references of these papers. We should also mention here that
algorithms requiringO(n log(n)) operations are possible for
discrete-NN transforms based on orthogonal polynomials other
than Chebyshev ones [24], [32].

VII. C ONCLUSIONS

We have proposed a new class of 1-D infinite and finite
signal models based on the discrete-NN shift. We introduced
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relevant SP concepts for these models, including filter and
signal spaces,z-transform, convolution, spectrum, Fourier
transform, and frequency response. The proposed theoretical
framework is fundamentally different from the traditional
discrete-time SP, which is based on the discrete-time shift.

We also provided several examples of applications that
inherently use the proposed signal models and may benefit
from our framework. All these applications expand signals
into orthogonal polynomials, which means they use the Fourier
transforms associated with a suitable NN model. The proposed
SP framework may lead to deeper insights and improved signal
analysis and processing tools for these applications.

The computational cost of the proposed discrete-NN trans-
forms is moderate. Algorithms for general discrete-NN trans-
forms that requireO(n log2(n)) operations are known to exist;
specific cases may require onlyO(n log(n)) operations.

APPENDIX A: ORTHOGONAL POLYNOMIALS

A. Definition and Properties

There is a large body of literature dedicated to orthogonal
polynomials. A thorough discussion can be found in [28], [29].
Here, we review only the properties that are used in this paper.

Definition. PolynomialsPk(x), k ≥ 0, that satisfy the three-
term recurrence

x · Pk(x) = ak−1Pk−1(x) + bkPk(x) + ckPk+1(x),

P0(x) = 1, P−1(x) = 0, (39)

whereak, bk, ck ∈ R satisfy the conditionakck > 0 for k ≥ 0,
are calledorthogonal polynomials.

Orthogonality. By Favard’s theorem, there exists an interval
I ⊆ R and a weight functionµ(x), non-negative onI, such
thatPk(x) are orthogonal overI with respect toµ(x):

∫

I

Pk(x)Pm(x)µ(x)dx = µkδk−m. (40)

Here,

||Pk(x)||2,µ =
(

〈Pk(x), Pk(x)〉µ
)1/2

= µ
1/2
k < ∞

is theL2
µ-norm ofPk(x) induced by the inner product

〈f(x), g(x)〉µ =

∫

x∈I

f(x)g(x)µ(x)dx. (41)

Basis of orthogonal polynomials.The orthogonal polyno-
mials Pk(x) form an orthogonal basis in the Hilbert space
of polynomials defined on the intervalI with the inner
product (41).

Roots ofPk(x). The polynomialPk(x) has exactlyk real,
simple rootsα0 < ... < αk−1 that lie within the interval of
orthogonalityI : αi ∈ I for all 0 ≤ i < k. Hence,Pk(x) is a
separable polynomial of degreek.

In addition,Pk(x) is the characteristic polynomial (up to a

scalar factor) of the tridiagonal matrix

T =

















b0 a0
c0 b1 a1

c1 b2
. . .

. . .
. . . ak−2

ck−2 bk−1

















. (42)

The rootsα0, . . . , αk−1 are exactly the eigenvalues ofT. This
property can be used to compute the roots ofPk(x).

B. Norm calculation

In order to calculate the norm||Pk(x)||2,µ = µ
1/2
k , we

need to know the weight functionµ(x) and the orthogonality
interval I. However, it may not be trivial to obtainµ(x) and
I directly from the relation (39). Fortunately, the norm of
Pk(x) can be determined from the coefficientsak, bk, andck,
as described by the following theorem.

Theorem 7 TheL2
µ-norm of the polynomialsPk(x) that sat-

isfy (14) and are orthogonal onI with respect to the inner
product (41), is

||Pk(x)||2,µ = µ
1/2
k = µ

1/2
0 ·

√

√

√

√

k−1
∏

i=0

ai
ci
. (43)

Proof: The k × k diagonal matrix

U = diag

(

1,

√

a0
c0

,

√

a0a1
c0c1

, . . . ,

√

a0 . . . ak−2

c0 . . . ck−2

)

conjugates the matrixT in (42) to the symmetric tridiagonal
matrix

UTU−1 =

















b0
√
a0c0

√
a0c0 b1

. . .

. . .
. . .

√
ak−2ck−2

√
ak−2ck−2 bk−1

















.

On the other hand, it was shown in [8] using the Christoffel-
Darboux formula that the diagonal matrix

U′ = diag
(

µ
1/2
0 , µ

1/2
1 , . . . , µ

1/2
k−1

)

also conjugatesT to a symmetric tridiagonal matrix.
Since there exists a unique (up to a constant factor) diagonal

matrix that conjugates a tridiagonal matrix to a symmetric
tridiagonal matrix, we conclude thatU = cU′, and hence

µ
1/2
k = c ·

√

√

√

√

k−1
∏

i=0

ai
ci

for some non-zero constantc ∈ R. In particular, fork = 0 we
obtainc = µ

1/2
0 , where

µ0 =

∫

x∈I

µ(x)dx.
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The following is an immediate consequence of Theorem 7:

Corollary 1 If ak = ck for k ≥ 0, thenµk = µ0, and all
Pk(x) have the same norm

||Pk(x)||2,µ =
√
µ0 = ||P0(x)||2,µ.

C. Classic Orthogonal Polynomials

The orthogonality intervalI can be scaled and shifted
to [−1, 1], [0,∞), or R. Based on this property, orthogonal
polynomials are traditionally separated into three classes.

1) Jacobi-like polynomialshave the orthogonality interval
[−1, 1]. The corresponding weight function, parameter-
ized bya > −1, b > 1, has the formµ(a,b)(x) = (1 −
x)a(1 + x)b. The four kinds of Chebyshev polynomials
Ck(x) ∈ {Tk(x), Uk(x), Vk(x),Wk(x)} are examples
of this class. They satisfy the recurrence

x · Ck(x) =
1

2
Ck−1(x) +

1

2
Ck+1(x),

with boundary conditionsT−1(x) = x, U−1(x) =
0, V−1(x) = 1, W−1(x) = −1. The correspond-
ing weight functions areµ(−1/2,−1/2)(x), µ(1/2,1/2)(x),
µ(−1/2,1/2)(x), andµ(1/2,−1/2)(x).

2) Laguerre-like polynomialshave the orthogonality inter-
val [0,∞). The corresponding weight function, param-
eterized bya ∈ R, has the formµ(a)(x) = xae−x.
Laguerre polynomialsLk(x) are an example of this
class. They satisfy

x·Lk(x) = −kLk−1(x)+(2k+1)Lk(x)−(k+1)Lk+1(x)

and have the weight functionµ(0)(x) = e−x.
3) Hermite-like polynomialshave the orthogonality interval

R. Their weight function, parameterized bya > 0,
has the formµ(a)(x) = e−x2/2a. Hermite polynomials
Hk(x) are an example of this class. They satisfy

x ·Hk(x) = kHk−1(x) +
1

2
Hk+1(x)

and have the weight functionµ(1/2)(x) = e−x2

.
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cessing theory: Cooley-Tukey type algorithms for polynomial transforms
based on induction,”SIAM J. Matrix Analysis and Appl., vol. 32, no. 2,
pp. 364–384, 2011.

[25] J. M. F. Moura and M. G. S. Bruno, “DCT/DST and Gauss-Markov
fields: Conditions for equivalence,”IEEE Trans. on Signal Processing,
vol. 46, no. 9, pp. 2571–2574, 1998.

[26] J. M. F. Moura and N. Balram, “Recursive structure of noncausal Gauss
Markov random fields,”IEEE Trans. Information Theory, vol. 38, no.
2, pp. 334–354, March 1992.

[27] P. A. Fuhrman, A Polynomial Approach to Linear Algebra, Springer
Verlag, New York, 1996.
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