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Abstract—We propose a novel algorithm for the compression
of ECG signals, in particular QRS complexes. The algorithm
is based on the expansion of signals with compact support into
a basis of discrete Hermite functions. These functions can be
constructed by sampling continuous Hermite functions at specific
sampling points. They form an orthogonal basis in the underlying
signal space. The proposed algorithm relies on the theory of signal
models based on orthogonal polynomials. We demonstrate that
the constructed discrete Hermite functions have important ad-
vantages compared to continuous Hermite functions, which have
previously been suggested for the compression of QRS complexes.
Our algorithm achieves higher compression ratios compared with
previously reported algorithms based on continuous Hermite
functions, discrete Fourier, cosine, or wavelet transforms.

Index Terms—Compression, ECG signal, Hermite function,
Hermite transform, orthogonal polynomials, QRS complex, signal
model.

I. INTRODUCTION

S OME classes of electrophysiological signals have (or can
be assumed to have) compact support. These signals rep-

resent the impulse responses of a system or an organ to an elec-
trical stimulation that is recorded on the body surface. Examples
include electrocardiographic (ECG), electroencephalographic,
and myoelectric signals.

The major role of electrophysiological signals is to provide
information about a patient’s condition, and reflect important
changes in his/her state. In addition, it may also be desired to
store electrophysiological signals for later analysis and refer-
ence. However, the visual analysis and monitoring of long-term
repetitive signals is a tedious task that requires the presence of
a human operator. In these cases, computer-based systems can
be used to facilitate this process.
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For efficient storage, automatic monitoring, and accurate
interpretation, electrophysiological signals are usually repre-
sented by a set of features, either heuristic, such as duration and
amplitude, or formal, such as the coefficients of the expansion
in an orthogonal basis. In the latter case, one can use either a
continuous or a discrete basis. When a continuous basis is used,
the projection and reconstruction of a compactly supported
signal are computed using numerical methods for integral
approximation, for example, a numerical quadrature. When a
discrete basis is used, a discrete signal transform, such as the
discrete Fourier transform or the discrete cosine transform, is
applied to a digitized signal. These signals can be obtained
from continuous ones by sampling at specific sampling points.
The choice of the quadrature formula, or the sampling points is
an important characteristic of the representation scheme.

In both cases of continuous and discrete bases, typically only
a few projection coefficients are used for the storage and recon-
struction of a signal. While the reduction of expansion coef-
ficients leads to the compression of the signal, it also leads a
reconstruction error. The goal of the compression optimization
then is to minimize the error while maximizing the compression
ratio. This can be achieved, for example, by using only the coef-
ficients with the largest magnitude, and minimizing the number
of coefficients used for reconstruction.

In this paper, we introduce a novel algorithm for the compres-
sion of QRS complexes (also known as QRS intervals), which
are the most characteristic waves of ECG signals. The structure
of an ECG signal is shown in Fig. 1. The morphology of QRS
complexes is important to cardiologists in different stages of di-
agnosis and treatment [1]. Examples include, but are not limited
to the following.

1) The detection of the rhythm origin (supraventricular, from
the upper chambers of the heart, or ventricular, from the
bottom chambers). This is a key factor in the choice of the
treatment.

2) The detection of conduction abnormalities between atria
and ventricles (bundle branch blocks, fascicular blocks,
and others).

3) The detection of accessory pathways (Wolf-Parkinson-
White syndrome).

4) The evaluation of the effect of specific antiarrhythmic med-
ications (such as sodium channel blockers).

Our proposed algorithm is based on the expansion of QRS
complexes into the basis of discrete Hermite functions. Such
functions are obtained by sampling continuous Hermite func-
tions at specific sampling points, not necessarily located on a
uniform grid. We originally proposed this compression method
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Fig. 1. The schematic structure of an ECG signal.

in [2]. In this paper, we extend our previous work by rigorously
formulating and describing the signal model used for the de-
scription of QRS complexes. In particular, we use results from
our recently developed theory of signal models based on orthog-
onal polynomials [3]–[5]. We also identify a fast algorithm for
the implementation of the proposed compression method. Fi-
nally, our experimental results demonstrate that the proposed
method achieves higher compression ratios, compared to other
methods, when used to obtain medically acceptable compressed
ECG signals. Here, we call a compressed ECG signal medically
acceptable, if visually it is sufficiently similar to the original
signal, and would not lead to an incorrect interpretation and di-
agnosis. In our experiments, the identification of medically ac-
ceptable compressed signals has been performed by one of the
authors who is a cardiologist with extensive experience in car-
diac electrophysiology.

Related work. Previous work on the compression of QRS
complexes includes the use of continuous Hermite functions
as the expansion basis [6]–[9]. Due to the shape similarity be-
tween continuous Hermite functions and QRS complexes, these
functions were identified as a suitable basis for the representa-
tion and compression of the latter. These works, however, only
provide a theoretical framework for the compression algorithm.
The actual implementation is not discussed and no experimental
data is provided that would confirm that the proposed compres-
sion method indeed performs better than other methods. In addi-
tion, as we discuss in Section II, the computer implementations
of the previously proposed algorithms suffer from certain limi-
tations, such as the inability to obtain an exact reconstruction of
a signal, large computational cost, and an a priori selection of
coefficients for reconstruction.

II. BACKGROUND

In this section, we discuss the expansion of continuous signals
using Hermite functions, its digital implementation, and its use
in signal compression.

A. Continuous Hermite Functions

Consider the family of polynomials , , that satisfy
the recursion

(1)

Fig. 2. First four Hermite functions (plotted for the same scale �). (a) � ��� ��.
(b) � ��� ��. (c) � ��� ��. (d) � ��� ��.

for , with and . They are known as
Hermite polynomials. These polynomials are orthogonal on the
real line with respect to the weight function

(2)

It immediately follows from (2) that the functions

(3)

are orthonormal on with respect to the standard inner product

(4)

The set of functions , called continuous Her-
mite functions, is an orthonormal basis in the Hilbert space of
continuous functions defined on [10]–[13]. Any such func-
tion can be represented as a linear combination of the basis
functions

(5)

where

The first four continuous Hermite functions are shown in
Fig. 2. Note that each quickly approaches zero as the
value of increases: since is a polynomial of degree

As a consequence, for practical purposes we can assume that
each continuous Hermite function has a compact support. Since
in this paper we often work only with the first Hermite func-
tions, we assume that have
the same compact support , where is a suitably
chosen constant that depends on and . In other words, we
assume
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where . If a signal also has compact support
, then we can compute the coefficients using a finite

integral

(6)

B. Compression With Continuous Hermite Functions

Coefficient-based compression. In practical applications,
only a finite number of Hermite functions are used to repre-
sent the signal in (5). Accordingly, only a few coefficients

need to be computed. Here, corresponds to
in (6). The approximated signal is then

(7)

Alternatively, a larger pool of coefficients can be computed,
from which optimal ones are selected. It is well-known that,
in an orthonormal basis, selecting coefficients with the largest
magnitude minimizes the approximation error computed as the
energy of the difference between the signal and its approx-
imation with basis functions. If a basis is orthogonal, but not
orthonormal (i.e., basis functions do not have unit norms), an
additional weighting of coefficients proportionally to the norms
of the basis functions can be performed.

Digital implementation. The coefficients in (6) and the
Hermite expansion (5) are computed using the continuous func-
tions. However, in practice they have to be computed in a digital
form.

In particular, for each coefficient the integral in (6) can
be calculated using a numerical quadrature that is based, for
example, on a rectangle rule

(8)

Here, . Each
sampling point is located inside the corresponding interval:

.
Then, we can compute the discrete version of the approxi-

mation signal It corresponds to sampled at points ,

(9)

Usually, points are assumed to lie on a uniform grid, such
that for all . Then (8) and(9) can be expressed
in matrix-vector notation. Let us define vectors

...
...

... (10)

Then

(11)

(12)

where , such that its th column is the
Hermite function sampled at the points

(13)

As follows from (11)–(12), to achieve the perfect reconstruc-
tion , must satisfy .

Compression of QRS complexes: Previous work. The com-
pression of QRS complexes using the expansion into contin-
uous Hermite functions has been studied in [6]–[9]. It was origi-
nally motivated by the visual similarity of QRS complexes, cen-
tered around their peaks, and Hermite functions, as can be ob-
served from Figs. 1 and 2. Varying the value of corresponds
to “stretching” or “compressing” Hermite functions to
optimally match a given QRS complex.

Since ECG signals are usually available as discrete signals
equidistantly sampled at , previously reported work
assumed, explicitly or implicitly, in (8)–(9) and
hence led exactly to the matrix-vector products in (11) and (12).
In addition, it proposed to use only the first Hermite func-
tions for the approximation of QRS
complexes.

This compression algorithm has several important limita-
tions. First, since for , the approxima-
tion does not converge to the original signal , regardless of
the number of Hermite functions used for the construction
of an approximation. As a result, the original signal cannot
be reconstructed exactly.

This problem could be theoretically addressed by using
coefficients and replacing with to compute

coefficients in (11). However, the computation of is a
nontrivial task. Moreover, the matrix-vector product re-
quires operations. This cost can become prohibitive
for large value of and make this approach impractical.

Finally, the approximation of with the first
coefficients in (8) may not be the optimal

choice for the construction of approximation with basis
functions.

In Section IV, we propose an improved compression algo-
rithm that samples ECG signals at nonequidistant points, and se-
lects coefficients with the largest magnitude among a larger
selection of coefficients.

III. SIGNAL MODEL FOR QRS COMPLEXES

In this section, we construct a signal model for the description
of QRS complexes. It is based on the scaled Hermite polyno-
mials. We identify the Fourier transform for this model, called
a Hermite transform, as well as its inverse. We also describe a
fast algorithm for the corresponding Hermite transform. These
results will be used in Section IV to construct and implement
the novel compression algorithm.



950 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 60, NO. 2, FEBRUARY 2012

A. Signal Model

Let us define polynomials

(14)

where denotes the Hermite polynomials (1).
Throughout the paper, we refer to polynomials , , as
scaled Hermite polynomials.

Signal model. Consider the vector space of functions
spanned by the first scaled Hermite polynomials (14)

(15)

where . Since each is a poly-
nomial of degree , is a vector space of degree . It is closed
under the addition and linear scaling of its elements.

Assume that is also closed under the multiplication of
its elements modulo polynomial .1 As we demonstrate in
[3]–[5], in this case has exactly spectral components, and
the component of a signal

is defined as

where are the roots of . Note that
are all distinct real numbers [10]. Without

loss of generality, we assume .
Hermite transform. The spectral decomposition of signal

is defined as

(16)

We can express the spectral decomposition of in the fol-
lowing matrix-vector notation. Consider the matrix

(17)

The column of is polynomials evaluated at
. In general, matrices with this structure are

called polynomial transforms. In the particular case of (17), We
call the (forward) Hermite transform.2

1Strictly speaking, we must consider two separate spaces� and� that have
the same elements: � ��. � is an algebra: it is a vector space closed under
the addition and multiplication of its elements modulo � ���. Then� can be
viewed as an�-module, and its spectral decomposition can be defined.
� and � comprise a part of what we call an algebraic signal model. It is a

central component of the algebraic signal processing theory developed by the
authors in [3]–[5], [14]–[18].

In particular, in [3]–[5] we introduce signal models based on orthogonal poly-
nomials (of which Hermite polynomials are a special case). A family of poly-
nomials �� ���� is called orthogonal, if they satisfy a recursion of the form
�� ��� � � � ��� � � � ��� � � � ���, usually with initial conditions
� ��� � � and � ��� � �. Each family is orthogonal over an interval � �
with a weight function ���� � � ���� ��������� � � if 	 �� 
. Each
polynomial � ��� has exactly 	 simple real roots. A detailed discussion on or-
thogonal polynomials can be found in [10]–[13].

2Another definition of the Hermite transform has been previously used in [19],
[20]. However, it denotes an expansion into continuous Hermite polynomials,
and should not be confused with (17).

The spectral decomposition (16) can then be computed as the
matrix-vector product

...
...

(18)

Inverse Hermite transform. In general, it is non-trivial to
compute the inverse of the matrix for arbitrary polyno-
mials . However, as follows from Theorem 16 in [3] and
explicitly derived in [5], we can apply the Christoffel-Darboux
formula for orthogonal polynomials [10] to the scaled Hermite
polynomials to obtain the inverse of the Hermite trans-
form (17)3

(19)

Here, is a diagonal matrix with the diagonal
element equal to

where denotes the derivative of .

B. Fast Algorithm for Hermite Transform

A straightforward computation of the matrix-vector product
in (18) requires, in general, additions and multiplications.
Alternatively, additions and multiplications can be
required, if one uses an algorithm proposed in [22]. In both
cases, the computational cost can become unacceptable for large
values of , especially if the product has to be computed in
real-time (for example, in the case of ECG signal processing).
The same applies to the inverse .

Here, we provide an improved computational algorithm for
the matrix-vector product in (18). It reduces the computational
cost approximately by a factor of two. We only state the algo-
rithm here, without the proofs, since they can be verified by di-
rect computation. We originally derived this algorithm by ap-
plying the theory of fast polynomial transforms developed in
[4] and [23] to the signal space(15).

Theorem 1: Let be an even number. Then the
polynomial transform (17) can be factored as

. . .

(20)

3In [21], weighted Hermite polynomials sampled at the roots of � ��� have
also been identified as an orthogonal basis, essentially leading to (19).
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Here, is an identity matrix of size and is a compli-
mentary identity matrix of size

. . .

Matrix is an polynomial transform defined as

Each is an identity matrix except its

and elements are equal to

and , respectively. is a permutation matrix: its

element is 1 if mod and 0 otherwise.
The algorithm for odd values of is similar.
Theorem 2: Let be an odd number. Then the

polynomial transform (17) can be factored as

. . .

(21)

Here, is an polynomial transform
defined as

is a submatrix of obtained by removing the first row
and last column of the latter. Each is an identity matrix ex-
cept its and

elements are equal to and , respectively.

Matrices , and are as described above.
We show in [4] that the polynomial transforms and

in Theorems 1 and 2 are also based on orthogonal polynomials.
Hence, they can also be computed using approximately or

additions and multiplications, depending on the
choice of the algorithm. Since other matrices in factorizations
(20) and(21) require approximately additions and multipli-
cation, the computational algorithms in Theorems 1 and 2 re-
quire approximately two times fewer operations compared to
other algorithms.

IV. COMPRESSION ALGORITHM

As we mentioned in Section II, the parameter in the def-
inition of the continuous Hermite functions (3) can be used to
“stretch” and “compress” the functions relatively to the signal

.
Algorithm modifications. Alternatively, we can fix

and introduce a parameter to “stretch” and “compress” signal

instead. In this case the numerical quadrature (8) can be
rewritten as

(22)

Furthermore, instead of sampling points on a uniform grid,
we propose to use nonequispaced sampling points associated
with the roots of Hermite polynomials. Namely, we set

, to be the roots of the scaled Hermite
polynomial .

Discrete Hermite functions. We call the vector

(23)

the th discrete Hermite function.
As previously, we select in (22) so that the length of in-

tervals is constant4: . In this case the
computation of each coefficient in (22) can be seen as the
inner product of a discrete signal

with the th discrete Hermite function

Expansion matrix. The matrix. in (13) can now be
rewritten as

(24)

where

is a diagonal matrix, and is given in (17).
Finally, if and is a square

matrix, then it follows from (19) that the rows of form an
orthogonal basis:

(25)

We denote the diagonal matrix on the right-hand side (RHS)
of (25) as . Later, to account for the vector norms, we will
pre-multiply the input signal with the weight matrix .

4To our best knowledge, there is no closed-form expression for the roots
of Hermite polynomials � ���[10], [13]. In general, we cannot guarantee
that for any � there exists �, such that �� can be placed inside intervals
�� � � � of equal length, so that � � �� � � holds. However, in
the experiments in Section V only � � �� were used, and we numerically
confirmed the existence of suitable values �. Moreover, for each considered �
there exists a range of values of � that satisfy the condition; in the experiments,
the value that maximized the compression ratio was selected.
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Proposed algorithm. The proposed compression algorithm
operates as follows. We assume that the ECG signal is sam-
pled at points to obtain a vector of sam-
ples

(26)

The selection of parameter is discussed in Section V. Then we
compute the vector of expansion coefficients

(27)

where and are given in (24) and (25). Following this, we
construct the vector by keeping only coefficients in with
the largest magnitudes and setting others to zero. Finally, we use

to obtain the signal approximation

(28)

Advantages. The proposed algorithm addresses several limi-
tations of the original compression algorithms based on contin-
uous Hermite functions.

First of all, the discrete Hermite functions in (23) form an
orthogonal basis in the finite-dimensional vector space of
all discrete signals of length . The expansion of QRS com-
plexes sampled at nodes into the discrete Hermite functions
is complete, and allows for a perfect reconstruction of the sam-
pled complexes. By contrast, an expansion of a continuous QRS
complex into a finite number of continuous Hermite
functions is not complete, since these functions do
not form a complete basis in . As a result, a perfect recon-
struction cannot be achieved.

Furthermore, for a digital implementation of the compres-
sion, both the QRS complexes and the basis functions must
be discretized by sampling. As we have discussed, equidistant
sampling of continuous Hermite functions does not yield an or-
thogonal basis in the space. In this case, approximating a
signal with more basis functions may not necessarily lead to a
smaller approximation error. On the other hand, since the dis-
crete Hermite functions form an orthogonal basis, increasing
the number of vectors used for the signal approximation neces-
sarily decreases the approximation error [24]. Moreover, since
we pre-compute all coefficients and only after
this select ones with the largest magnitude to obtain the
approximation error is minimized for a fixed . In addition, if
an exact reconstruction of signals is required, it can be achieved
by using coefficients to obtain .

Finally, the proposed algorithm has a more efficient imple-
mentation, since the computational cost of in (24) (as well as

) is approximately two times lower compared to the cost of
(and ) in (13), as discussed in Section III-B.

V. EXPERIMENTS

Setup. In order to analyze the performance of the proposed
compression algorithm, we study the compression of QRS com-
plexes extracted from ECG signals in the MIT-BIH ECG Com-
pression Test Database [25]. The database contains 168 ECG

Fig. 3. An example ECG signal with two leads.

signals sampled at 250 Hz. An example ECG signal with two
recorded channels, or leads, is shown in Fig. 3.

Preprocessing. To make the experiments uniform across the
database, we only used the first 10 seconds of the first lead of
each signal. All detectable QRS complexes were extracted au-
tomatically, a total of complexes. During the extrac-
tion, we require that each extracted complex is centered around
the R peak. As a result, each extracted complex is available as
a discrete signal of length , where the

th sample corresponds to the R peak. Hence, each signal
represents a continuous QRS complex of duration 104, 112, or
120 milliseconds sampled at 250 Hz.

For the new compression algorithm, QRS complexes must be
sampled at points proportional to the roots of .
These signals are not available directly from MIT-BIH ECG
Compression Test Database. Hence, we had to construct the re-
quired discrete signals prior to running the experiments. We first
reconstructed continuous QRS complexes by interpolating the
extracted discrete QRS complexes with sinc functions, and then
sampled the obtained continuous signals at the required points

. The value of the parameter was determined experi-
mentally for each lead to maximize the resulting compression
ratio. In particular, we have observed that the optimal value of
“stretches” the weighted signal in (27) to make its shape
closely resemble the shapes of the discrete Hermite functions
in (23). Since in our experiments having only a few coefficients

with large magnitudes implies a higher com-
pression ratio, we hypothesize that the optimal choice of may
be explained by the Cauchy-Schwarz inequality [26] that states
that the magnitude of the inner product of two vectors with equal
norms is maximized when the vectors are equal. Thus, if
closely resembles , their inner product
should have a large magnitude.

Similarly, we determined the value of the parameter for
each lead to maximize the compression ratio for the original
compression algorithm that expands QRS complexes into con-
tinuous Hermite functions.
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TABLE I
AVERAGE COMPRESSION RATIOS OF DIFFERENT ALGORITHMS FOR 10%, 15%, 20%, AND 25% APPROXIMATION ERRORS. THE AVERAGE NUMBER OF

COEFFICIENTS REQUIRED TO ACHIEVE THE DESIRED ERROR IS INDICATED IN THE PARENTHESIS NEXT TO THE CORRESPONDING RATIO

Fig. 4. A QRS complex and its approximations with 10% and 20% errors.

In a real-time system, the parameters or would be pre-set
for each lead. In addition, the incoming continuous ECG signal
would be immediately sampled at the desired points. Hence, the
interpolation step would not be required.

Objective. The main objective of the experiments is to
achieve the maximal compression ratio for a desired approxi-
mation error. We define the error as the norm of the difference
between the original signal and its approximation, normalized
by the norm of the original signal

(29)

In this paper, we seek to achieve a 10% approximation error.
It has been verified by one of the authors who is an experienced
cardiologist, that all signals in the MIT-BIH ECG Compression
Database can be compressed with the methods considered in this
paper with the 10% error while remaining medically acceptable.
This means that visually all signals remain sufficiently similar
to their original versions, and would not lead to incorrect inter-
pretation and diagnoses.

We also provide compression ratios for 15%, 20%, and 25%
approximation errors. In general, signals in the MIT-BIH ECG
Compression Database compressed with these errors have been
found medically unacceptable. For example, in our experiments
for the approximation error of 20%, 630 out of 1486 (42.4%)
compressed QRS complexes were identified as medically unac-
ceptable. However, most of the distortions were introduced at

the boundaries of the compressed QRS complexes, as demon-
strated in the example shown in Fig. 4. Potentially, this problem
could be addressed by smoothing the boundaries, and hence re-
ducing the approximation error.

Compression algorithms. For the original compression al-
gorithm that expands QRS complexes into continuous Hermite
functions, as described in Section II-B, we compute a sufficient
number of coefficients in (11). We use the min-
imal possible that ensures that the reconstruction in (12)
has the desired approximation error(29).

For the new compression algorithm, we compute co-
efficients, and select a sufficient number of the coefficients
with the largest magnitude to obtain the approximation in (28)
that yields the required approximation error (29).

In addition, we study the accuracy of compression algorithms
based on widely used orthogonal discrete signal transforms. In
particular, we consider the discrete Fourier transform (DFT),
the discrete cosine transform (DCT), and discrete wavelet trans-
form (DWT). In the latter case, we consider an orthogonal DWT
based on Daubechies filters of length 4 with three levels of de-
composition [24]. Since all these transforms are orthogonal, we
can replace in (11) and(12) with the corresponding transform,
apply the transforms to the signal in (10), and select a sufficient
number of coefficients with the largest magnitudes, such that
reconstruction in (12) has the desired approximation error(29).

Results. The average compression ratios for 10%–25% ap-
proximation errors are shown in Table I. The ratios were com-
puted as

Here, is the length of the th sam-
pled QRS complex, and is the number of coefficients re-
quired to achieve the desired approximation error. Naturally,
the higher the compression ratio, the better the algorithm per-
formance, since fewer coefficients are required.

In Table I, we also identify the average minimal number of
coefficients required to achieve the desired approximation
error. This characteristic is included for implementation pur-
poses and the ease of interpretation of compression ratios.

VI. DISCUSSION AND CONCLUSIONS

As we observe from Table I, the proposed compression algo-
rithm has the highest compression ratio for all considered ap-
proximation errors. In particular, it requires on average only 6
coefficients to reconstruct compressed QRS complexes that are
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medically acceptable. This is a 25% improvement compared to
using DCT as the compressing transform, a 33% improvement
compared to using DFT or the compression algorithm based on
continuous Hermite functions, and a 40% improvement com-
pared to using DWT. As an interesting observation, recall that
here we are using the DWT with three decomposition levels; we
tested DWT with other numbers of decomposition levels, and
the compression ratios were even lower.

The larger compression ratio of the proposed algorithm in
comparison with the original expansion into continuous Her-
mite functions can be explained by the improvements discussed
in Sections II and IV. The better performance of the proposed al-
gorithm compared to the orthogonal transforms DFT, DCT, and
DWT, on the other hand, may have different reasons. One poten-
tial factor is that, as discussed above, the proposed compression
algorithm uses the parameter to better “fit” the input signals
to the basis of discrete Hermite functions that have shapes re-
sembling QRS complexes. This “fitting” may lead to fewer co-
efficients with large magnitudes compared to DFT, DCT, and
DWT, which have corresponding basis functions of different
shapes. Another, more speculative, potential factor is that DFT,
DCT, and DWT are well suited for the compression of “smooth”
signals (for the discussion, see [24] and references therein),
since they efficiently capture the low-frequency components of
signals using a small fraction of coefficients, and remove the
high-frequency component that may require many additional
coefficients. Since some QRS complexes may have significant
high-frequency components, they may require a larger number
of coefficients to achieve a desired reconstruction accuracy. In
our experiments, however, the effect of high frequencies in QRS
complexes on the compression performance was observed only
in a limited number of cases.

Future improvements. As we mentioned in Section V, the
compression with an approximation error higher than 10% fre-
quently leads to medically unacceptable signals. However, most
of the distortion is introduced at the boundaries of the com-
pressed QRS complexes.

Fig. 4 shows an example of such distortions for the 20% ap-
proximation error. While the shape of the compressed signal is
similar to the original QRS complex, the compressed signal is
clearly corrupted at the left and right boundaries. As a result, dis-
continuities are introduced on the edge between the compressed
QRS complex and the preceding P-R segment, as well as on
the edge of the QRS complex and the following S-T segment.
Potentially, one could address this problem by smoothing the
compressed signal at the boundaries, thus reducing the approx-
imation error.

Conclusions. We have constructed a novel algorithm for the
compression of QRS complexes. The proposed algorithm is
based on the expansion of signals with compact support (such
as ECG signals) into the basis of discrete Hermite functions.
These functions are constructed by sampling the continuous
Hermite functions at sampling points proportional to the roots
of a corresponding Hermite polynomial.

The proposed algorithm uses results from our recently devel-
oped theory of signal models for orthogonal polynomials. As
confirmed by the experiments, the novel algorithm achieves a
higher compression ratio compared with the original algorithm

based on the expansion into continuous Hermite functions, as
well as other widely used compression algorithms.

In addition, we developed a fast computational algorithm for
the proposed compression method. The proposed approach re-
duces the number of operations approximately by a factor of
two.
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