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Abstract—We present a signal processing framework for the of the shift operator. This brief discussion omits many ieta
analysis of discrete signals represented as linear combitians  that can be found in [1].
of orthogonal polynomials. We demonstrate that this repreen- e jntaresting aspect of this approach is that one can think
tation implicitly changes the associated shift operationrom the f ch . h ) f the shift . btain SP
standard time shift to the nearest-neighbor shift introduced in orc _anglng the n_otlon of the shi operatlon to o tqln
this paper. Using the algebraic signal processing theory, v theories that are different from the standard time SP, bilit st
construct signal models based on this shift and derive their possess all relevant concepts. This was done in [3], [4]r&he
corresponding signal processing concepts, including therpper g theory of 1-D spaceSP was derived based on the symmetric
notions of signal and filter spaces,z-transform, convolution, space shift operator shown in the third column of Table I.

spectrum, and Fourier transform. The presented results exnd The basi | ials for th del Chebvsh
the algebraic signal processing theory and provide a genera 'N€ DasIS polynomials for these models are now Lhebyshev

theoretical framework for signal analysis using orthogona poly- ~ Polynomials, which changes the notion of convolution. The
nomials. space shift also changes the associated eigenfunctiorntbasnd

Index Terms—Signal model, Fourier transform, orthogonal the corresponding. Fourier transforms. In the finite caﬂerﬁls
po|yn0mia|s’ Hermite po|yr]()mia|5l Legendre p0|ynomia|5,|_a_ out that the Fourier transforms are the well-known discrete
guerre polynomials, signal representation, filter, shift,convolu- cosine and sine transforms (DCTs and DSTs), which were
tion, algebra, module. originally derived using statistical SP [5].

The described approach can also be used in 2-D SP, as
demonstrated in [6] for a hexagonal space shift and in [7] for
a quincunx shift.

Traditional discrete-time signal processing (SP) is based Contribution. We derive a 1-D SP framework, called
a set of fundamental concepts including time shift, signaMdiscrete-nearest-neighbor (discrete-NN) SP, that is coase
filters, z-transform, convolution, spectrum, and Fourier trandb€ nearest-neighbor shift shown in the last column of Table
form. These concepts come in two variants: one for infinitds indicated in the table, the basis polynomials now are
signals and one for finite (usually periodically extendedthogonal polynomials on a real line. Background for these
signals. The algebraic signal processing (ASP) theory §& hPolynomials is provided in Appendix A. Discrete-space SP is
shown that the exact form of these and other concepts carfpecial case, but discrete-NN SP extends far beyond. As
be derived from the discrete-time shift operator, and that twe demonstrate, discrete-NN SP is equivalent to assuming
same derivation can be used to obtain SP frameworks for sfifat signals reside on a weighted line graph; directed and
operators different from the time shift. undirected graphs are possible. We provide a set of funda-

As an illustration, consider Table I. The first column of thé"ental concepts for discrete-NN SP, including the notions o
table lists several basic SP concepts. The second columsshg-transform, convolution, spectrum, frequency response, a
their instantiation for discrete-time SP. The first condegthe Fourier transforms for both infinite and finite cases.
shift, visualized as an operator moving a time point to the The platform for our work is the ASP theory, an axiomatic
next one. For simplicity, we denote the shift withinstead of approach to and a generalization of linear SP [1], [3], [8], [
>~ as usually done in time SP [2]. Solving the correspondintlis paper extends and completes the preliminary discussio
equationzp, = pr41 Yyields the basis polynomials, = z* of discrete-NN shifts in [8] (where they were called generic
and leads to the traditionattransform (by substituting: = nearest neighbor shifts).
z~1) and linear convolution. The Fourier transform can then Related work. Orthogonal polynomials have been previ-
be constructed as a projection of a signal on the eigenfumsti OUsly used in signal analysis and processing, primarily as

suitable bases for signal representation. Laguerre paotjale
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I. INTRODUCTION



TABLE |
ASPENABLES THE DERIVATION OF DIFFERENTSPFRAMEWORKS BY CHANGING THE NOTION OF SHIFTTHE STANDARD TIME SHIFT YIELDS
TRADITIONAL TIME SP,AND THE SPACE SHIFT YIELDS SPACESPASSOCIATED WITH THEDCTS AND DSTS. IN THIS PAPER WE CONSIDER THE
NEARESTNEIGHBOR SHIFT.

Concept Discrete-time SP [1] Discrete-space SP [3] Dieeil SP (this paper)
Shift; Obk
1 1
. L 1 2 2 a1 Ck
visualization o——eo o<——o——o o——o0—0
Pk Pr+1 Prk—1 Pk Pk+1 Pk—1 Pk Pk+1

as operatorr  xpx = Pk+1 TPk = %pkq + %pk+l TP = agp—1Pk—1 + bkPr + CkPr41
Basis polynomials pr(x) =zF (x =271)  pi(z) = Cr(z) (Chebyshev polynomials) py(x) = Py (z) (orthogonal polynomials)
“z-transform” (sg) = > spa® (sk) = > skCk(x) (sk) = > sk Pr(x)
Fourier transform (infinite) DTFT Discrete-space Fouriemsforms Section Il
Fourier transform (finite) DFT DCTs/DSTs Section IV

processing [19]-[21]. The analysis of birth-death proessss = (Sk)kez €V C C%. The purpose of a signal model is to
and queueing theory have also been interpreted in termsfafmally assign to) a signal space and a filter space and to
the associated orthogonal polynomials [22], [23]. Howgvedefine the notion of filtering.

to the best of our knowledge, there_ is no general fr_amework-rhe common assumptions underlying (linear) SP [2] allow
for the use of orthogonal polynomials in SP. In this papgfiers to be connected serially and in parallel, and to be
we provide such a framework and show that it is equivalegi,yjified. These operations satisfy distributivity lawsdan
to standard time SP but based on a changed notion of sijffer hroperties. If we call these operations, respegtivel

operation. Using this insight we derive a complete set gfipjication, addition, and scalar multiplication, thehe
associated basic SP concepts and show that the expansiondt,, space.A becomes simultaneously a ring and a vector

prthqgonal polynomials is equivalent to the Fourier transf space, i.e., aalgebra We denote its elements with
in this framework.

As mentioned above, discrete-space SP [3] is a special cas&€ Signal space is also a vector space whose elements
of discrete-NN SP based on specific orthogonal polynomidl¢ Will denote withs. The signal space permits an operation

called Chebyshev polynomials. The associated SP framewéfi|{€ring) of A that we also write as multiplicatién/.s means

has been derived and used for the construction of fast algolilteréd with 4. These properties make the signal space an

rithms for DCTs and DSTs [9], [24]. A-module that we denote with1.

Finally, a connection between Gauss-Markov random fieldsThe third component of the signal model is a mapping
and signal processing based on NN shifts has been identifthdt maps discrete sequenses V to the signals € M. The
in [8], [25], [26]. mapping generalizes the concept ot-dransform. Together,

A, M, and® form the signal model:

Il. ALGEBRAIC SIGNAL PROCESSINGTHEORY

The ASP theory [1], [3], [8] is both a generalization of and
an axiomatic approach to the standard linear signal proagss_ . .. . ) _
theory. ASP is based on the concept of a signal model defifggfinition 1 A signal modefior a vector space’ is a triple
as a triple(A, M, ®), where A and M are, respectively, filter (A, M, @), where A is a filter algebra, M is an associated
and signal space, anlis a generalization of the-transform. A-module of signals, an@ is a bijective mapping frory’ to
Each signal model has its own notion of the shift, filtering ot
convolution, thez-transform, the Fourier transform, and other
concepts.

In this section, we discuss the main ASP concepts for 1-D The signal model is best understood by considering the
SP and, as examples, demonstrate their instantiationsafor €xample of discrete-time SP. In this case, the signals aedsfil
ditional infinite and finite discrete-time SP. We also intiod are represented by finite-energy and finite-power sequences
several terms and concepts that have not been defined before,
so this section is both a review of and a complement to the
ASP theory discussed in [1], [3], [8]. 2In mathematically terms, despite being called additionltiplication, and
scalar multiplication, these operations may be instadiah various ways,
not necessarily through the traditional addition and rpliétation. However,

A. Infinite Discrete Models all signal models considered in this paper, have filfers h(x) and signals

Si | del. Infinite di . | icall s = s(z) represented by series or polynomials an For all models, the
ignal model. Infinite discrete signals are typically repréupove operations are instantiated as the addition andptedtion of series

sented as sequences of numbers from some vector 3f1acer polynomials.



closed under filtering withh € A. The indexw is called the

—>e—>e——>0—>0—> frequency
b 20 gt 22 In all models considered in this paper, the spectral compo-
nentsM,, have dimension one and are thus of the form
Fig. 1. Visualization of the 1-D infinite discrete-time mad€he weight on
each edge id. M, = {c fu(z) | ce (C}’
where f,,(z) is an eigenfunction for all filterg = h(z) =
respectively? > hmz™ € A. In particular, forh(z) = z, this means
A={h=3, cphmz™ |h=(....ho,h1,...)" €L (Z)}, 2fo(r) = Ao fu()
T
M={s=Y ezsut” |s=(....50,51,...) €L(Z)}, for some),, € C. Thus, by linearity, for anyi(z) € A
®:02(Z) > M, s—s5= spxk.

“) Powea % n h(w) - fule) = hOW) fula). @
Hence @ is the standard-transform (we substitute = z~), For the infinite time model (1), the eigenfunctions are
and A and M are defined in the--domain. Its elemnts are .k
primarily viewed as series (infinite polynomials) rathearth falw) =) a*a*, aeC, 3)
as functions. kez

The motivation for the signal model definition is that alkincex - f,(z) = a~! f,(z). Hence, for anyh(z) € A,
other basic SP concepts can be derived from it as explained .
below. But first we briefly discuss how the discrete-time algn W) - fa(x) = h(a™") - fa(2). (4)
model (1) can be derived from the discrete-time shift omerat qyrier transform. The Fourier transform for a signal
[1]. This will Iat(_er allow us to derive the discrete-NN model|,qdel is constructed by projecting a signal onto the spectra
from the NN shift analogously. _ _ componentsM,,. It may not be necessary to use all spectral
Consider discrete-time points;, k € Z. The time shift components to obtain an invertible transform.
movespy, 10 py+1 (see the second column of Table I). Calling  ror example, for the infinite time model (1), it is sufficient
the shiftz, this can be written as an operation to consider only the eigenfunctionfs (z) in (3) for |a| = 1,
i.e., those located on the unit circle, which is the intervfl

orthogonality of the basis functions®: if we parameterize
Assuming po = 1, the solutions of this recurrence are; — ¢iv  c [0,27), then

polynomialsp, = pi(z) = 2¥, k € Z. The signal space o o

M now consists of linear combinations pf. The associated / ej”k(ej“m)*dw - / eI E=m) gy — 278y
filter space isgeneratedby the shift, i.e., it consists of linear 0 0

combinations ofk-fold shifts z*. This yields M and A as Hence, the associated eigenfunctions (3} are

shown in (1). The restriction té*(Z) and/¢'(Z) ensures that .

filtering a signal inM yields again a signal ioM: Jo(z) = Z eIk,

kEZ
hse M, forhe A, se M.

TPk = Prt1, kEZ.

and they satisfy
The visualizationof a signal model is the graph associated Cw
with the operation of the shift on the basis polynomials\ih @ fulz) = €7 fu(2). ®)
For the time model, the visualization is shown in Fig. 1. The resulting Fourier transform is the standard discriete-t
Convolution. As explained above, filtering a signale M Fourier transform:
with a filter h € A is written as multiplicationhs =t € M.

_ _ —jwk
The coefficients oft are given byt = (...,to,tl,...)T = Sw) = (s fula)) = Zske T
®~1(hs). . kEZ
For the infinite time model (1), filtering is defined by the s, = 1 S(w)elFduw.
multiplication of h(z) € A ands(z) € M: 27 Jo
tz) = Zthk = h(z)s(z) Frequency response.The frequency response of a filter

h € A is defined by its action on the spectral components

L . ) i M,,. Itis directly obtained from (2) as
which in coordinate form yields the standard linear convolu

tiont =hxs, wherety, =3 hnSk—m. H(w) = h(\).
Spectrum. The spectrumassociated with a signal model

is a collection of spectral components that ameducible

submodulesM,, < M. These are subspaces 6f that are

keZ

As follows from (4) and (5), the frequency response
for the infinite time model (1) isH(w) = h(e /%) =
> ez hme™ 4™, w € [0, 2).
3Throughout this paper, spaces are denoted with calligedptters, abstract ~ COnvolution theorem. Once the Fourier transform and

signals and filters (elements 91 and .A) with italic letters, and coordinate
vectors and matrices with boldface letters. The symbdhdicates a mapping.  “By convention, we writef., instead off, ;.



the frequency response are defined for a signal model, the

convolution of a signals € M with a filter h € A can

be expressed via the product of their Fourier transform and e—»>oe— >0 - o - . . o—»eo— o

frequency response (convolution theorem). 20 at x2 g3 gnT2 gnol
For the infinite time model (1), it follows from the defini-

tions of the discrete-time Fourier transform and the freqye Fig. 2. Visualization of the 1-D finite discrete-time model.

response that the convolution efz) € M andh(z) € A

corresponds to the product 8f{w) and H (w):

t(z) = h(z)s(z) & T(w)= H(w)S(w). In the case of the finite time model (7), this means
n—1
Parseval equality. The Parseval equality establishes the t(z) = Z trz® = h(z)s(z) mod (z" — 1)
connection between the energy of the signal and the energy of = ’
its Fourier transform. For infinite discrete-time signalhas L . .
the form [2] which, in the coordinate form, becomes the standard circula
) convolutiont = h®s, so thatt;, = Zogm@ D(k—rm) mod nSm-
Z 5|2 = i/ 1S (w)|2dw. Spectrum. We assume that the polynom_iﬁ{:z:_) :_(:z: -
ez 2w Jo ap)...(x — an—1) IS a separable polynomial, i.e. its zeros
are distinct:ay # am, for k # m. Leta = (oo, ..., 0p-1).

Frequency domain. We call the space of the Fourierrhe spectrum is obtained from the Chinese Remainder Theo-
transformsS(w) for all s(x) € M the frequency domainFor oy, [27] as the decomposition of the signal modulé =

the infinite discrete-time model (1), the frequency domain t[z]/p(a:) into the direct sum of irreducible submodules
a Hilbert space of continuous finite-energy functions ddin@[x]/(x — ), ..., Clz]/(z — an_1):

on [0, 27), with the inner product
Clz]/p(z) — Cla]/(z—a0) @ - & Clz]/(x — an-1),

2
<u71)> = / u(w)v*(w)dw_ s(x) — (S(ao), s(al), ey S(Oén_l))T. (9)
0
The set(ei“™) ,» Wherew € [0, 27), is an orthogonal basis Hence, the spectral components of the model (6) are given by
in this frequency domain. My =Clz]/(z — o), 0 < k <n.

In particular, the spectrum of the finite time model (7) is
given by My, = Clz]/(z — e 727%/7), 0 < k < n.

Fourier transform. The mapping (9) defines the Fourier
transform associated with the signal model (6). With respec

As demonstrated in [1], [8], 1-D linear shift-invariant modto the basis in M, it is given by the matrix

B. Finite Discrete Models

els for finite discrete signals necessarily hade= M = p _ [ ( )} (10)
Clz]/p(z). Here, C[z]/p(z) denotes a polynomial algebra, = »* ~— [P\ cn
which is a set of polynomials of degree less thas deg(p) po(ap) pi(ao) ... pa_i(ao)

With_polyno_mial multiplication (i.e., filtering and serialon- poln) pi(ar) ... pa-i(an)
nection of filters) performed modula(zx). .
Signal model. Assuming 1-D and shift-invariance, the : :
generic signal model for finite discrete signals has the form polan-1) pi(an-1) ... pn-i(en-1)
o This means the Fourier transform (9) of a sigdals) =
A= M= Clz]/p(2), 6) s(z)= ZZ;& sppk(x) € M and its inverse can be computed

n n—1 A
©: C" = M, s — )i skpk(T), as the matrix-vector products
whereb = (pk(z)), ., is @ chosen basis foM. S = Pu.-s, (11)
The model commonly assumed for finite discrete-time sig- s — Pb—l .S
nals is o
A= M=Clz]/(z™ - 1), % wheres = (sg,...,5,-1)" andS = (Sy,...,S,_1)".
P: C"—> M, s— ZZ;; spak. As follows from (10), the Fourier transform for the finite

It can be obtained from the infinite model (1) by imposing thtja;nl:eT;T_]Odel (7) is the well-known discrete Fourier transform

periodic boundary condition™ = z° = 1, i.e.,2"—1 = 0 [1],

[8]. The visualization of this model, obtained from the aati P,., = {efﬂﬂkm/n} = DFT,,. (12)

of the time shiftz on the basi®) = (2°,2',...,2"71), is ' 0<k,m<n

shown in Fig. 2. The periodic boundary condition is captured Frequency responseWe obtain from (9) that the projection

by the arrow that connects the boundary points of the graphs s(z) € M on a spectral component;, = Cz]/(z — ay)
Convolution. Filtering in the finite model (6) has the formis the evaluatiors(«y), since

t(z) = h(x)s(x) mod p(z). (8) s(z) = s(ax) mod (x — ay).



Henceh(z)s(x) = h(x)s(ax) = h(ag)s(ar) mod (z—ayg),
and the frequency response of a filtgir) € A at oy, is

.V. .v .
For the finite time model (7), the frequency response of a fil- p Y p Y p ®
ter h(z) = Y0\ hpma™ € A is henceH), = h(e=727F/) =
S hme=7%mkm/n and thus takes the same form as the
discrete Fourier transform of a signal. Fig. 3. Visualization of the 1-D infinite discrete-NN sigrmalodel.

Convolution theorem. The general convolution theorem for
finite dlscretg signal models, proven in [1]f (8], estatﬁghhat These polynomials are reviewed in Appendix A. We note that
the convolution (8) can be expressed via the Fourier trans:

alternative initial conditions opg andp_; are also possible;
form (11) and the frequency response (13) as the prOdUCtﬁiediscuss them at the end of this section.

Ege.dlscrete Fourier transfor$y, and the frequency response We denote the orthogonality interval fdh(z) asZ C R
ke and the weight function ag(z). The orthogonality condition
t(z) = h(z)s(z) mod p(z) & T = HgSk. is
/IPk(a:)Pm(a:)u(:c)d:c = kOk—m-

Signal model. Given a sequencél;),>o of orthogonal
t(z) = h(z)s(z) mod (z" —1) < Ty = h(e 2"*/™)s,.  polynomials that satisfy (14), we construct ihénite discrete-
NN signal modefrom the NN shift the same way we con-
structed the infinite discrete-time model (1) from the time
shift, but for infinite right-sided signals only (sind&(x) are
defined only fork > 0):

In particular, the convolution of(x) € M andh(z) € A
in the finite time model (7) corresponds to

Parseval equality. The energy of the signaland its Fourier
transform S can be calculated afs||; = (s*s)'/2, and
1S]]2 = (8" )2 = (5" P}, Pyas)/>.

For the finite time model (7), we obtajpS || = v/7|| s ||2,
sinceP; , Py, = DFT;, DFT, = n1,. A={h=3>0hmz™ | h=(ho,hi,...) € }(No)},

Frequency domain. The frequency domain of the finite A = {s=s0skP:(2) | s= (50751, . ) c gi(NO)L
discrete model (6) can be viewed as the frequency domain of;, . 42 (No) — M. s — S 6P (@)
the infinite discrete model sampled at frequencigs= «y. ¢ ’ k20 (15)

For example, the frequency domain of the finite timejere N, is the set of non-negative integers; and
model (7) is the frequency domain of the infinite time
model (1) sampled at frequencies, = 27k/n [2], [4].  3(No) = {s |s € (*(Ny) and¢(x)s € £*(Ny)} C ¢*(No)
The orthogonal basis of this domain is formed bi™,

! Y is the vector space of finite-energy signals that preserge th
0 < m < n, sampled atw;: the mth basis function is

finite-energy property when multiplied by the matrix

(1’ e—j27rm/n’ o ’e—jZTrm(n—l)/n)_
bo ao
I11. INFINITE DISCRETENN MODEL c b a 6
In this section, we construct the 1-D infinite discrete- o) = ci by | (16)

NN signal model based on the discrete-NN shift. We then
derive the associated SP concepts and properties for the new
model, exactly in parallel with the discussion in Section Ik (x) is called thematrix representation of and satisfies [8]
In particular, we will see that the SP framework for infinite B(p(2)s) = 2 - 5(x) (17)
discrete-NN signal model contains all basic concepts, but o ‘
considerably differs from the traditional infinite diseetfme By the Cauchy—Schwarz inequality [30f;(Ny) is closed
SP. under addition and scalar multiplication; hence, it is ateec
We start with the discrete-NN shift shown in the fourtlspace. Furthermore, by induction, asye KZ(NO) satisfies
column of Table I. Calling the shift and assuming that it o (x)s € @(No) foranyk > 1. Then it follows from (17) that
operates on pointg, the shift operation can be written as for anys(z) € M andh(z) € A, the produch(z)s(z) € M,
and henceM is an.A-module as required.
The visualization of the model is shown in Fig. 3. It starts
If we assume that the coefficients, by, ¢, € R satisfy the with Py(z) and has the left boundary conditidh. (z) = 0.
conditior? apc, > 0 for k > 0, andpy = 1 andp_; = Note that here we choosé, z!,z2,... as a basis of the
0, then the solution to the recurrence (14) is a family= filter algebraA. Other choices are also possible. For example,
pr(z) = P(z), k > 0, of orthogonal polynomial$28], [29]. if Py(x) are Chebyshev polynomials, it is more convenient to
use Chebyshev polynomials of the first kifig,(«) as a basis
5Definitions of orthogonal polynomials may specify sepairditions for of A [3], [8]

ar and ¢ [28], [29]. The conditionayc, > 0 is more convenient for our . . . . P .
purposes in this paper; it is equivalent to conditions ineottiefinitions, as Convolution. Filtering in the infinite NN model (15) is

can be shown, for example, using Theorem 1.27 in [29]. defined as the product of a signalz) € M with a filter

TPk = Qk—1Pk—1 + bkDk + CiDi+1- (14)



h(z) € A: folz):
t(x) = > tePi(x) = h(z)s(). S(w) = (s(2), fu(@)) = > s Pr(w), (21)
k>0 k>0

Unfortunately, no general closed-form expression existt t wherew € Z. We call (21) thediscrete-NN Fourier transform
directly describes;, via s, and h,,,. The coefficientd, can The corresponding inverse transform is
be obtained either from a direct expansionidf)s(x) into

1
the basis o, (z), or using the convolution theorem discussed Sk = / S(w) Py (w)p(w)dw. (22)
below. Hkllk Jz
Spectrum. As discussed in Section II-A, to derive the ap!t follows from the equality
propriate Fourier transform for the infinite NN model, weffirs 1 S(w\P d
need to identify the spectrum o¥, i.e., the eigenfunctions e J1 (@) Pr(w)p(w)dw
f. under the discrete-NN shift. 1 (Z P ))P( ()
= — SmNmLm(W w w)aw
HiNk J1 m>0 ! R
Theorem 1 Let 1 1 (/P()P() ()d)
*Cm = — Sm m (W kg_}?’]m‘uww
T H . (18) kTl 2= T
m=0 "
The eigenfunctions for the infinite NN model have the form T Ly RHETe = Sk
fu(z) = Z Mk P (w) P (). (19) Frequency responseAs follows from (20) and the linearity
k=0 of filtering, any filterh(x) € A satisfies

For anyw € R, they satisfy h(@) fo(@) = h(w) fo(@).

T fu(@) =w- fu(z) (20) Hence, the frequency responsehgfr) € A in the infinite NN
Proof: For convenience, we set ; = 0. As follows model (15) is
from (14) and (17), any signal’, ., sk Pk () € M satisfies H(w) = h(w) = Z ™. (23)
m>0
x- Z spPr(z) = Z (Ck—lsk—l + brsy + ak8k+1)Pk($C)-
k>0 k>0 Convolution theorem. The convolution theorem for the

discrete-NN model follows from the definitions of the didere

Applying this to f,, in (19) yields :
PPYINg Jo(x)in (19)y NN Fourier transform (21) and the frequency response (23).

z- fulz) = Z(Ckflﬁkflpkfl(w)+bk77kpk(w)
k>0

+ arNi+1 P+t (w)) Py ()

= Z (akflpkfl(w) + b P (w) Theorem 2 Given the filtered signat(z) = h(z)s(x) and
k>0 the original signal s(z), define scaled signglsf(:c) =
+ Ckpk-i—l(w))??kpk(l') Zkzo tkPk(CC) ands(z) = ZkZ.O S Pr(x), whergtk = tk/nk
apd S, = sk[nk. Then, thel[ discrete-NN Fourier transforms
=Y (w : Pk(w))nkPk (x) T(w) = X bk Pr(w) and S(w) = 3, 85mi Py (w) satisfy
E>0

= w- fula). t(z) = h(z)s(z) & T(w)=H(w)S(w).
[ |

For the spectrum we only select a subset of eigenfunctions ] ] o

sufficient to obtain an invertible transform. For the infinit _Parseval equality. The Parseval equality for the infinite

NN model (15), it is sufficient to consider only frequenciediscrete-NN signal model takes the following form.

w from the interval of orthogonalityZ, since the orthogonal

polynomials P,(x) form an orthogonal basis oveE, as

discussed in Appendix A.

Hence, the spectral components, indexeduby Z, are
Theorem 3 A signals(z) =, sk Px(z) and its discrete-

Mo, = {e- anpk (w)Py(z) | ¢ € C}. NN Fourier transformsS (w) satisfy the property
k>0
Fourier transform. The Fourier transform for the infinite > sk urni = /I|S(w)|2ﬂ(w)dw- (24)

NN model (15) projects a signalz) onto the eigenfunctions k>0



Convolution. Filtering in the finite NN model (26) is

bo by bnz  bna defined as the product 6fz) andh(x) modulo P, (z):

Co O C1 Cp—3 O Cn_zo n—1
I T t(z) =Y tePi(z) = h(x)s(x) mod Pu(z).  (27)
PO Pl Pn72 Pnfl k=0

As in Section Ill, there is no general closed-form exprassio
to describet; via s; and h,,. The coefficientst;, can be
found either directly from the produét(z)s(x) mod P, (x)

or using the convolution theorem discussed below.

Fig. 4. Visualization of the finite discrete-NN signal madel

Proof: The Parseval equality (24) follows from Spectrum. From Section 1I-B, the spectrum of the finite
discrete-NN model is the set of spectral components
2 o *
Lis@Pueias = [ s@s @t Ma = Clel/(z — o),

— S(“)(Z S}anPk(W))u(w)dw whereay, 0 < k < n, are roots ofP, (z).
1 k>0 Fourier transform. From Section |I-B, the Fourier trans-
. form for a finite discrete model is described by the matrix
= D s / S(w) Pr(w) pp(w)dw Py in (10), whereb = (Py(z), ..., P,—i(z)) is the basis

T . Y .
k20 of M in (26). For the finite discrete-NN model, we call the
= Z SEM RTINS = Z |sk|?uxni.  corresponding®;. . the discrete-NN transform
k>0 k>0 This transform can be easily orthogonalized, as statedein th

m following theorem.

Frequency domain. The frequency domain for the infinite
NN model is the Hilbert space of all polynomials defined o

the intervalZ, with the inner product
Cn—1Tn-1 " dlag (Pn—l(ak)Pr/L(ak))ng<n )

D
(u,v) = / u(w)o(w)pu(w)deo @D B = diag(m)ocken (28)

The orthogonal polynomialBy,(w), & > 0, form an orthogonal wheren,, is defined in(18), and P’ (=) denotes the derivative
basis of this domain. of P,(x). Then

Alternative infinite NN models. Infinite NN models can be D '?p,, EY? (29)
generalized by allowing more general left boundary coodgi .
P_1(z) = bPy(x) or P_1(x) = cPy(z) instead ofP_; = ¢, IS an orthogonal matrix.
whereb € R andc satisfies the conditiong(co +¢) > 0. The
appropriate model (15) can be constructed by rep|mr‘gth Proof: This result can be obtained from Theorem 16 in [8]

bo + b or ¢y with ¢y + ¢, respectively, in the recurrence (14).using the following two facts. First, as shown in Appendix A,
the weightsu;, can be expressed as

q‘heorem 4 Consider the diagonal matrices

IV. FINITE DISCRETENN MODEL k=1
. . . o =0 [ 2 =2 (30)
From Section [I-B any finite 1-D linear shift-invariant o G Tk
d|§crete §|gnal model .necessanly hés= M = C[z]/p(z). In wheren, is defined in (18).
this section, we consider the cage:) = P,(z) (other cases )
are discussed at the end of the section). The signal spéce Second, the recurrence (14) for polynomi&g(z) can be

has a basi$ = (Py(z), Pi(z),..., P,_1(z)) of orthogonal written as

polynomials that satisfy recursion (14). As explained in-Ap Pi(z) = kail(x) B bkflpkil(x) G2 Pe_o(z)
pendix A, the polynomialP,(x) has exactlyn distinct real Ck—1 Ck—1 Ck—1
Zerosa = (0‘07 ..., ap—1), and they all lie inside the interval ¢ f3,, denotes the leading coefficient &%, (z), it follows that
of orthogonalityZ. Bp_1/Bpn = cn_1. Hence,

Signal model.We define thdinite discrete-NN signal model
with the right boundary conditio®,, () = 0 as Pno1 o (31)

Bnﬂnfl Cn—1Tn—1 ’
A= M =Clz]/Pala), (26) By using (30) and (31) in the corresponding places of
©: C" = M, s = (@) = Xochan S6Pi(2)- Theorem 16 in [8], we conclude that (29) is indeed an
This model is obtained from the corresponding infinite NNrthogonal matrik ]
model (15) by imposing the zero boundary condit®(z) = Frequency response.The frequency response of a filter
0. The visualization of the model is shown in Fig. 4. The right

poundary Condition is indicated by t_he absence of corre$pon ey, s paper, we use a notation and indexing that is sligttifferent from
ing edges at the right boundary point. the one in [8].



h(z) = ZZ@_:lo hmz™ € A, given by (13), is ugl/QPk(:c) to have the same normfor all £ > 0.
o1 Normalized polynomials also satisfy a recursion of the
Hy, = h(ay) = Z - form (14). The following theorem establishes whé}(z)
= have equal norms for at > 0 and shows how to construct

Convolution theorem. As follows from Section II-B, the normalized polynomials from any family of orthogonal poly-

convolution (27) satisfies nomials.
t(z) = h(z)s(z) mod P,(z) < Ty = HySk. Theorem 6 Orthogonal polynomialsP;(z) have the same
. norm || Py (x)||2,. = ||Po(z)]]2,., if they satisfy a recurrence
Hence, the coordinate vectdr = (to,...,t,—1)  of the of the form
filtered signalt(z) can be calculated as
x - Py(v) = ag—1Pp—1(x) + b Py (z) + ar Pet1(z),  (33)
t = P,ldiag(Ho,...,Hy-1)Ppas , , .
1 with Py(z) = 1 and P_1(z) = 0. That is, the coefficients
= EP, D diag(Ho,..., Hn1)Pras. in (14) satisfyas = ¢, for all k > 0.
The matriceD and E are specified in (28). Alternatively, if polynomialsP,(x) satisfy (14), then the

Parseval equality. The following theorem relates thenormalized polynomial$,(z) = 1, 2 Py (x) satisfy
weighted /5-norms of the signal and its Fourier transform. - -
It follows from the orthogonality property (29) d?;,, and  *° Pi(x) = Vakflckflpk*} () )
the structure of matrice® andE in (28). + by Pr(z) + \/arcrPryi(z).  (34)

Proof: Theorem 7 and (18) show that, = po/nk-
Hence, ifay = ¢ for all & > 0, thenn, = 1, pp = po,
and || P (2)(|2,u = || Po(2)ll2,-

Theorem 5 A signals = (so,...,s,—1) and its discrete-NN
transformS = Py, o s = (So, ..., S,—1) satisfy the property

sS"E's=8*"D'S. Next, observe that
Equivalently, Pt _ Gk
Kk Ck
n—1 |Sk|2 1 n—1 |Sk|2 - o 172
Z = Z p . Then the normalized polynomialB, (z) = y, '~ Py (x) sat-
= M a1 =5 Pao(an) P (o) isfy the recurrence
Frequency domain. The frequency domain of the finite - pk(x)
NN model (26) is the frequency domain of the infinite NN ~1/2
model (15) sampled at frequencies = «y. In particular, =y, Pi(@)
the polynomialsPy(z), ..., P,_1(x) sampled atv, . . ., a,, 1 = ? (ak—lpk—1(w) + by Pe(z) + ckpk+1(x))
yield basis functions for this frequency domain; tht¢h basis
function is . = a1, JEE=L B (@) + b Py(@) + eny 5L B ()
(Pm(Oéo),...,Pm(Oénfl)) . Hk Hk

. . ) = /ap_16h—1Py_1(x) + by Py () + /axcr P T).
This basis is not orthogonal. To construct an orthogonakbas k-10e-1Fi-1(@) + beF(2) kP (@)

for the frequency domain, one can apply the Gram-Schmidt u

procedure to the above basis. This construction is beyoad th

scope of this paper and can be found, for example, in [31]B. Undirected Models

Alternative finite NN models. The finite NN model (26)  The “symmetric’ NN shift (33) leads to the definition of

can be generalized by assuming any right boundary conditigrepecial class of NN models. We call themdirectedNN

Py(z) = X1 YmPn(z). The corresponding model is models, since they are associated with undirected visaliz
A= M =Cla)/(Pulz) - 211;10 o P (), @) :ici);sé.i.e., signals residing on undirected graphs as shown
P: C" =M, s—s(z)= Zogk<n sk Py (). Theorem 6 allows us to construct infinite and finite undi-

The discrete-NN transform has the form (10), provideggcted NN models. Their associated signal processing posice

Po(z) — 32"} ~,, P () is a separable polynomial with have simpler forms. For example, for the undirected infinite

distinct zerosng, . . . , 1. NN model, the discrete-NN Fourier transform (21) and its
The alternative left boundary conditions discussed in S¢gverse (22) have the form
tion Il can also b_e applied to finite NN models and change Sw) = ZSkPk(W),
the basis of the signal module. =
V. UNDIRECTEDNN MODELS s = i S (w) Pe(w)p(w)dw.
A

A. Normalized Orthogonal Polynomials

In general, orthogonal polynomialB;(z) have different
norms: uy # wm for k # m. They can be normalized as t(z) = h(z)s(z) & T(w)=H(w)S(w),

The convolution theorem becomes



Below, we discuss several applications that are based on the

expansion of finite discrete functions into sampled orthmago
bo bo b by 2 by 1 .
O O 0 0 0 O O polynomials.
0 g 41y 92 V%0 ) A1 . In-3J0n_2 Electrocardiographic signal processing. We consider
P P P P P P, Pp discrete-NN models based on Hermite polynomials(z).
(a) Infinite model (b) Finite model For the infinite model, the associated discrete-NN Fourier
transform (21) is
1
Fig. 5. Visualizations of undirected discrete-NN signaldeis. Sw) = Z oLl spHp(w),
k>0
and the Parseval equality becomes 5k = ﬁ/RS(“’)H’“(“)e_ duw. (35)
1 .. . _ .
Z 2= — [ S2(w)p(w)dw. For tlhe fInI'Fe model, the discrete-NN transform (10) is ogtho
Ho Jz onalized with
E>0
For the undirected finite NN model, the matf in the D = n-diag(Hy1(ax)H;(ar))ocpen,  (36)
orthogonal discrete-NN transform (29) becomes an identity E = diag(1/(2°k)) (37)
. . 0<k<n '
matrix. The Parseval equality becomes
_— The expansion of signals into continuous and sampled
Z|S 2= Z | Sk |? Hermite polynomials has been proposed for image analy-
F Pn_1(ag) P () sis and processing [19], [20] and electrophysiological sig

nal compression [14]-[18]. For example, in [17], [18], we
used the basis of Hermite polynomial(z), ..., H,—1(x)
sampled at the roots off,(x) to efficiently represent and

In this section, we discuss potential applications foris® compress electrocardiographic signals. Analyzing theecor
NN models. Some of the orthogonal polynomials considerg@onding finite NN model, we concluded that sampling the
in this section, such as Chebyshev, Hermite, and Lagueslectrocardiographic signals at time points proportidnahe
ones, are well-known; others are constructed with the recupots of Hermite polynomials is more efficient than sampling
rence (14) using application-specific coefficienis by, and at equal time intervals. Moreover, the proposed expansion

VI. APPLICATIONS

Ck- led to a significantly improved compression algorithm for
electrocardiographic signals.
A. Signal representation Speech signal analysisSimilarly to the above expansion of

We could argue that the immediate motivation for novelignals into Hermite polynomials, signals can also be espeln
signal models is their suitability for the description anthly- N0 Laguerre polynomialsl;(x) using the corresponding
sis of certain classes of signals. The advantage of propogégrrete-NN Fourier transform

models can be related to the improved characterization of Sw) = ZSkLk (w
signal properties and efficient signal processing tooly the =
produce. oo
Bases of orthogonal polynomials for the representation of Sy = / S(w)Li(w)e™dw,
0

diverse functions have been proposed in numerous studies,

some of which we discuss below. Two common applicatio® the discrete-NN transform orthogonalized wihequal to
are the representation of continuous functions using grthdn identity matrix and

onal polynomials and the representation of discrete foneti _ . /
using sampled orthogonal polynomials. The propertiesegeh D = —n-diag(Ln-s(a)Ln(o))osken:

bases, including the calculation of projection coefficieand Speech coding and a representation of exponentially-
approximation error analysis, are discussed in [28], [B®]]. decaying signals using sampled Laguerre polynomials has
Furthermore, for different functions, the choice of ortbngl been studied in [10], [11]. The analysis of the correspogdin
polynomials may not be obvious and may depend on ttNN model may offer valuable insights for improved analysis
application. and efficient processing of these classes of signals.

The projection coefficients in both cases can be viewed andmage compression.Image compression is an extensive
manipulated as signals from infinite and finite discrete-Nhesearch area in signal processing. Multiple approachgs; a
models (15) and (26), respectively. Besides deeper ingigint rithms, and standards have been proposed for efficient image
framework also offers additional tools for the processirig @rocessing, compression, transmission, and storage §8ge |
signals based on orthogonal polynomials. For instancegesirand references therein).
the framework defines the concepts of filtering, spectrurd, an In [34], we consider the compression of multiple images
frequency response, one can potentially construct fregguenwith similar structures, such as faces, handwritten digits.
selective filters, or even filter banks, to facilitate sigaaalysis Since images are finite discrete two-dimensional signhks, t
and processing [32]. corresponding NN signal model can be represented as a tensor
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product of two 1-D finite NN models [8], [35]. For bothlimited to DFT, DCTs and DSTs, discrete Hartley transform,
models, the recursion coefficients,, by, ¢, in (14), and discrete Hankel transform, and KLT.
hence, the corresponding orthogonal polynomig|éz), can Efficient and fast implementations of these transforms is
be obtained by solving af-minimization problem, and are an important research problem that can be addressed using
dependent on images of interest. multiple approaches. One of them is based on the recognition
The experimental results in [34] have demonstrated thefta transform as a polynomial transform for a finite discrete
the sampled orthogonal polynomials provide a suitablesbasignal model (6). In this case, a decomposition of the model
for the images of interest. In particular, a lossy image corito a combination of simpler models corresponds to a fac-
pression, implemented by preserving projection coeffisierforization of the transform into a series of simpler transfs
with the largest magnitudes only, achieves low error ratésat may yield efficient and fast computational algorithiftse
comparable with those for the principal component analyggeneral theory of this approach has been discussed in [g], [2
and significantly lower than for other standard transforms [37]; early work on using polynomial transforms to derive
image coding, such as DCT and discrete wavelet transfornalgorithms for the DFT was done in [38].
Correlation analysis of Gauss-Markov random fields. ~ Fast algorithms for DCTs and DSTs.In [3], [9], we
Finite discrete-NN models (26) can also be relevant to tlad-andemonstrated that the discrete trigonometric transfoB@sT(s
ysis of Gauss-Markov random fields [8], [25], [26]. Conside#nd DSTs) are Fourier transforms for the 1-D space model, a

n random variable, ..., &,_1 that satisfy the difference special kind of discrete NN-model (26) based on four kinds
equation of Chebyshev polynomials. By exploiting the structure of th

underlying signal models, in particular the polynomialeigas
Sk = Vk-18k—1 + Uklk + Ukt 1 + Vi, (38) A = M, we derived a large class of fast algorithms, including
whereu,, is a zero-mean Gaussian noise, apduy, € R are several new ones, that requi@(nlog(n)) additions and
real-valued coefficients. The ség;) is called afirst- Multiplications for a transform of size. The derivation uses
) 0<k - - . .
order Gauss-Markov random fieldefined on the finite lattice @ Small number of decomposition theorems for polynomial

0 < k < n. We assume zero (Dirichlet) boundary condition&!9ebras. _
¢, =0 and¢, = 0. Fast algorithms for other discrete-NN transforms.As we

hgiscussed above, discrete-NN transforms based on ortiabgon

eigenvector matrix of the covariance matX decorrelates pqunomlals dlﬁereqt from the Ch_ebyshev polynomials do

the signals — (50 ¢ l)T Under certain conditions. it is 21S€ and are used in various applications. Some of them are
=(&...,&n—1) - ,

. . . . based on known orthogonal polynomials, such as Hermite or
considered to be the optimal transform for signal compogssi ) o i .
Laguerre; others are based on application-specific polynom

however, there is no general efficient algorithm to compiuite t als, such as the ones related to Gauss-Markov random fields.

transform [36]. . Overall, with the current state of knowledge, the asymptoti

%%mputational cost for a general discrete-NN transform is

O(nlogz(n)) operations. This cost is slightly higher than

Ug Vo O(nlog(n)) operations required for the widely-used DFT,
DCTs, and DSTs.

The Karhunen-Loeve transform (KLT), described by t

matrix X for the above Gauss-Markov random field is

el [0 ™ . Specifically, anO(n log®(n)) algorithm was derived in [39]
Up—2 for discrete-NN transforms for arbitrary orthogonal palyn
Up—2 Up_1 mials, but with the right boundary condition defined by a

Chebyshev polynomial. It applies to finite NN models (32)
ith P, (z) — an;lo vm P () equal to a Chebyshev polyno-
ial. Also, anO(nlog®(n))) algorithm for a general discrete-

Let us set the values of coefficients andb;, in recursion (33)
to ap = v, and b, = wug, and construct the correspondingﬁ
family of normalized orthogonal polynomial; (). If Py o is | , ; -

the discrete-NN transform for the finite NN model (26) base'HN transfodrrr_\ wﬁhoanl arbr:t_rary right :]) oundlary cqnd|t|on was
on the above polynomial®,(z), then X' can be factored °°Q§t{“°te in [40]. In this case, the polynomil(z) —

S YmPm(x) in (32) can be any separable polynomial.
as [8] m=0 X .
The constructed algorithm, however, can be numerically un-
>l = Paa D2 diag (g, ...,n_1) D"Y2 Py, stable. Finally, arO(nlog(n)) approximation algorithm was

—1/2 . . proposed in [41] for a discrete-NN transform based on Leg-
Hence D™ /" Py is precisely the KLT for the above randomg e holynomials with the boundary condition defined by a

field. This result implies that an instantiation of the ramdo Chebyshev polynomial. Other work can also be found in the
variables, ..., £,—1 can be viewed, analyzed, and processggerences of these papers. We should also mention here that
as Fourier transform coefficients in the constructed finit¢ Nalgorithms requiringD(n log(n)) operations are possible for

model. discrete-NN transforms based on orthogonal polynomi#lsrot
than Chebyshev ones [24], [32].
B. Fast signal transforms VIl. CONCLUSIONS

An invertible transformation of a signal is a standard pro- We have proposed a new class of 1-D infinite and finite
cedure in signal processing. Examples include, but are rsignal models based on the discrete-NN shift. We introduced
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relevant SP concepts for these models, including filter asdalar factor) of the tridiagonal matrix
signal spacesgz-transform, convolution, spectrum, Fourier
transform, and frequency response. The proposed thealretic
framework is fundamentally different from the traditional
discrete-time SP, which is based on the discrete-time. shift T = c1 by . . (42)

We also provided several examples of applications that
inherently use the proposed signal models and may benefit
from our framework. All these applications expand signals
into orthogonal polynomials, which means they use the Eouril N€ rootsag, . . ., i1 are exactly the eigenvalues @t This
transforms associated with a suitable NN model. The prapod@roperty can be used to compute the rootspfz).

SP framework may lead to deeper insights and improved signal
analysis and processing tools for these applications. B. Norm calculation

The computational cost of the proposed discrete-NN trans-, order to calculate the norm Py ()
forms is moderate. Algorithms for general discrete-NN g¢ran
forms that required(n log?(n)) operations are known to exist
specific cases may require onfy(n log(n)) operations.

bo ao
Co b1 al

ap—2
Ch—2 brp—1

1/2
o = 1%, we

‘need to know the weight function(x) and the orthogonality
'interval Z. However, it may not be trivial to obtain(x) and

7 directly from the relation (39). Fortunately, the norm of
Pi.(x) can be determined from the coefficients by, andc,

as described by the following theorem.

APPENDIXA: ORTHOGONAL POLYNOMIALS Theorem 7 TheLi-norm of the polynomial$’(x) that sat-
isfy (14) and are orthogonal orf with respect to the inner
A. Definition and Properties product(41), is

There is a large body of literature dedicated to orthogonal

. ) . . P =pu/? = pd? 43
polynomials. A thorough discussion can be found in [28]][29 1P|z = Ho (43)
Here, we review only the properties that are used in thispape

Definition. PolynomialsPy (z), k > 0, that satisfy the three- Proof: The k x k diagonal matrix
term recurrence U = ding <1’\/@’ \/m’m’\/m)
T - Py (x) = ak_lPk_l(:v) + b Py, (x) + CkPIH_l(,T), Co CoC1 €. Cr—2
Py(z) =1, P_i(x) =0, (39) conjugates the matrif' in (42) to the symmetric tridiagonal
matrix
whereay, by, ¢, € R satisfy the conditiormc,, > 0 for k > 0, b
are calledorthogonal polynomials o Vado
Orthogonality. By Favard’s theorem, there exists an interval . Vaoco by
Z C R and a weight function:(z), non-negative orif, such UTU " = . .
that P, (z) are orthogonal ovef with respect tou(z): ' ' v Ah=2Ch=2
/ Pi(2) P (2) () d = 1105 (40) Vih-2ti—z b
z On the other hand, it was shown in [8] using the Christoffel-
Here, Darboux formula that the diagonal matrix
1/2 )
1Pe(@)l 20 = ((Pel@), Pr@)u) = p/* < o0 U = diag (/% 1%, o2
is the Li-norm of P, (z) induced by the inner product also conjugated” to a symmetric tridiagonal matrix.
Since there exists a unique (up to a constant factor) didgona
(f(x),9(z)), :/ f(x)g(x)p(x)d. (41) matrix that conjugates a tridiagonal matrix to a symmetric
z€T tridiagonal matrix, we conclude th&f = ¢ U’, and hence

Basis of orthogonal polynomials.The orthogonal polyno-
mials P,(x) form an orthogonal basis in the Hilbert space
of polynomials defined on the interval with the inner
product (41).

Roots of Py (x). The polynomialP;(x) has exactlyk real,
simple rootsay < ... < ai_1 that lie within the interval of
orthogonalityZ : «; € Z for all 0 < i < k. Hence,Py(z) is a 1o = / u(z)de.
separable polynomial of degrée el

In addition, Py (x) is the characteristic polynomial (up to a [ ]

for some non-zero constante R. In particular, fork = 0 we
obtainc = /%, where



The following is an immediate consequence of Theorem 9]

Corollary 1 If ax, = ¢ for k& > 0, thenux, = po, and all

[10]

Py (z) have the same norm

C. Classic Orthogonal Polynomials
The orthogonality intervalZ can be scaled and shifted

(11]

1P (2)l|2,n = Vo = || Po(2)||2,p-

[12]
[13]

to [-1,1], [0,00), or R. Based on this property, orthogonal

polynomials are traditionally separated into three classe

1)

2)

3)

(1]

(2]
(3]

(4]

(5]
(6]

(7]
(8]

Jacobi-like polynomialdiave the orthogonality interval
[-1,1]. The corresponding weight function, parameter-
ized bya > —1,b > 1, has the formu(®® (z) = (1 — [15]
x)%(1+ z)b. The four kinds of Chebyshev polynomials
Cr(z) € {Ti(x),Ur(x), Vi(z), Wi(x)} are examples [16]
of this class. They satisfy the recurrence
x - Cr(z) = %C}C_l(l‘) + %C}H_l(l'), [17]
with boundary conditionsI_;(z) = z, U_1(z)
0, Voi(z) = 1, W_q(x) —1. The correspond-
ing weight functions are/(=1/2=1/2)(z), ,(1/21/2)(g),
M(_I/Q’I/Q)(l')a andu(l/Q"l/Q)(:v).
Laguerre-like polynomial®iave the orthogonality inter-
val [0, 00). The corresponding weight function, param{20]
eterized bya € R, has the formu(®(z) = z%~*.
Laguerre polynomialsl,(z) are an example of this 2
class. They satisfy

x-Ly, (CL‘) = —kLk_1(x)+(2k+1)Li(z)—(k+1)Lit1 (CL‘)

and have the weight function(®) (z) = 2. (23]
Hermite-like polynomialbave the orthogonality interval [24]
R. Their weight function, parameterized hy > 0,
has the formu(®)(z) = e~*"/2a. Hermite polynomials
Hy(x) are an example of this class. They satisfy

(18]

[19]

[22]

[25]

1
X - Hk(:c) = kafl(I) + §Hk+1(£6) [26]
and have the weight function!/2 (z) = e==".
[27]
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