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Abstract—We propose a new mathematical and algorithmic
framework for unsupervised image segmentation, which is a
critical step in a wide variety of image processing applications.
We have found that most existing segmentation methods are
not successful on histopathology images, which prompted us to
investigate segmentation of a broader class of images, namely
those without clear edges between the regions to be segmented.
We model these images as occlusions of random images, which we
call textures, and show that local histograms are a useful tool for
segmenting them. Based on our theoretical results, we describe
a flexible segmentation framework that draws on existing work
on non-negative matrix factorization and image deconvolution.
Results on synthetic texture mosaics and real histology images
show the promise of the method.

Index Terms—image segmentation, occlusion models, texture,
local histograms, deconvolution, non-negative matrix factoriza-
tion

I. INTRODUCTION

Image segmentation is the process of locating the bound-
aries between visually distinct regions in an image, thereby
partitioning the pixels. Applications of image segmentation
are numerous: from remote sensing [1] and video process-
ing [2] to non-destructive testing [3]. Within the biomedical
field, segmentation is used with diverse imaging modalities
such as MRI [4], both light microscopy [5]-[7] and electron
microscopy [8], ultrasound [9], and many others to identify
regions at all scales from organelles to organisms.
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A. Previous Work

There exists a wide variety of classic approaches to generic
image segmentation, including graph cuts [10], active contours
[11], level sets [12], Gabor filtering and clustering [13],
random fields [14], watersheds [15], region growing [16],
and mean shift [17]. In addition, there also exist engineered
segmentation systems, such as BlobWorld [18], JSEG [19],
EDISON [20], and CTex [21]. Broadly, these methods vary in
how the segmentation regions are parametrized and whether
edge or region information is used.

Even with this plethora of methods to try, working on a
new segmentation problem is not trivial. Each existing method
makes assumptions about the images it aims to segment.
When these assumptions are met, the method works, and when
they are not, it fails. Because many of these assumptions are
implicit, selecting a method to use on a new segmentation
problem involves educated guessing. When no suitable method
can be found, a new method is designed. This is especially
true for biomedical imaging, where the diversity of imaging
modalities and analysis objectives means that algorithms are
often designed for each specific application. For example, the
active shape models in [22] aim to segment the complex
shapes in CT scans, the active masks in [6] work for the
punctate appearance of fluorescence microscopy images, and
the multiple model approach in [9] handles the problems of
speckle and motion in ultrasound images of the heart.

Fig. 1. Examples of difficult tissue boundaries in teratoma images (black lines
denote tissue boundaries as drawn by a pathologist). The lack of distinct edges
between regions makes automated segmentation difficult, and even experts
cannot reliably localize the boundaries at pixel level.

In this work, we were inspired by the problem of segmenting
tissues in bright field microscopy images of hematoxylin and
eosin (H&E)-stained slices of teratoma tumors (see Figure 1
for examples; more details on this dataset can be found



in [23]). Other works that address segmentation of histology
images include [24], where the authors use intensity neighbor-
hoods as features to segment bone, cartilage, and fat, and [25],
where the authors use the cooccurrence of different tissue
components to segment cancerous glands specifically in colon
biopsies. Our working hypothesis is that this task is difficult
because tissues are complicated, while tissue boundaries are
sometimes subtle and not marked by edges. Our previous
work [26] began exploring models for these complicated
tissues and proposed a simple supervised segmentation method
for them.

In the current work, we propose a new model for images
formed from multiple tissues. Working from this model, we
design a new unsupervised segmentation method based on
local histograms that is well-suited to a broad class of images
with poorly defined boundaries. We expect this class to include
images such as aerial photos of grass and trees (“Where is
the edge of the forest?””), photographs of crowds (“Where is
the edge of the crowd?”), and, as is our focus in this paper,
histology images (“Where is the edge of the adipose tissue?”).

B. Contributions

The main contributions of this paper are as follows: 1) We
propose a mathematical framework for image segmentation
which models images as occlusions of textures. Given an
image formed according to this model, we prove that its local
value histograms will approximately be convex combinations
of the value distributions of its component textures. 2) Based
on this result, we present a new algorithmic framework for
image segmentation based on histogram factorization and
deconvolution.

C. Outline

The outline of the paper is as follows: In Section II, we
introduce local histograms, occlusions, and necessary notation.
We then describe our proposed model and prove the main
theorem. In Section III, we propose an algorithmic framework
for image segmentation based on this theorem and describe a
possible implementation of one instance of such an algorithm.
We present experimental results of a comparison of our
algorithm to other segmentation algorithms in Section IV and
conclude in Section V.

II. MATHEMATICAL FRAMEWORK

In this section, we introduce necessary notation, then build
the texture model as follows: We first define dependence decay,
which describes how well a texture can be characterized by
its local histograms, show how to construct textures with a
known dependence decay, and explore dependence decay in
real textures. Based on this, we propose modeling images as
occlusions of textures. Under this model, we present and prove
our main result, which describes how the local histograms of
this class of images are mixtures of the value distributions of
their component textures.

A. Notation and Background

Let f be an image, f : X — V where X is a discrete
set of pixel locations and V' is a discrete set of pixel values.
For example, for a 512 x 512 8-bit grayscale image, X =
Zs19 X Zs12 (We use Zg to denote the set of integers modulo
K) and V' = Zsys5¢, while for a stack of ten 1600 x 1200 8-
bit RGB color images, X = Zi1g X Zigoo X Z1200 and V =
Ziose X ZLiose X Zase. Clearly, the elements of V' can be vectors
or scalars; since the set is always discrete, however, without
loss of generality we treat it as a set of integers O, 1, ...,
V] —1.

We now define the local histogram and occlusion operators;
our definitions are a slight adjustment of those presented
in [26]. Define first the indicator function,

, forx € A;
for x ¢ A.
Then, the local histogram transform of an image f is

Lofe,0) = Y 1y (fl@) wiz - 2'),
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for x € X and v € V, and where w is an averaging filter that
sums to one. For example, with a constant averaging filter w
of size 3 x 3, the local histogram transform L, f(z,v) gives
the fraction of the pixels in the 3 x 3 neighborhood around x
that have value v.

We call a function o : X — {0, 1, ..., N — 1} a labeling

function. We define the occlusion of a set of images { f,} -}
with respect to a labeling function o as
N-1
O {f}i5' (@) = D 1my(@@) fule) @
n=0

for x € X. In other words, an occlusion of a set of images
is itself an image that matches one of its component images
at each pixel; which image shows through at each pixel is
governed by o. Note that we use the term occlusion because
we view the set of images as a stack with one image blocking,
or occluding, the others at each pixel.

B. Flat Textures

We now define a texture as we use it in our work; note
that it is simply a random-valued image and that many other
texture definitions exist.

Definition 1 (Texture). A texture F' = {F(z)},ex is a V-
valued random field indexed by pixel locations, X.

In other words, for each x € X, F(x) is a V-valued random
variable; one realization of a texture is an image. Associated
with each of these random variables is a probability mass
function, pr(;) : V' — [0,1]; the probability that F'(x) is
equal to v is pp(y)(v). While each F'(z) may have its own
unique probability mass function, we find it useful to consider
only those textures for which these functions are the same,
which we call flat textures.

Definition 2 (Flat texture). A fexture F is flat when
PF(ay) (V) = pF(wj)(v) = pp(v), for all z;, v; € X and
veV.



In other words, a flat texture is one where the distribution
of values is the same at every pixel. Note that this does not
imply that the random variables F'(z;) are independent, only
that they have the same distribution. Flat textures may have
complex and spatially varying patterns of dependence; we will
further explore this dependence in the following sections.

Flatness is not a highly restrictive condition. In fact, it is a
property of most real-world textures. For example, take F' to
be the texture for 128 x 128 color images of grass. Intuitively,
we would assign one color distribution to F', with peaks for
brown, yellow, and green. We would not say that grass images
are more likely to be brown in the bottom right corner or
green at the top. The fact that colors do not appear more or
less frequently in specific areas of the image means that this
texture is flat.

C. Histograms of Flat Textures

Many textures can be distinguished based solely on their
value distribution, p(v). For example, consider a grass texture
and a sky texture; pgrass(v) would have a peak around green,
while pgy(v) would have peaks around blue and white. If our
goal is to classify whether an image is of grass or sky, we
could build a value histogram from the pixels in the image
and compare it to our model of Pgrass(v) and pycy (v).

We now consider more closely the relationship between the
histograms of a realization of a flat texture and that texture’s
value distribution, pr(v). Let

. 1
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be a histogram built from k pixels at arbitrary unique locations
Zg, 1, ..., Tx—1 of the image f. If k is large enough, we
expect that f)}wi}(v) will estimate pg(v); intuitively, sampling
f over a small region will give a worse estimate than sampling
f over a large one. The quality of the estimate will be
determined by the number and position of the pixels and the
way the statistical dependence between pixels of F' changes
over space. Moreover, for some textures, such an estimate
may never be good. We quantify how quickly these estimates
improve by introducing the notion of dependence decay.

Definition 3 (Dependence decay). A flat texture F' exhibits
dependence decay with complexity a if, with probability 1 —§
and for any v € V and k < | X

>

x; I.C:l _
P () = pr(v)] < ak™2,
with0<aand 0 < § <K 1.

The value ¢ is a small positive number so that 1 — § is our
standard of high probability. If the complexity, a, is small, then
F' is simple in the sense that even histograms formed from a
small number of pixels approximate pr well.

D. Constructing Dependence-Decay Textures

Though any texture can exhibit dependence decay with a
very loose bound (for example, select a such that a| X |~1/2 >
1), we focus on the class of textures for which the dependence

between pixels decays sufficiently so that this bound is useful,
that is, ak~1/2 < 1 even when k < | X |; informally, we will
refer to these as dependence-decay textures. At this point, it is
natural to wonder whether there exist any dependence-decay
textures. To find the answer, we explore a property of textures
we call persistence length and show that when a texture’s
persistence length is short enough, it is dependence-decay.

Definition 4 (Persistence length). A texture F' has a persis-
tence length € if, for any two pixel locations, x; and x;, the
random variables F'(x;) and F (x;) are independent whenever
||$1 — .13j||1 > €.

Persistence length is another way of thinking about the scale
of a texture. For example, consider a texture F' that generates
images of colored pebbles. If we know that the value of a
sample of this texture at pixel location x; is blue, we can
expect the value at pixel location z; to be blue as well when
x; and x; are close; when these locations are far enough apart,
however, f(x;) no longer gives any predictive information
about f(z;). The distance at which f(x;) stops being helpful
in predicting f(x;) is F"s persistence length. In this example,
it is the diameter of the pebbles.

Persistence length is related to dependence decay, since
statistically independent samples are the best ones with which
to estimate a texture’s value distribution. We make this re-
lationship explicit with a theorem; the proof is given in
Appendix A.

Theorem 1 (Persistence length and dependence decay). A flat
texture with persistence length € exhibits dependence decay
with complexity a = (—2Aclog (1 — /1—10))Y2, with
Ac =262+ 2e + 1.

If we could create textures with a given persistence length,
this theorem would allow us to establish their dependence
decay properties as well. One straightforward way of doing
this is to use a dead leaves model; that is, generate images by
layering templates of random size, shape, position, and value
on top of each other (see [27] for a more thorough description).
Textures defined in this way have a persistence length equal to
the ¢'-diameter of their largest template, since pixels separated
by more than this distance cannot belong to the same template
and are therefore independent.

E. Dependence Decay in Real Images

We now discuss how the above theory applies to real
images. As our example textures, we take grayscale images
from the Prague Texture Segmentation Benchmark [28].

For each image in the dataset, we define a corresponding F’
that assigns equal probability to this image and all its circular
translates. This means pp(v) is equal to the global histogram
of the image. To show that F' is a dependence-decay texture
we must set a probability J, then for each £ =1, 2, ..., find
the arrangement of points, zg, x1, ..., Tx—1, that maximizes
|]5fz"}(v) — pr(v)| in at least a fraction ¢ of the realizations
of F'. If this maximum error,

k—1
B(k) = B ) —pr)] @)

max
Z0,T1y s Th—1



can be bounded usefully by a function ak~'/2, then F is a
dependence decay texture.

In practice, we cannot check every possible arrangement
of k pixels even for small k£, so we make the simplifying
assumption that, in the worst case, the x; will be 8-connected
and perform a greedy search for worst-case arrangements. This
assumption is reasonable for natural images because adjacent
pixels are nearly always more correlated that those that are far
apart. To further speed up the computation, we crop the image
to a size of 100 x 100 pixels and quantize it to § values.

102
10—3 A
109 102 10*
Ek

© (d)

Fig. 2. An example of dependence decay in one texture from the Prague
set [28]. The original texture image (a) is cropped and quantized (b) before
the analysis. The plot in (c) shows how the approximation error (4) (solid line)
is bounded by the function 2.42 k—1/2 (dashed line). The regions shown in
(d) are four worst-case arrangements (described in Section II-E). When pixels
sampled in these patterns are used to estimate the color distribution of the
texture, they lead to errors of 2=1 9-2 9-3 and, 274 (decreasing error
from black to light gray). The corresponding points are marked with circles
in (c).

Our experiments show that many of these images do exhibit
dependence decay, see Figure 2 for an example. This supports
the claim that many real-world textures exhibit dependence
decay. For the periodic textures in the dataset, the complexity
a is large because pixels are highly correlated, see Figure 3 for
an example. If the search were not constrained to contiguous
regions of pixels, the complexity would be even higher. This is
because when the offset between samples matches the period,
the samples are completely dependent on each other. We will
see in the next section that the high a value associated with
periodic textures means that they are not usefully governed
by our main result, Theorem 2. This essentially says that
periodic textures can be combined into pathological images
that are impossible to segment. We will stress here, however,

that periodic textures can still be segmented by the algorithm
we present in Section III, because the worst case error only
happens with very specific corner cases that are unlikely to
occur in practice.

Il |

Fig. 3. An example of dependence decay in a periodic texture from the Prague
set [28], shown cropped and quantized in (a). The regions shown in (b) are
four worst-case arrangements (described in Section II-E), increasing in size
from black to light gray. Sampling pixels in these vertical stripes leads to
very poor estimates of the true color distribution of this texture because the
sample may e.g. contain only black pixels, omitting the lighter pixels in the
image.

F. Occlusions of Dependence-Decay Textures

We now come to the main result of the paper. We
propose modeling images as occlusions of realizations
of textures, O,{fn 5;01, where the component textures,
Fo, F1, ..., Fn_1, and the labeling function, o, are not known.
Under this model, segmentation is equivalent to recovering o.

Figure 4 illustrates modeling a natural image as such an
occlusion. Starting with an original image as in Figure 4a,
imagine there exist three textures, Fiy, Fyindow> and Firick,
each generating images of the corresponding texture, as in
Figure 4b. We can then use a labeling function o (Figure 4c)
to create a new image flighthouse = Oo{fskyafwind()w’fbﬁck}
(Figure 4d).

If we use occlusions of textures as our model for images,
then we can define segmentation as the problem of taking
an image and recovering the labeling function that was used
to generate it. If the component textures of the image are
dependence-decay, then a reasonable approach is to exam-
ine the local histograms of f, since these histograms well
approximate the true distribution of values in each texture.
For example, in Figure 4a, local histograms taken from the
upper right corner will approximate pgy, while those from
the lower left corner will approximate pyick. Local histograms
taken around the window will be mixtures of pyick and Pyindow-
The following theorem formalizes this process; the proof is
given in Appendix B.

Theorem 2 (Local histograms of occlusions are mixtures of
component value distributions). Given a set of dependence-
decay textures {Fy, Fy, ..., Fx_1} with complexities ag, a,

.., any_1, a constant averaging window w, and a labeling
function o, then with probability (1—08)N, and for any x € X
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Fig. 4. Modeling of an image (a) as an occlusion of realizations of textures
(b) according to a labeling function (c), resulting in (d).

and v eV,
N-1
LyOo{fn iv Z w * 1{n} ] (z) pr, (v)
n=0 5
0l _1/2 )
< =
<ao(F)
with |w| =3« 1oq(w(z)), a = max{ag,a1,...,an_1},

and § the threshold for high probability selected in Defini-
tion 3.

Here we use the notation (0, 1] to indicate the interval {z |
0<z<1}.

In other words, if an image is formed from the occlusion
of realizations of several dependence-decay textures, then
each of its local histograms will be approximately a convex
combination of the true value distributions of those textures.
The amount that each texture contributes to a histogram
is proportional to how much of that texture exists in the
neighborhood of the local histogram. This theorem offers a
key insight about how to do segmentation because it relates the
local histograms of f, which we can calculate, to the labeling
function o, which we want to discover.

III. PROPOSED ALGORITHM

Based on our discussion, the task of segmentation can
now be seen as finding the labeling function o using local
histograms of f, which we can calculate. Thus, based on
Theorem 2, the task of segmenting an image modeled as
occlusions of realizations of textures, f = O, {f,,}N=}, into
N regions can be approached as an optimization

N-1
Ly f = Y [w 1y (0)] ) 6)
n=0

arg min
ag

where X,, = {z | o(z) = n} is the set of pixels belonging
to the nth region and ﬁif (v) is a histogram formed from the
pixels in X, as defined in (3). This optimization finds a la-
beling function, o, that splits the image into N regions. These
regions are such that for each x € X, the local histogram,
Ly f(z,v), is approximated by a convex combination of the
value histograms of those regions, f);{" (v), with the weights
of this convex combination determined by the amount of each
label in the neighborhood of the histogram, [w * 11,y (0)]().

Our approach is philosophically similar to the method
in [29], which uses an active contour to separate the image into
a foreground and a background region that have maximally
distinct color distributions. This method differs from ours in
two key ways: First, our method does not find maximally dis-
tinct distributions, rather it finds distributions that are consis-
tent with the local histograms taken inside their corresponding
region. Second, our method does not parametrize the boundary
between regions as a level set, allowing it to more naturally
handle segmentation of more than two regions. In short, though
both methods focus on color distributions rather than edges,
they actually optimize different quantities in different ways.

Rather than solve (6) directly, we approximate it via variable
splitting [30], [31] and relaxation [32] as

N—-1
wa - Z QAnPn
n=0

arg min
0,P0,P1;--PN—1
QQ, X1,y XN —1
N-1
Z)anw*l{n}(a)foan + @)
n=0
N-1
> |5 = pal |
n=0
subject to
N-1
S opa) =1, D an(@)=1, pu(v),an(z) >0,
veV n=0

where {\,} and {u,} are Lagrange multipliers. The first
term of the optimization finds histograms pg, p1, ..., PN—1
that can be combined with weights ag, a1, ..., an—1 tO
create the local histograms of f. The second term finds an
indicator function for each region in the image 1y,;(o(x)),
such that the blurred version of this indicator is similar to the
corresponding weight image «,,. The third term keeps the his-
tograms pg, p1, --., PN—1 close to the empirical histograms
of the regions p; "

The benefit of working with (7) is that the third term is
straightforward and the first two terms are well-studied prob-
lems, known as non-negative matrix factorization (NMF) [33],
[34] and image deconvolution (deblurring) [35], [36], respec-
tively. To find a local minimum of (7), we draw on the wide
variety of existing approaches for each of these subproblems
to iteratively minimize each of the three terms.

Figure 5 shows the block diagram of our proposed algorithm
and the following pseudocode gives more details:

1: procedure [o] = SEGMENT(f)

2: compute the local histogram transform of f
3: factor the histograms to initialize {c,} and {p,}
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Fig. 5. Block diagram of the proposed algorithm.

4 while not converged do

5 deconvolve {a,,} to estimate o
6: use o to compute ﬁjf”

7 set p, = ﬁf"
8: use p, and the histograms to calculate {cv,}
9: end while

10: end procedure

The following subsections present the details of one possible
implementation of each of these steps; others are possible.

A. Local Histogram Transform

Implementation of the local histogram transform is straight-
forward based on its definition: each level of the local his-
togram can be computed as a single convolution. The size
and shape of the window w over which local histograms are
computed is an important parameter of the method. In general,
when w has small support, the resulting segmentation will have
better-localized boundaries, but may be noisy. Making w larger
smooths the boundaries but also makes the segmentation less
susceptible to noise.

The main challenge in computing the local histogram trans-
form is memory, since an image can have 24 bits of color and
2 million pixels, meaning that the full local histogram of the
image would have 224 x 2 x 10 ~ 3.4 x 10'3 values in it.
Luckily, real-world images rarely make meaningful use of this
color depth. We can therefore safely quantize the image down
to tens of values. The result is a new image, f' : X — V' with
|[V'] < |V|. The specific quantization method can be chosen
to fit the problem; we used k-means clustering.

The quantization step can also be understood as a way to
control the value bandwidth of the local histograms. Using
empirical histograms rather than, for example, kernel density
estimation implicitly assumes that pr(v;) and pp(v;) are
unrelated, no matter how similar the values v; and v; are.
This assumption is more accurate for a well-quantized image
than one with 24 bits of color.

B. Factorization

To compute the initial factorization of the local histograms
of f’, we arrange them into a matrix, A, of size |V'| x |X]|.
Our goal is to express A as A = HW, where H is a |[V/|x N
matrix of histograms and W is an N x | X | matrix of weights.
We frame this as the optimization

argmin  ||A— H W||

)

subject to  H;; > 0,W;; >0, for all 4, 7,

> Hy=1,> Wij=1,
i J

: procedure [H, W] = FACTOR_ALS(A)
initialize H with random values
while not converged do
W= (HHT)"'HA
set negative values in W to zero
H=WTw)"'wTA
set negative values in H to zero
normalize H and W
end while
10: end procedure
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Fig. 6. Alternating least-squares method for non-negative matrix factorization.

which we solve with a variant of the alternating least-squares
method [37], described in Figure 6.

To increase the robustness of the algorithm, we repeat
it multiple times with different random initializations of H
and keep the result with the lowest error. To reduce the
computational cost, we factor only a random subset of the
histograms in each iteration.

We used alternating least-squares for its simplicity, but
repeat that our framework is flexible: any NMF method can
be used. Other approaches in the literature may be faster or
allow for the inclusion of priors. For example, encouraging
W to be sparse would correspond to the assumption that each
point in the image is only near a small number (one or two)
texture regions. For more discussion of approaches to the NMF
problem, see [34].

C. Deconvolution

Each row of the matrix W from the factorization step can be
reshaped into an image of weights «, that represents a blurred
version of one level of the labeling function, w 1,3 (). To
recover o from these images, we must deconvolve them, that
is, solve

N-1
argminz Hw*l{n}(a)—anH. (8)

7 n=0
The problem in (8) is a sum of N deconvolution problems
with the added complexity that the image to be recovered in
each of the problems, 1y,3(c), is {0, 1}-valued. In general,
existing deconvolution methods can be adapted to this problem
by relaxing o to be a set of real-valued images, {5, } with the
constraint that Zg;ol 6n(x) = 1. Then the joint deconvolution
can be solved by working on each &,, in turn and renormalizing
every few iterations. Then, o can be recovered from {5, } via

o(x) = argmax,, 6, ().

The design freedom our framework offers is especially
valuable in the deconvolution step, as there exist numerous
deconvolution methods that allow the use of prior knowledge
about the image to be recovered. If we can describe the shape
of the regions with a few parameters, parametric deconvolution
can achieve excellent results. In less constrained cases, many
looser priors may be used. For example, total variation regu-
larization [38] promotes solutions with a blocky appearance.

In this work, we explore two deconvolution methods: The
first method is to assume that 6,, = «, for all n. This



means that the label at a given point corresponds to the
histogram with the largest weight at that point, so o(z) =
arg max,, v, (x). This method, while basic, is useful because
it is fast and requires no particular knowledge about the
properties of the labels we want to recover. The downside
is that the resulting labelings tend to be smooth.

The second method is parametric deconvolution. We assume
that the regions to be labeled, Iy (o), are the Voronoi cells of
three seed pixel locations. We then deconvolve using gradient
descent on the seed pixel locations. This method is useful
only on images that fit this model; we include it as a proof of
concept for parametric deconvolution.

D. Selecting the Number of Textures

In what we have presented so far, the number of textures
N must be known beforehand. While this may be sufficient in
certain applications, we may also want a method for selecting
an appropriate /N automatically from the input image. Select-
ing the number of textures is essentially the same problem as
selecting the number clusters for any unsupervised clustering
algorithm. There are numerous approaches to this problem; for
an overview see Section 3.3 in [39]. In general these methods
replace the parameter N with one or more new parameters that
control the tradeoff between having tight clusters and having
a small number of clusters.

In our work, we have experimented with a simple method
in which we set a parameter r < 1 that controls how much
we expect the model error to decrease when the number of
textures increases by one. We begin by setting N = 1, running
the whole algorithm, and measuring the model error as the
value of the norm in (6). We then increase N by one and
repeat this process. As soon as the error at N;,; fails to be
smaller than 7 times the error at IV;, we select IV; as the final
number of textures.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

We compared our segmentation method to four other meth-
ods from the literature on synthetic test images and on real
histology images; results are given in Table I and example
segmentations in Figures 8, 7, 9, and 10. We now describe the
test data, the specifics of these experiments, and each of the
comparison methods and discuss the results of the comparison.
The test data and MATLAB code for our proposed algorithm
is available in the reproducible research compendium for this
article, [40].

A. Datasets

The three datasets we used for testing are as follows:

The random texture dataset is a synthetic dataset designed
to illustrate the difficulty of segmenting edgeless images. To
generate these images, we choose three seed pixel locations at
random and let the ground truth regions be the Voronoi cells
formed by these seeds. For each region, we select a color
distribution at random and select each pixel independently
from this distribution (since each pixel is independent of its
neighbors, these images have a persistence length of 1). The

TABLE I
COMPARISON RESULTS IN TERMS OF THE RAND INDEX MEAN AND
STANDARD DEVIATION. THE VALUE | INDICATES PERFECT AGREEMENT
WITH THE GROUND TRUTH.

Dataset

Method random texture histology Prague
Normalized 0.785 £ 0.122  0.736 £ 0.176  0.812 £ 0.064
JSEG 0.943 £ 0.067 0.751 £ 0.141  0.839 £ 0.056
EDISON 0.697 + 0.084  0.798 £+ 0.148  0.784 £ 0.077
Efficient 0.566 + 0.189  0.619 £+ 0.129  0.823 &+ 0.070
gPb-owt-ucm  0.707 £ 0.206  0.787 £ 0.130  0.835 £ 0.062
ORTSEG 0.989 + 0.002  0.830 & 0.144  0.766 + 0.073
ORTSEG-D 0.992 + 0.004

resulting images can be segmented by eye, but lack distinct
edges between regions. At the same time, the high frequency
content within regions can be mistaken for edges. We created
25 such images. The number of unique colors in each image
is 8 and the size of each image is 128 x 128.

The histology dataset consists of color images of H&E-
stained tissue (for more details on these images, see [23]).
The ground truth was drawn by an expert pathologist via visual
inspection. From a set of 36 images comprising more than 20
tissue types, we manually selected 36 128 x 128 subimages
such that each contained only two tissues. The aim of this
process was to include only subimages that had very accurate
ground truth labeling. This dataset is relatively small because
only trained pathologists can reliably label histology images
and creating pixel-wise labels is very time-consuming; we
hope to expand the dataset in the future. In the histology
dataset, some regions have clearly defined boundaries while
many do not, we expect that our edgeless approach should
work well.

The Prague dataset contains the grayscale mosaics from the
Prague Texture Segmentation Benchmark [28]. These images
were designed to be similar to the natural images in datasets
like the Berkeley Segmentation Dataset and Benchmark [41],
while avoiding the ambiguity in the ground truth that comes
with human labeling. We take this dataset to be indicative
of performance on natural image segmentation; it is not
representative of the class of edgeless images for which our
algorithm is designed. The dataset contains 20 images of size
512 x 512 with the number of textures per image varying from
3to 12.

B. Algorithms Tested

We implemented two versions of the algorithm described in
Section III:

ORTSEG (Occlusion of Random Texture SEGmenter) uses
the maximum weight deconvolution method and therefore in-
cludes no strong prior information about the region boundaries.
The parameters are the number of textures N (or the automatic
selection parameter r), the size of the window |w|, and the
number of colors to quantize to |V”|.




ORTSEG-D uses parametric deconvolution. Since it makes
strong assumptions on the region boundaries, it is only useful
on the random texture dataset. The parameters are the same
as those for ORTSEG.

We compare our two algorithms to five others:

Normalized Cut [10] forms a graph from an image by using
pixels as nodes and assigning edge weights based on distance
and color similarity. It segments by recursively finding graph
cuts that maximize the similarity within and dissimilarity
between regions. The only parameter is the number of regions.

JSEG [19] quantizes the colors in an image and then
searches for segmentations that produce regions of uniform
color distribution via region growing. JSEG does not rely
on edge information, and is therefore the most similar to
ORTSEG of these comparison methods. The parameters are
the region merging threshold, the quantization threshold, and
the number of scales.

EDISON [20] uses mean shift to cluster pixels in terms
of their color and location. Edge information is included as a
weight during the mean shift computation. The parameters are
the spatial bandwidth, the range bandwidth, and the minimum
region size.

Efficient Graph-Based Segmentation [42] is another graph-
based algorithm. Pixels are used as nodes and edges are
assigned between adjacent pixels based on difference in inten-
sity. It groups pixels into regions when there is no evidence of
a boundary between them. The parameters are the smoothing
o, scale k, and the minimum region size.

gPb-owt-ucm [41] detects local edges with a combination
of color and texture features. Global information is combined
with the local edges via spectral clustering to detect contours
in the image. Finally, a watershed transform finds regions from
the contours. As of its publication in 2010, this method was
the top performer on the Berkeley Segmentation Dataset [43],
which is a large and well-annotated dataset for benchmarking
natural image segmentation methods. The only parameter is
the edge strength required to create a segment, k.

Note that we do not compare to our previous work [26]
because it presented a supervised segmentation method, while
ORTSEG and all the comparison methods are unsupervised.

C. Experimental Setup

The comparison was performed as a leave-one-out cross
validation. for each method and dataset, each image was
sequestered in turn while the others were used to perform a pa-
rameter sweep over the parameters mentioned in Section IV-B
with the goal of allowing each method to achieve its maximum
performance. Specifically, we set up the sweep according
the principles: 1) When the authors of the method specified
an operating range for a parameter, we swept between its
minimum and maximum value. When they did not, we swept
between values that produced opposite kinds of bad results
(e.g. too coarse and too fine segmentations) to ensure that
the optimal value was between our end points. 2) When the
correct value for a parameter (e.g. number of regions) was
known for an entire dataset, this value was the only one used.
3) When methods had comparable parameters (e.g. a window

size), comparable values were swept. 4) The total number
of parameter settings to sweep did not exceed 150 for any
method.

The performance of the method was then evaluated on the
sequestered image using the parameters that resulting in the
best average performance on the training set. The results in
Table I represent the average performance when this process
was repeated over all images.

As our performance metric, we chose the Rand index [44],
[45]. The Rand index gives the fraction of pairs of pixels that
are either grouped into a single region in both the ground truth
and the test image or are in different regions in both the ground
truth and the test image. It therefore ranges from O to 1, with 1
being perfect agreement between the test image and the ground
truth. We selected it because it naturally handles multi-region
unsupervised segmentation and avoids degenerating when a
method greatly over- or under-segments an image. There are
a wide variety of other, similarly good performance metrics
for segmentation algorithms; see Section 3 of [46] for a good
overview. In addition to the Rand index, we provide results in
terms of the variation of information [47] on the reproducible
research page for this paper; the ranking of methods is largely
unchanged between metrics and the best-performing method
for each dataset does not change.

D. Discussion

On the random texture dataset (Figure 8), ORTSEG is
clearly superior to the comparison methods, which shows that
it excels when segmenting truly edgeless images. ORTSEG-D
performs slightly better, giving essentially perfect segmenta-
tions (Figure 7), because it leverages prior knowledge about
how the region boundaries were formed. JSEG has the next
best performance, which makes sense because it does not rely
on edge information. We believe that ORTSEG outperforms
JSEG in this case because ORTSEG optimizes its labels over
the whole image rather than in a region merging scheme. The
other methods have a difficult time with the random texture
dataset, likely due to their reliance on edge information.

(c) ORTSEG-D (.995)

Fig. 7. Example segmentation results from ORTSEG and ORTSEG-D on
a synthetic texture; Rand indexes are given in parentheses. The parametric
deconvolution in ORTSEG-D forces region boundaries to be linear, improving
the segmentation quality.

(a) Input

(b) ORTSEG (.992)

On the histology dataset (Figure 9), ORTSEG also outper-
forms the comparison methods, though the next best method is
within a standard deviation. On this dataset, ORTSEG selects a
relatively large window w (25 x 25, as opposed to 9 X 9 on the
random textures), resulting in smoother boundaries compared



(a) Input

(b) Ground truth

(c) Normalized (.778) (d) JSEG (.962) (e) EDISON (.692)

(g) gPb-owt-ucm (.347) (h) ORTSEG (.987)

(f) Efficient (.602)

Fig. 8. Example segmentation results for the comparison methods (c)-(g)
and our method (h) on the random texture dataset; Rand indexes are given in
parentheses. This dataset is challenging due its lack of meaningful edges.

to e.g. EDISON. This is an asset because the tissues generally
have smooth boundaries. We believe that ORTSEG performs
worse on the histology images than on the random textures
because the histology images are much more complex. The
relatively stronger performance of the comparison methods
makes sense because at least some of the images in this dataset
do have sharp edges.

On the Prague dataset (Figure 10), ORTSEG does not out-
perform the comparison methods. We believe that ORTSEG’s
relatively poor performance is because, by design, it does not
detect the sharp edges between regions, while other methods
do (e.g. note the sharp edges that Normalized Cut finds).
Surprising, JSEG has the best performance on this dataset.
We have a few ideas why. First, this may be because the
seeded region growing approach is good at finding the correct
number of regions in the image. Second, while JSEG does not
explicitly look for edges, it uses high J values as evidence of
boundaries, which may let it leverage the edges in these images
to some degree. Finally, JSEG uses information at a variety of
scales while our implementation of ORTSEG does not, which
may help in the Prague dataset where the scale of the textures
is large relative to the complexity of the boundaries.

Here we make a few observations about the parameters
selected for ORTESG during the cross validation. For the
random texture dataset, the typical window size selected was
9x 9, while the quantization was set to 8 colors and the number
of textures was set to 3. This relatively small window size

(a) Input (b) Ground truth

(d) JSEG (.821) (e) EDISON (.851)

(g) gPb-owt-ucm (.903) (h) ORTSEG (.924)

(c) Normalized (.500)

(f) Efficient (.614)

Fig. 9. Example segmentation results for the comparison methods (c)-(g)
and our method (h) on the histology dataset; Rand indexes are given in
parentheses. This is a real-world example of a dataset in which the lack of
edges is challenging for many segmentation methods.

makes sense: the textures in images are small scale (neigh-
boring pixels are statistically independent) so only a small
window is needed to recognize them and has the advantage of
localizing the boundaries better than a larger window. The
performance on this dataset is not very sensitive to scale,
however, as window sizes from 5 x 5 to 25 x 25 generally
give Rand indexes that vary less than .01. In the histology
dataset, the typical window size selected was 25 x 25 and the
typical quantization selected was 50 colors. The number of
textures was set to 2. Though the histology images are the
same size as the random images, the increased scale of the
textures means that a larger window is necessary, reducing
the ability of the algorithm to accurately localize boundaries.
Again, results were not very sensitive to changes in window
size. Changes to the number of quantized colors did not make
much difference once the number of colors was greater than
10. The performance of ORTSEG on the Prague dataset was
not strong enough to draw any conclusions about parameters.

The computation complexity of ORTSEG is dependent on
the particular implementation of the individual steps. The
local histogram transform is a filtering operation and will
therefore scale well with input image size; this is also true
of many deconvolution algorithms. The factorization step as
we described it involves inverting a matrix that grows in size
with the square of the number of pixels in the image, however
if the number of textures remains low and no texture region is



(b) Ground truth

e

(c) Normalized (.819) (d) JSEG (.853) (e) EDISON (.799)

AT

(f) Efficient (.813) (g) gPb-owt-ucm (.813) (h) ORTSEG (.733)

Fig. 10. Example segmentation results for the comparison methods (c)-(g) and
our method (h) on the Prague dataset; Rand indexes are given in parentheses.
This dataset simulates segmentation of natural images. Our method is not
well-suited to such images because it by design does not make use of edges
as evidence of boundaries.

very small, then in practice a random subset of pixels can be
used for factorization, reducing the complexity of this step.

For our non-optimized MATLAB implementation, run times
per image on a Windows 7 laptop with an Intel Core i7-
620M processor for the random texture, histology, and Prague
datasets are about 1.5 seconds, 2.5 seconds, and 22 sec-
onds, respectively. On the same computer, segmenting a color
1600 x 1200 image into five regions (result not shown)
takes about 30 seconds. Selecting the number of textures
automatically as described in Section III-D increases these
times multiplicatively because it simply runs the algorithm
repeatedly with different values of N.

V. CONCLUSIONS AND FUTURE DIRECTIONS

Inspired by the difficult task of segmenting histology im-
ages, we proposed a new mathematical and algorithmic frame-
work for image segmentation. We began with the idea of
textures as random fields and explored how the dependence
between pixels in these textures varies spatially by introducing
the notions of dependence decay and persistence length. We
then modeled images as occlusions of textures and showed that
the local histograms of these images are convex combinations
of the value distributions of their component textures. Based
on this theorem, we proposed a segmentation framework
that first discovers the value distributions of the component

textures of an image, finds the contribution of each texture
to every local histogram of the image, then deconvolves the
contributions to recover a segmentation.

We presented one implementation of this framework, ORT-
SEG, and compared it to four segmentation methods from
the literature on three datasets. ORTSEG outperformed the
other methods on images of random textures and real histol-
ogy images, indicating that it handles the difficult class of
edgeless images and has real applicability to histology image
segmentation.

In the future, we aim to expand our mathematical model by
studying histograms of filter responses rather than simply col-
ors. This would allow for a richer characterization of textures
and has interesting algorithmic ramifications. We will also
explore other implementations of the presented algorithmic
framework, including calculating histograms over multiple
scales and testing a wider variety of deconvolution approaches.

APPENDIX A
PROOF OF THEOREM 1

Proof: Let I be a flat texture with value distribution pg
and persistence length e. Given any set of Ny unique pixel
locations, © = z¢, 1, ..., Tn,—1, We aim to partition that
set into subsets such that the minimum distance between two
locations in a subset is larger than e. We call the locations
within € of a location its neighbors. We place the locations
in order of decreasing number of neighbors. Let the largest
number of neighbors of any location be Ay. We build a
subset by first selecting the location with the largest number
of neighbors and then selecting the location with the next
largest number of neighbors among all those that are not
neighbors of the first location. We continue this process with
each new location selected such that it is not a neighbor of
any previously selected location. We end this process after
forming a subset of size Ky = VX—;’J This is possible because
each addition to the subset can only preclude a maximum
of Ag locations from further consideration. Additionally, each
location with Ag neighbors must either be in this set or be
a neighbor of a location in this set. If this is not the case,
then there are Ag locations not in the set, which leads to
Ny > Ko + Ay, which is a contradiction.

Removing the locations in the first subset from considera-
tion, let N1 be the number of remaining locations and A; be
the maximum number of neighbors among them. We know that
A; < Ay — 1 because, similarly to the reasoning above, each
point that had A neighbors belongs to the first subset or lost at
least one neighbor to the first subset. We now follow the same
procedure as above, creating a subset of size K; =
We continue the process until all points have been placed in
subsets. The same argument as above gives that A; 1 < A;—1
and therefore,

Ny
A1 °
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The above implies that K; > Ko = { J Finally, since the

largest possible value for Ay is Ac = 2¢“ 4 2¢ + 1, which is
the number of locations in the ¢!-ball with radius €, we can
define K where K; > K = {%J

Let Y; = {vo0,¥1,.-.,YK,—1} be the ith subset. By the
definition of persistence length and flatness, the random
variables F(yo), F(y1), -.., F(yk,—1) are i.i.d. (persistence
length gives independence, flatness gives identical distribu-
tion) with distribution pp. Let the empirical distribution of

F(yO)’ F(y1)7 R F(yKifl) be

Py (v Z Loy (F

We can select an arbitrary ordering on the set of values and
define the cumulative value distribution and the empirical
cumulative value distribution of F' as

= Y pr(w)
w=0

and
~ 1 K,;*l
Pi(v) = A > Lo (Fyr)
' k=0
respectively.

Then, by the Dvoretzky-Kiefer-Wolfowitz inequality [48],
Pr(max |P)i (v) — Pr(v)| > @) < 272K,

To return to the (non-cumulative) color distributions we note
that

b5 — prl(v)
=[(Pp(v) - PY(v—l)) (Pr(v) = Pp(v—1))
< (P (v) = Pp(v) = (P (v —1) = Pr(v = 1))
< 2max | Py (v) — Prp(v)],

SO

Pr(max [p} (v) — pr(v)| > a) < 2¢~Kio?/2,

Finally, letting o = \/M, gives
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We now examine the histogram formed from all the loca-
tions in the original set © rather than a single subset. If we
have a total of I subsets, then
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with probability at least (1 — v)?, because each of the I
inequalities from (9) must hold simultaneously. Given that the

minimum subset size is {%J, I < A, so this probability is
at least (1 —)4<. We finally set v = 1 — */1 — §. The result
—2A.log 1= 5

is
max [P (v) = pr(v)] < \/ N

with probability at least (1 —¢). This means that F' has depen-
dence decay complexity a = (—2A4.log 2(1 — %/1—19))/2,
proving the theorem. [ ]
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APPENDIX B
PROOF OF THEOREM 2

Proof: Start with the first term of the left-hand side of
(5),
N—-1
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where (a) follows from the definition of occlusion (2), (b)
from the definition of the local histogram transform (1), and
(c) because, for a given ¢ and n, the indicator functions are
only nonzero when o(2’) =n and f,(2') = v.



We now manipulate (10) so that it becomes, for each n, a
histogram sampled from f,,. Using the fact that w is a constant
filter (that is, it takes only the value 1/|w]| or 0), (10) becomes
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Py,
n=0
where ©,,(z) = {y | o(y) = n and w(z —y) > 0}. The
equality (a) is a multiplication by 1 and (b) uses the definition
of a histogram, (3).
Turning our attention to the second term of the left-hand
side of (5), we have
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where (a) follows from the definition of convolution, (b) from
w being a constant filter, and (c) from defining O, (x) as
above.

Subtracting (12) from (11), we have
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where (a) follows from the triangle inequality and positivity of
|©,,(x)| and |w]| and (b) from the dependence-decay property
of {Fy, F1, ..., Fy_1}. The probability of (b) holding for
each n is 1 — 4, thus the probability of it holding for all of
them simultaneously is (1 — §)V.

We aim to bound (13) by its maximum. To do this, we
first replace a,, with ¢ = max{ag, a1, ..., ay—_1}. We then
maximize the quantity over |Og|, |©1], ..., |©n—_1| with the
constraint that |©g| + |O1] + ... + |On_1] = |w]|. This
maximum occurs at |Og| = |©1] = ... = |On_1| = |w|/N,
meaning that (13) is bounded by

. < | ) 1/2
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thus proving the theorem.
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