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Abstract—We present a multiresolution classification frame-
work with semi-supervised learning on graphs with application
to the indirect bridge structural health monitoring. Classification
in real-world applications faces two main challenges: reliable
features can be hard to extract and few labeled signals are avail-
able for training. We propose a novel classification framework to
address these problems: we use a multiresolution framework to
deal with nonstationarities in the signals and extract features
in each localized time-frequency region and semi-supervised
learning to train on both labeled and unlabeled signals. We
further propose an adaptive graph filter for semi-supervised
classification that allows for classifying unlabeled as well as
unseen signals and for correcting mislabeled signals. We validate
the proposed framework on indirect bridge structural health
monitoring and show that it performs significantly better than
previous approaches.

Index Terms—multiresolution classification, semi-supervised
learning, discrete signal processing on graphs, adaptive graph
filter, indirect bridge structural health monitoring

I. INTRODUCTION

CLASSIFICATION is a signal processing task whose goal
is to design a map that associates each input signal with

a predefined class label. It is widely used in a number of
real-world applications, such as geophysical waveform clas-
sification [1], radar signal classification [2], structural health
monitoring [3], computer-aided diagnosis of medical images
and classification of biological images [4]–[6] , among others.
A generic classification system consists of a feature extractor
and a classifier: a feature extractor reduces the dimensionality
of the problem, while a classifier labels the features. In many
real-world problems, however, reliable features can be hard to
extract; for example, different lighting conditions can derail
robust face recognition [7]. Moreover, few labeled signals
could be available for training as it could be either too
time consuming or expensive to label signals; for example,
a research pathologist can spend hours labeling one histology
image only.
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Fig. 1: Indirect bridge structural health monitoring system.
Acceleration signals are collected from a moving vehicle and
sent to a classification system, which identifies the bridge
status and reports it to a transportation authority.

We study one such real-world classification problem, indi-
rect bridge structural health monitoring, in this paper. Assess-
ing and monitoring bridges have been intense areas of interest
for some time, especially in the aftermath of several bridge
collapses, such as the I-35 bridge over the Mississippi River
on Aug. 1, 2007, Shershan Bridge, Pakistan, Sep. 1 2007, Harp
Road Bridge, USA, Aug 15 2007, Loncomilla Bridge, Chile,
Nov 18, 2004. Significant efforts have been made to reduce the
number of structurally deficient bridges, however, near 11% of
bridges in the United States are actually structurally deficient;
there is thus a need for bridge health monitoring. The current
standard in bridge structural health monitoring is based on
visual inspections, which are time-consuming, subjective and
cannot be done frequently on all the bridges.

Sensor-based structural health monitoring systems have
been proposed to automate and improve on the visual in-
spection process. One approach is to install an array of
different sensors, such as strain gauges and accelerometers,
directly on the bridge . The drawback is that such sensors still
require a sophisticated and expensive electronic infrastructure
with installation, maintenance and power support. Recently,
indirect approaches have been proposed [8]–[10] based on
using moving vehicles to collect acceleration signals from
accelerometers inside the vehicles, a more efficient solution
that is expected to be economically feasible (see Figure 1).

Acceleration signals collected from existing structures are
often nonstationary and have relevant information that is
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Generic classification

X = {x(i)} input dataset i = 1, . . . , N

L = {x(i)} labeled dataset i = 1, . . . , L

U = {x(i)} unlabeled dataset i = L+ 1, . . . , N

Y = {y(i)} ground-truth labels for L i = 1, . . . , L

Ŷ = {ŷ(i)} estimated labels for U i = L+ 1, . . . , N
F feature extraction function
f (i) feature vector i = 1, . . . , N

q(i) ground-truth vector i = 1, . . . , L
Q ground-truth matrix L× C
q̂(i) confidence vector i = L+ 1, . . . , N

TABLE I: Parameters used in a generic classification system.

present in localized time-frequency regions; long-term behav-
ior such as the natural frequency and the harmonic frequencies
can be observed in the frequency domain, while the short-term
behavior such as bumps and local roughness can be observed
in the time domain. It is well known that multiresolution
techniques, such as wavelets, are suited to the analysis of such
signals, allowing for signal-adapted decompositions. In addi-
tion, on operational bridges, signals are gathered frequently
but visual inspections typically occur only every two years,
which naturally leads to a small number of labeled signals
and a large number of unlabeled ones; this constraint calls for
semi-supervised learning.

We thus propose a novel classification framework that takes
advantage of multiresolution classification [4], [11], which ex-
tracts hidden features in localized time-frequency regions (sub-
bands), and semi-supervised learning [12], which uses both
labeled and unlabeled signals for classification; we make this
possible by developing a semi-supervised weighting algorithm.
In the new framework, (1) each localized subband contributes
to the classification by its discriminative power; and (2) both
labeled and unlabeled signals provide information.

Among semi-supervised classifiers, graph-based ones are of-
ten used, because they are able to represent data with complex
structure. We thus propose a novel semi-supervised classifier,
adaptive graph filter; it extends the applications of discrete
signal processing on graphs [13] to classification [14]. A graph
structure is built by defining each node to be a signal in a given
dataset and each edge to be the similarity between each pair of
signals. The adaptive graph filter classifies signals by filtering
on the graph structure and propagating labels from labeled to
unlabeled signals. It thus allows for classifying unlabeled, but
also unseen signals (in which case we also add regression) and
for correcting mislabeled signals. Furthermore, we establish
the connection to the theory of diffusion maps [15] as well
as that of diffusion wavelets [16], which allows us to view
the adaptive graph filter as a multiresolution classifier on
graphs; the multiresolution nature of the framework is thus
felt twofold.

We validate our proposed framework and algorithm on a
lab-scale bridge-vehicle dynamic system, and show excellent
performance. To show generality of the system without chang-
ing the focus of the paper, we include results on additional
datasets on the reproducible research page for the paper [17].

Previous Work. Multiresolution classification was orig-

Algorithm 1 Generic classification

Input X input dataset
Y ground-truth labels for L

Output Ŷ estimated labels for U

Function C(X )

f (i) = F(x(i)) feature extraction
q̂(i) = C(f (i), Q) classification
ŷ(i) = argmaxc q̂

(i)
c

return Ŷ

inally proposed for bioimaging applications with excellent
performance on classifying images of protein subcellular lo-
cations [4], developmental stages of Drosophila embryos [5],
germ layer components in teratomas [6], and even fingerprint
recognition [18]. Previous work on semi-supervised learning
includes generative mixture models with expectation maxi-
mization, co-training, transductive support vector machine and
graph-based approaches [12], each of which makes specific
assumptions on how to use unlabeled signals to help clas-
sification. Signal processing on graphs has been proposed
as a framework to build tools to analyze structured signals
and is a rather recent development [13], [19]. Indirect bridge
structural health monitoring determines the state of the bridge
by using advanced signal processing techniques to analyze
vibrational signals collected from the dynamic responses of
vehicles traversing a bridge [9], [10], [20]–[22].

Contributions. Our contributions are as follows:
• A novel classification framework that combines multires-

olution classification with semi-supervised learning.
• A novel semi-supervised classifier, adaptive graph filter,

which allows for classifying unlabeled as well as unseen
signals and for correcting mislabeled signals.

• A promising solution to indirect bridge health monitoring
validated on a lab-scale bridge-vehicle dynamic system.

Outline of the Paper. Section II states the problem and
briefly reviews multiresolution classification, semi-supervised
learning and signal processing on graphs; Section III describes
our proposed framework for semi-supervised multiresolution
classification, while Section IV describes our proposed adap-
tive graph filter for semi-supervised classification. The al-
gorithms are validated in Section V on acceleration signals
collected from a lab-scale bridge-vehicle dynamic system.
Section VI concludes with discussion and pointers to future
directions.

II. BACKGROUND AND PROBLEM FORMULATION

In this section, we cover the background material necessary
for the rest of the paper. We start with the classification
problem and then a supervised classification framework, mul-
tiresolution classification system. Next, we introduce signal
processing on graphs, which lays a foundation for our pro-
posed semi-supervised classifier. Finally, we overview semi-
supervised learning, which we will use in Section III.

A. Classification
The goal of classification is to label signals as belonging

to one of a number of given classes [23]. Let X = {x(i) ∈
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Fig. 2: Supervised multiresolution classification decomposes
a signal into localized space-frequency subbands using a given
multiresolution transform, followed by feature extraction and
supervised classification in each subband, yielding a local
classification decision. A supervised weighting algorithm com-
bines all local decisions into a global decision.

RD}Ni=1 be the given dataset with N = L+U signals, the first
L belonging to the labeled dataset L = {x(i) ∈ X}Li=1, and
the last U belonging to the unlabeled dataset U = {x(i) ∈
X}Ni=L+1. Thus, the inputs to the classifier are the dataset X
and the ground-truth labels Y = {y(i) ∈ {1, 2, . . . , C}}Li=1

for the labeled dataset L, while the outputs are the estimated
labels Ŷ = {ŷ(i) ∈ {1, 2, . . . , C}}Ni=L+1 for the unlabeled
dataset U (see Table I and Algorithm 1). Note that we
categorize signals as labeled, unlabeled and unseen. Both
labeled and unlabeled signals are observed in the dataset; while
unseen signals are not in the current dataset.

We formulate the problem as designing a map that asso-
ciates an input signal to a class label with a certain con-
fidence. That is, we view the label as a confidence vector
q̂ ∈ RC , where the cth component, q̂c, is the confidence
that a signal belongs to the cth class. The confidence vector
for a labeled signal i = 1, 2, . . . , L, is the ground-truth
vector, q ∈ RC , with 0s everywhere except 1 in position c
indicating membership in class c. The ground-truth matrix
Q =

[
q(1) q(2) . . . q(L)

]T
of size L × C collects all L

ground-truth vectors as its rows.
Typically, a generic classification system will have an in-

termediate block between the input and the output, a feature
extractor F, aimed at reducing the dimensionality of the
problem; this is followed by a classifier C. If the classifier is
supervised, we denote it by SC (see Figure 2 and Algorithm 1).

B. Multiresolution Classification

Multiresolution classification is a supervised classification
framework (see Figure 2). It decomposes a signal into S lo-
calized space-frequency subbands using multiresolution trans-
forms, both bases and frames [24]–[29]. In each subband,
multiresolution classification extracts features, classifies them,
and produces a local classification decision. A supervised
weighting algorithm combines all local decisions into a global
decision. This process implicitly mimics the use of wavelet
packets, a data-adaptive multiresolution technique [30], and is
summarized in Algorithm 2.

1) Multiresolution Decomposition: Multiresolution classi-
fication starts with the decomposition of signals using a
given multiresolution transform into several localized space-
frequency subbands. For the ith signal, the multiresolution

coefficients in the sth subband are

a(i)s = Ds(x
(i)),

where Ds is the multiresolution transform function in that sub-
band. It is implemented using a signal processing device called
a filter bank; we have a choice of a number of multiresolution
transforms D available, both nonredundant (bases) as well as
redundant ones (frames) [24]–[29].

2) Feature Extraction: In each subband, features are ex-
tracted depending on the application at hand. These features
can be generic features, such as texture, Gabor, etc [31]–[38],
or can be designed using expert knowledge [39]–[42]. For the
ith signal, the feature vector in subband s is

f (i)s = Fs(a
(i)
s ),

where Fs is the feature extraction function in that subband;
different subbands can use different feature extraction func-
tions.

3) Supervised Classification: In each subband, the features
extracted in the previous stage are fed into a supervised
classifier. The classifier can be any state-of-the-art classifier,
such as logistic regression or support vector machine [23]. For
the ith signal, the confidence vector in the sth subband is

q̂(i)s = SCs(f
(i)
s , Q),

where SCs is the supervised classification function in that
subband; different subbands can use different classification
functions.

4) Supervised Weighting: To combine the subbands’ classi-
fication decisions, we collect subbands’ individual confidence
vectors q̂(i)s into a C×S confidence matrix Q̂(i), and define the
weighting function SW as that taking weighted subbands’ in-
dividual confidence vectors and producing a single confidence
vector,

q̂(i) = SW(Q̂(i), Q) = Q̂(i)w.

Here, the S × 1 weight vector w assigns a weight to each
subband according to its discriminative power; ws thus tells
us how reliable subband s is. The weight vector is found by
optimizing a supervised weighting objective function

w = arg min
ω
{
L∑
i=1

‖q(i) − Q̂(i)ω‖}, (1)

with the constraint ‖ω‖1= 1. In other words, the optimal
weight vector is the one found to be the most reliable over
labeled signals only. After weighting, we compute the global
decision as

ŷ(i) = arg max
c
q̂(i)c . (2)

Note that in this section we overloaded the symbol q̂,
hopefully without confusion; q̂c is the cth component of the
confidence vector q̂, while q̂s is the confidence vector of
subband s.
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Algorithm 2 Multiresolution classification

Input X input dataset
Y ground-truth labels for L

Output Ŷ estimated labels for U

Parameters per subband s s = 1, . . . , S
Ds multiresolution function
a
(i)
s multiresolution coefficients
Fs feature extraction function
f
(i)
s feature vector

SCs supervised classification function
q̂
(i)
s confidence vector

for all subbands
SW supervised weighting function
Q̂(i) confidence matrix
w weight vector, ‖w‖1= 1

q̂(i) final confidence vector

Function MRC(X )

a
(i)
s = Ds(x(i)) multiresolution decomposition
f
(i)
s = Fs(a

(i)
s ) feature extraction

q̂
(i)
s = SCs(f

(i)
s , Q) supervised classification

q̂(i) = SW(Q̂(i), Q) supervised weighting
ŷ(i) = argmaxc q̂

(i)
c

return Ŷ

C. Signal Processing on Graphs

With the development of social, biological, and physical net-
works, signals with complex structure are arising. Traditional
discrete signal processing is mainly suited to processing reg-
ularly sampled low-dimensional signals, such as discrete time
and space signals. To mitigate the problem, signal processing
on graphs is emerging as a tool to analyze high-dimensional
signals with irregular structure [19], [43], [44], defined on a
more general domain.

We focus here on one of the recent developments, discrete
signal processing on graphs [13]. The dataset is represented
by a graph G = (V, P ), where V = {vi}Ni=1 is the set of
nodes representing signals and P ∈ CN×N is a graph shift
describing the relational dependencies among the nodes. The
graph shift P is not necessarily an adjacency matrix nor does
it necessarily have a probabilistic meaning. A graph signal s
is then defined as the following map:

s : V → CN×D,

where D is the dimension of the graph signal on each node.
A linear shift-invariant system, or, a graph filter, is defined as

H = h(P ) =

K∑
k=0

hkP
k, (3)

with hk ∈ C, k = 0, 1, . . . , K.
Then, a graph filter H ∈ CN×N applied to a graph signal

s ∈ CN×D produces an output, which is again a graph signal,

Hs = h(P )s.

Discrete signal processing on graphs then defines a series
of standard signal processing concepts including the graph
Fourier transform, frequency, spectrum, spectral decomposi-
tion, and impulse and frequency responses [13].

D. Semi-Supervised Learning

Traditional classifiers typically fall under supervised learn-
ing, with only labeled signals to train. In many real-world
applications, however, a large number of labeled signals is
not available, which can cause overfitting. Semi-supervised
learning is a technique for training classifiers with both labeled
and unlabeled signals, which assumes that unlabeled signals
can provide distribution information to build a stronger clas-
sifier. Some well-known semi-supervised learning algorithms
include generative mixture models with expectation maximiza-
tion, co-training and graph-based approaches [12]. Generative
mixture models with expectation maximization assume that
classes produce well clustered signals, and that with large
number of unlabeled signals, the mixture components can
be identified [45]. Co-training assumes that the features are
sufficiently discriminative that they can be split into two sets,
with each set being able to build a good classifier [46]. Graph-
based approaches assume that while the measured signals
are defined in a high-dimensional space, they exist in a
low-dimensional manifold; a graph is then constructed by
measuring the similarity of each pair of signals, and those
deemed similar are labeled as belonging to the same class [47].

We focus here on label propagation, one of the graph-
based approaches. Label propagation classifies signals by un-
derstanding how labels propagate on a graph; two methods are
in use, diffusion functions [48] and harmonic functions [49],
[50]. Both methods work based on propagating the known
labels on the transition matrices. Diffusion functions propagate
those labels a finite number of times without any intervention.
Harmonic functions, on the other hand, correct the known
labels to the initial values after each propagation and propagate
an infinite number of times. The advantage of harmonic
functions is that the known labels keep pushing the decision
boundaries to low-density gaps. The drawback is that if the
known labels are not reliable, harmonic functions may keep
diffusing wrong information.

III. SEMI-SUPERVISED MULTIRESOLUTION
CLASSIFICATION

Multiresolution classification analyzes data to uncover hid-
den information; in its original form, it uses supervised clas-
sification, and can thus train only on labeled signals. When
the labeled dataset is small or contains improperly labeled
signals, the classification boundary and the weights assigned
to subbands can be unreliable. Semi-supervised learning, on
the other hand, uses the entire dataset to help classification, but
works on one resolution level only. We thus propose to merge
these two concepts and gain the best of both worlds: a semi-
supervised multiresolution classifier. We stress here that this is
not a simple combination of known techniques, as there is no
known way to weigh subband decisions for unlabeled signals;
this is one of our contributions.

A. Semi-Supervised Classification

Figure 3 summarizes our proposed framework; the mul-
tiresolution decomposition and feature extraction blocks from
Figure 2 work as before. The first change is that the supervised
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classification block is replaced by a semi-supervised one so we
can use both labeled and unlabeled signals to make a labeling
decision in each subband. For the ith signal, the confidence
vector in the sth subband is now

q̂(i)s = SSCs(f
(i)
s , Q), (4)

where SSCs is the semi-supervised classification function in
subband s. As for supervised classification, SSC can be chosen
from a variety of approaches; we propose a new one, adaptive
graph filter, described in Section IV.

B. Semi-Supervised Weighting

We now explain how to build a semi-supervised weighting
block, that is, how to weigh decisions from all the subbands
to get a global decision in a semi-supervised manner.

Labeled signals contribute to weighting directly by fitting
their confidence vectors from all the subbands to the ground
truth; unlabeled signals cannot do the same as they do not
have the ground truth. We thus face the task of finding a way
to measure the confidence of labeling an unlabeled signal. The
simplest way would be just to assign the label of the largest
component in the confidence vector. We encounter a problem,
however; for example, let q̂(1) =

[
0.5 0.49 0.01

]T
and

q̂(2) =
[
0.5 0.25, 0.25

]T
be confidence vectors for two

signals. While we can label q̂(2) as Class 1 easily, it is
clearly hard to make a decision for q̂(1). This maximum
confidence measure would assign both signals to Class 1,
however, because it does not take into account the rest of
the confidence in the confidence vector. A way to rectify that
would be to use Shannon entropy; if the entropy is small (less
uncertainty, high confidence), it is easy to assign a label to the
signal, and vice versa. We still face a problem in the above
case because the Shannon entropy tells us that we can label
q̂(1) with higher confidence (less uncertainty) as its entropy,
H(q̂(1)) = 1.0707, is lower than that for q̂(2), H(q̂(2)) = 1.5.
To resolve this issue, we modify the Shannon entropy measure
as,

M(q̂) = H(q̂) (χd>T + λ(d)χd≤T ), (5)

where χI is the indicator function of an interval I , d =
|q̂(1)− q̂(2)| with q̂(1), q̂(2) the first and second largest element
in q̂, respectively, T is the threshold, and λ(d) is a penalty
function that is large when the first and second largest elements
are close. In other words, when the difference d between the
two largest elements is large, the first term in (5) takes over
and M(q̂) = H(q̂); when, on the other hand, the difference
d between the two largest elements is small, the second term
in (5) takes over and the uncertainty M(q̂) is large.

We can now use this new uncertainty measure to say that
the uncertainty of the sth subband in labeling the ith signal
is M(q̂

(i)
s ). Assuming that each signal contributes equally to

its subband, we define the uncertainty of each subband as the
mean of the uncertainty of all the confidence vectors,

Ms =
1

U

N∑
i=L+1

M(q̂(i)s ).

Fig. 3: Semi-supervised multiresolution classification. Su-
pervised classification and weighting algorithm in Figure 2
are replaced with their semi-supervised counterparts so that
unlabeled data can contribute to classification.

We now define the discriminative power of the sth subband
to be the confidence

gs =
e−βMs∑S
j=1 e

−βMj

, (6)

where β is the decay coefficient that controls the distribution
of the discriminant power from all the subbands. When the
uncertainty of a subband is large, the confidence is small
and the subband gets assigned a low weight, and vice versa.
Confidences from all the subbands are collected into a vector
g; note that ‖g‖1= 1.

We now find the weight vector by optimizing a semi-super-
vised weighting objective function,

w = arg min
ω
{α

L∑
i=1

‖q(i) − Q̂(i)ω‖

+ (1− α)‖ω − g‖}, (7)

with the constraint ‖ω‖1= 1, and where α = L/(L + U)
is the labeling ratio. The first term in (7) represents the
contribution from all labeled signals and is a scaled version
of (1). The second term in (7) represents the contribution
from all unlabeled signals; to obtain it, we fit weights to
subbands’ confidences. We use the labeling ratio to balance
these two terms. Since this is a convex optimization problem,
it is numerically efficient to obtain the global optimum by
any standard convex optimization package. As in (2), after
weighting, we compute the global decision as

ŷ(i) = arg max
c
q̂(i)c , (8)

where q̂(i) = SSW(Q̂(i), Q) = Q̂(i)w (see Algorithm 3).

IV. ADAPTIVE GRAPH FILTER

The idea of using a graph filter as a binary classifier was first
proposed in [13]. For practical applications, however, its use is
limited: First, it can only perform binary classification; then, it
trains the filter coefficients by choosing a local optimum; and
finally, it cannot classify unseen signals. Here, we propose an
adaptive graph filter as a semi-supervised classifier in (4) that
resolves these problems; we also connect this new adaptive
graph filter to diffusion maps and diffusion wavelets.

In (4), for the signal x(i) and subband s, the inputs to the
semi-supervised classifier are the feature vector f (i)s and the
ground-truth matrix Q, and the output is the confidence vector
q̂
(i)
s . For simplicity, in this section we omit the subband index
s and write f (i), q̂(i); it should be understood, however, that
an adaptive graph filter is applied in each subband.
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Algorithm 3 Semi-supervised multiresolution classification

Input X input dataset
Y ground-truth labels for L

Output Ŷ estimated labels for U

Parameters per subband s s = 1, . . . , S
Ds multiresolution function
a
(i)
s multiresolution coefficients
Fs feature extraction function
f
(i)
s feature vector

SSCs semi-supervised classification function
q̂
(i)
s confidence vector

for all subbands
SSW semi-supervised weighting function
Q̂(i) confidence matrix
w weight vector, ‖w‖1= 1

q̂(i) final confidence vector

Function SSMRC(X )

a
(i)
s = Ds(x(i)) multiresolution decomposition
f
(i)
s = Fs(a

(i)
s ) feature extraction

q̂
(i)
s = SSCs(f

(i)
s , Q) semi-supervised classification

q̂(i) = SSW(Q̂(i), Q) semi-supervised weighting
ŷ(i) = argmaxc q̂

(i)
c

return Ŷ

A. Graph Filtering as Semi-Supervised Classification

We start by outlining the basic idea, followed by detailed
developments. Let the input graph signal be a prior confidence
matrix formed from the ground-truth matrix and the graph
shift be the Hermitian transpose of the transition matrix. An
adaptive graph filter is then built by combining a series of
graph shifts. The filter coefficients of the graph filter are
trained by fitting the estimated results to the known labels and
minimizing the labeling uncertainty. The output graph signal
after filtering is the posterior confidence matrix whose ith row
will be the desired confidence vector q̂(i).

Let G = (F , P ) be a graph with F = {f (i)}Ni=1 a set of
feature vectors in the given subband for the entire dataset.
Because we want to be able to represent directed graphs, we
propose the graph shift P ∈ RN×N to be

Pi,j =
exp (−ρ(f

(i),f(j))
σ )∑N

k=1 exp (−ρ(f
(k),f(j))
σ )

, (9)

where ρ is a local distance measurement, such as the `2 norm
or the cosine distance, and σ is a scaling coefficient, which
controls the bandwidth. The graph shift we defined here is the
Hermitian transpose of the transition matrix of the graph. The
graph shift thus has a probabilistic interpretation: Pi,j gives
the probability that the jth node jumps to the ith node in one
step [51].

We now build a graph filter as in (3), except that, because of
the dependencies on the data in (9), this is an adaptive graph
filter,

H = h(P ) =

K∑
k=1

hkP
k. (10)

Note that we omit the 0th term since, as we will see, it does
not contribute to classification. The graph filter thus represents

the relational dependencies among signals represented via their
feature vectors.

Let the graph signal be the confidence matrix of all the
signals on the graph, called prior confidence matrix, that is,
the following map:

s : F → RN×C ,

defined as

(Q̂pr)j,c =

{
1, when y(j) = c;
0, otherwise,

or,

Q̂pr =

[
Q

0U×C

]
.

In other words, the first L rows of Q̂pr are the confidence
matrix Q representing the labeled dataset, while the other
U rows are all zeros representing the unlabeled dataset. The
prior confidence matrix thus starts with the prior knowledge
on the labeled dataset (the ground-truth matrix) and without
any knowledge on the unlabeled dataset.

By applying adaptive graph filtering now, the ground truth
propagates from the labeled dataset to unlabeled dataset; the
output graph signal, or, the posterior confidence matrix, is
obtained as

Q̂ps = HQ̂pr, (11)

where the ith row of the posterior confidence matrix Q̂ps is
the desired confidence vector q̂(i). Note that graph filtering
propagates the labeling information not only from the labeled
signals to the unlabeled signals, but among the labeled signals
as well, giving the mislabeled signals a chance to be corrected,
and consequently providing robustness in classification. In
other words, we do not fully trust the initial labels and use
the graph structure to help us arrive at the final labels.

One issue left to address is how to choose the filter
coefficients h1, h2, . . . hK . We rewrite (11) as

Q̂ps
(a)
=

K∑
k=1

hkP
kQ̂pr =

K∑
k=1

hkQ̂k, (12)

where (a) follows from (10) and Q̂k is the N ×C confidence
matrix for the kth graph shift defined as Q̂k = P kQ̂pr. For
each i, the desired confidence vector q̂(i) (ith row of Q̂ps)
is thus a weighted linear combination of corresponding rows
from each graph shift Q̂k. Since a confidence vector may not
sum to 1 after graph filtering, we normalize each confidence
vector as

q̂(i) ← q̂(i)∑
j q̂

(i)
j

.

This normalization does not influence the classification result
because we assign the label of the largest component in the
confidence vector; the normalization does help calculate the
uncertainty measure in (5). It is now clear why we omitted the
0th term in (10); since Q̂0 = Q̂pr, it does not contribute to
propagating information from the labeled to the unlabeled data.
Fitting these estimates to the known labels and minimizing
the labeling uncertainty is identical to the semi-supervised
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weighting we performed in the last section. We can thus use
the same minimization as in (7),

h∗ = arg min
h
{α

L∑
i=1

‖q(i) − Q̂′
(i)
h‖

+ (1− α)‖h− γ‖}, (13)

where h =
[
h1 . . . hK

]T
with the constraint ||h||1= 1,

α is the labeling ratio as in (7), Q̂′
(i)

=
[
q̂
(i)
1 . . . q̂

(i)
K

]
is a C × K confidence matrix of the ith signal that collects
the graph shifts’ individual confidence vectors, and γ =[
γ1 . . . γK

]T
collects the discriminative powers of each

graph shift,

γk =
e−(β/U)

∑N
i=L+1 M(q̂

(i)
k )∑K

j=1 e
−(β/U)

∑N
i=L+1 M(q̂

(i)
j )

,

where M is the uncertainty measurement as in (5) and β is
the decay coefficient as in (6). Note that, to solve (13), we use
the same method as we did to solve (7).

In the first term of (13), we fit the estimated confidence
vectors to the ground-truth vectors by changing the filter
coefficients. This is another reason we omit the 0th term
in (10).

B. Regression: Handling Unseen Data

As defined, adaptive graph filtering can only handle signals
in the given dataset; should an unseen signal appear, the graph
would need to be rebuilt and the filter coefficients retrained,
at a significant computational cost. To handle unseen signals,
we introduce regression.

We assume that each signal is randomly sampled from
some continuous distribution and that the signals with the
same label originate from the same distribution (recall that
signals here are subband feature vectors). If we use the given
signals and their posterior confidence vectors q̂(i) to estimate
the distributions, we can label those unseen signals originating
from these distributions. The task is thus to design a regression
function to map the unseen signals to their posterior confidence
vectors.

Given the subband feature vectors F = {f (i)}Ni=1 and their
posterior confidence vectors Q̂ps, for a batch of unseen signals
Fus = {f (i)}N+M

i=N+1, the posterior confidence matrix for the
unseen signals is

Q̂us = LQ̂ps, (14)

where L ∈ RM×N is a generic form of the smoothing matrix
determined by some regression technique, such as polynomial
regression, spline regression or kernel regression [52]. For
the regularized reproducing kernel regression, a valid kernel
function k(f, f ′) is first chosen to measure the inner product
of f and f ′ in a higher-dimensional space, and then, the
smoothing matrix is defined as

L = K ′(K + λIN )−1,

where λ is a regularization parameter, IN is an N×N identity
matrix, K ′i,j = k(f (N+i), f (j)), i = 1, 2, . . . , M , j =

1, 2, . . . , N , and Ki,j = k(f (i), f (j)), i, j = 1, 2, . . . , N .

Fig. 4: Adaptive graph filter. Labeled and unlabeled signals
are fed into the graph filtering block that outputs the estimated
labels for unlabeled signals. Based on existing labeled and
unlabeled signals, graph filtering generates the smoothing
matrix for the regression block. Unseen signals are fed into the
regression block that outputs the estimated labels for unseen
signals.

The smoothing matrix calculates the relational dependencies
between the unseen and given signals. Closer dependencies
lead to higher values in the smoothing matrix. Because of this,
the generic regression model predicts the posterior confidence
vector of the new signal by weighing the posterior confidence
vectors of the given signals locally, which means that the
signals close by have similar posterior confidence vectors.

The forms of one step of graph filtering (11) and one step
of regression (14) are similar. While both of these assume
that similar signals have similar confidence vectors, their goals
are different: the graph filtering step builds the relationship
between unlabeled and labeled signals and produces labels
from limited label information, while the regression step builds
the relationship among the signals with the same label and
connects unseen signals to their confidence vectors. Therefore,
adding regression to graph filtering creates an adaptive graph
filter that not only propagates the labeling information within a
given dataset, but across unseen signals as well (see Figure 4).

Adaptive graph filter serves as a semi-supervised plugin
method for classification. The traditional plugin methods es-
timate the unknown quantities in the Bayes’ rule and plug
them in for classification [53]; in the other words, they are
equivalent to the regression block of adaptive graph filter. For
instance, to label the ith signal, we first estimate the confidence
vector q̂(i) by using some regression techniques on the labeled
dataset and then plug q̂(i) in (2) to do classification. Without
a large number of labeled signals, however, the traditional
plugin methods fail to train a robust regression model, which
further causes a poor classification performance [54]; this is
the reason why we does not use regression in the first place.
Adaptive graph filter solves this problem by producing labels
for unlabeled signals in the filtering step, such that both labeled
and unlabeled signals contribute to the smooth matrix in the
regression step.
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Algorithm 4 Adaptive graph filter

Input F input dataset
Q̂pr prior confidence matrix

Output Q̂ps posterior confidence matrix

Parameters Pi,j graph shift
ρ local distance
σ scaling coefficient
hk filter coefficients

Function AGF(F , Q̂pr)
Pi,j = (9) graph shift construction
h = (13) filter coefficient optimization
for k = 1 : K do diffusion
Q̂k = PkQ̂pr

Q̂ps =
∑K

k=1 hkQ̂k weighting
return Q̂ps

C. Cost Analysis

The adaptive graph filter contains two steps: filtering and
regression. In the filtering step, the computation involves the
graph shift construction with the cost of O((N − 1)N/2 +
N + N2) = O((3N2 + N)/2), the diffusion operation with
the cost of O(CKN2), and the weighting operation with the
cost of O((K − 1)N2), for a total cost of O(((C + 1)K +
1/2)N2 + N/2). In the regression step, the bulk of the cost
comes from the construction of the smooth matrix and the
inverse it involves with the cost of O((N − 1)N/2 + N +
N3 + MN + MN2) and the matrix multiplication in (14)
with the cost of O(MCN), for a total cost of O(N3 + (M +
1/2)N2 + (1/2 +M(C + 1))N).

D. Relation to Diffusion Maps

We now analyze the adaptive graph filter by connecting it to
diffusion maps and show that it reconstructs a robust diffusion
map with more flexibility.

1) Diffusion Maps: The diffusion maps are coordinates that
provide efficient geometric descriptions of signals and are built
based on the singular value decomposition of the transition
matrix.

Let A be the adjacency matrix of a graph, D the diagonal
matrix whose ith element is Di,i =

∑
j Ai,j and T = D−1A

the transition matrix. Recall that each element of T measures
the likelihood of getting from one data point to another in
one step; each element of T k measures the likelihood of
getting from one data point to another in k steps. The diffusion
distance between two signals x, y in step k is then defined as

Dk(x, y)2 = ||t(x)k − t
(y)
k ||

2
D−1 (15)

= (t
(x)
k − t

(y)
k )TD−1(t

(x)
k − t

(y)
k ),

where t(x)k and t(y)k are xth and yth rows of T k, respectively.
Since the diffusion distance takes into account all paths of
length k from x to y, it is robust to noise perturbation and
outliers. Note that the diffusion distance can also be calculated
using the `2 norm.

Since the transition matrix is asymmetric, we introduce a
normalized transition matrix T̂ = D

1
2TD−

1
2 , which, since

symmetric, can be factored as

T̂ = V ΛV ∗ =

N∑
i=1

viλiv
∗
i ,

where V =
[
v1 v2 . . . vN

]
is an orthogonal matrix and

λi are the singular values; moreover, 1 = λ1 ≥ λ2 ≥ . . . ≥
λN ≥ 0. We then decompose the transition matrix as

T k = ΨΛkΦ∗ =

N∑
i=1

ψiλ
k
i φ
∗
i , (16)

where Ψ =
[
ψ1 ψ2 . . . ψN

]
= D−

1
2V , and Φ =[

φ1 φ2 . . . φN
]

= D
1
2V . Note that T̂ and T share the

same eigenvalues. The underlying diffusion map for step k
and node x is now defined as

Y
(x)
k =

[
λk1ψ1,x λk2ψ2,x . . . λkNψN,x

]T
. (17)

If we define the diffusion space to be the space spanned by
the columns of Φ, then, the diffusion map Y

(x)
k gives the

coordinates of x diffused k times in that space.
Using diffusion maps, the diffusion distance is simply

Dk(x, y)2
(a)
= (t

(x)
k − t

(y)
k )TD−1(t

(x)
k − t

(y)
k ),

(b)
=

[∑N
i=1 λ

k
i (ψi,x − ψi,y)φ∗i

]
D−1[∑N

i=j λ
k
j (ψj,x − ψj,y)φj

]
=

[∑N
i=1 λ

k
i (ψi,x − ψi,y)v∗iD

1
2

]
D−1[∑N

i=j λ
k
j (ψj,x − ψj,y)D

1
2 vj

]
(c)
=

N∑
i=1

[
λki (ψi,x − ψi,y)

]2
= ||Y (x)

k − Y (y)
k ||

2
2,

where (a) follows from (15); (b) from (16); and (c) from
the orthogonality of V . Thus, by varying k = 0, 1, . . ., the
diffusion maps allow us to find an alternate representation that
might better separate the data, for example.

2) Relation to the Adaptive Graph Filter: We now show
how, by using the adaptive graph filter, we construct diffusion
maps that allow for more flexibility. Recall that our adaptive
graph filter in (10) uses the graph shift P that is a Hermitian
transpose of the transition matrix T . Thus, applying (16) to
(10) , we get

h(P ) =

K∑
k=1

hkP
k =

K∑
k=1

hk(T ∗)k =

K∑
k=1

hk(T k)∗

=

K∑
k=1

hk(ΨΛkΦ∗)∗ =

K∑
k=1

hkΦΛkΨ∗

= Φ

(
K∑
k=1

hkΛk

)
Ψ∗ = Φh(Λ) Ψ∗, (18)

with h(Λ) = diag(
∑K
k=1 hkλ

k
1 , . . . ,

∑K
k=1 hkλ

k
N ).
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If we define the diffusion space to be the space spanned by
the columns of Ψ, then, we define a diffusion map to be

Y
(x)
h =

[
h(Λ)1,1φ1,x . . . h(Λ)N,NφN,x

]T
. (19)

Thus, the construction of an adaptive graph filter allows for
continuous change of the coordinates in the diffusion space,
providing flexibility in finding the best representation in a data-
adapted fashion; this adaptivity is reflected by subscript h in
Y

(x)
h . This is in contrast to only discrete changes allowed by

(17).
We illustrate the above discussion with an example. Let

λ1 = 1, λ2 = 0.5, Y (x)
0 =

[
1 1

]T
, Y (y)

0 =
[
2 1

]T
, and

Y
(z)
0 =

[
1 2.4

]T
. The distance between x and y in this step

is D0(x, y) = 1, smaller than the distance between x and z,
D0(x, z) = 1.4. Diffusing once, we get Y (x)

1 =
[
1 0.5

]T
,

Y
(y)
1 =

[
2 0.5

]T
, and Y

(z)
1 =

[
1 1.2

]T
. The distance

between x and y in this step is D1(x, y) = 1, larger than the
distance between x and z, D1(x, z) = 0.7. In other words,
by changing the power k, distances change in the diffusion
space. Since k can only be an integer, it is not possible, for
example, to make the distances between x and y, and x and
z be the same. By using the adaptive graph filter, however,
we can find the optimal filter coefficients to match such a
requirement using (13).

E. Relation to Diffusion Wavelets

We now analyze the adaptive graph filter by connecting it to
diffusion wavelets and show that it performs multiresolution
classification on graphs.

1) Diffusion Wavelets: Diffusion wavelets are a multiscale
framework to analyze signals with complex structures [16].
They can be seen as an extension of the classical wavelet
theory, where, the diffusion wavelet basis is learned from the
geometry of the signal structure in a data-adapted fashion.
The diffusion wavelet basis is constructed by dilation using the
dyadic powers of the transition matrix, the idea being that they
propagate local relationships to global relationships throughout
the graph.

Given a graph, at the jth resolution level, we have T 2j , as
the transition matrix, j = 1, 2, . . .. Since the second singular
value of the transition matrix is less than 1 to keep the graph
connected, only the first singular value is 1. Consequently, if
the transition matrix is raised to a high power, all the singular
values disappear except for the first one,

λ2
j

i → 0, i = 2, 3, . . . , N as j →∞.

When j = 1, the transition matrix T measures local pairwise
similarities; increasing the power j gradually decreases the
rank of the transition matrix T 2j and causes local information
of the graph to be missed since the resolution on the graph
changes from finest to the coarsest. Thus, by changing j, we
can both perform a multiresolution analysis as well as do it
in a computationally efficient manner.

2) Relation to the Adaptive Graph Filter: The adaptive
graph filter in (10) is formed as a linear combination of graph
shifts P raised to power k. When k is large, P k become a low-
rank matrix describing the global information of the graph,
just as T 2j does for diffusion wavelets. Each k corresponds to
a different resolution on the graph, and thus, adaptive graph
filter actually performs multiresolution classification on the
graph. It weighs the classification results from each resolution
to produce the global result. The filter coefficients represent
the discriminative power of each resolution. This also explains
why the objective functions to optimize the filter coefficients
in (7) and the weights of each subband in (13) are the same.

V. EXPERIMENTAL RESULTS

In this section, we validate the proposed framework on
indirect bridge structural health monitoring, and show that it
performs remarkably better than previous approaches.

A. Dataset

To study the bridge behavior under various conditions
comprehensively, a lab-scale bridge-vehicle dynamic system
was built; see Figure 5. Accelerometers were installed on a
vehicle that moves across the bridge; acceleration signals were
then collected from those accelerometers. We collected 30
acceleration signals for each of 13 different bridge conditions,
8 different speeds, from 1 m/s to 2.75 m/s with increments of
0.25 m/s, and 2 vehicles with different weights, 4.8 kg and
5.2 kg respectively, for a total of 6240 acceleration signals.
The 13 bridge conditions included one pristine condition and
4 different damage severities for each of 3 different damage
proxy scenarios. These damage proxy scenarios simulate pos-
sible damage on the bridge. For example, varying rotational
restraints simulates rubber bearings becoming stiffer in time
or corrosion of rocker supports; there were four of these, at
one corner, two, three, and four. Another four scenarios were
modeled by adding one or two dampers at quarter span of the
bridge, two at quarter span and two at midspan, and finally,
two each at quarter, mid, and three-quarter span. The final four
scenarios were modeled by adding mass at midspan, of 50 g,
100 g, 200 g, and 300 g. For more details, see [21].

B. Experimental Setup

Given a specific vehicle driven at a specific speed, we want
to classify 13 bridge conditions, in particular, with a low
labeling ratio. We consider 16 vehicle-speed combinations for
each of which there are 30 acceleration signals for each of
the 13 scenarios; the final accuracy is the average over the 13
scenarios; the baseline accuracy is thus 100/13 = 7.7%.

We choose a Coiflet filter bank [55] with 4 levels (for a total
of 15 subbands) in the multiresolution block [24], principal
component analysis [23] in the feature extraction block, radius
kernel support vector machine [56] in the supervised classifica-
tion block, and adaptive graph filtering in the semi-supervised
classification block. In each subband, we use the coefficients
that preserve roughly 95% of energy after principal component
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Fig. 5: The lab-scale bridge (from [21] with permission).

analysis as the feature vector for each signal. We construct the
graph by choosing ρ as the cosine distance, defined as [57]

ρ(v1, v2) = 1− < v1, v2 >

||v1||||v2||
,

and σ = (1/N2)
∑
i,j ρ(f (i), (f (j))) in (9). The length of

the adaptive graph filter is K = 30. In the semi-supervised
weighting function, we choose the penalty threshold T = 0.02
and the penalty function λ(d) = 1 + 5(d/T − 1)2 in (5).
The decay coefficient β = 1 is chosen to minimize (7)
and (13). To solve (7) and (13), we used CVX, a package
for specifying and solving convex programs [58], [59]. We
performed a 30-fold cross-validation. Table II summarizes all
the parameters at a glance. The details about the setting of
parameters see a reproducible research page [17]. Note that
in semi-supervised classification, we train the model based on
both labeled and a large number of unlabeled signals without
considering unseen signals, we thus do not have to worry about
data snooping and overfitting. We compare our method, semi-
supervised multiresolution classification with adaptive graph
filtering, against:
• Generic classification with kernel support vector ma-

chine, diffusion functions, harmonic functions, and adap-
tive graph filtering.

• Supervised multiresolution classification with kernel sup-
port vector machine.

• Semi-supervised multiresolution classification with diffu-
sion functions, harmonic functions, and adaptive graph
filtering.

We use the following shorthands in figures and tables: S for
supervised (if with another acronym) or speed (if without an-
other acronym), SS for semi-supervised, no MRC for generic
classification, MRC for multiresolution classification, SVM for
kernel support vector machine, DF for diffusion functions, HF
for harmonic functions, AGF for adaptive graph filtering, and
V for vehicle.

C. Classification Results
We validate our method from three standpoints: (1) the

performance of the semi-supervised multiresolution classifi-
cation framework; (2) the ability of adaptive graph filtering

Experimental setup

dataset
V vehicles 2
S speeds 8

damage scenarios 13
signals/scenario 30

multiresolution decomposition
D Coiflet filter bank 4 levels
S number of subbands 15

feature extractions
F principal component analysis
classification
SC kernel support vector machine
SSC adaptive graph filter
ρ local distance cosine distance
σ scaling coefficient (1/N2)

∑
i,j ρ(f

(i), f (j))
β decay coefficient 1
K length of graph filter 30

weighting
T threshold 0.02
λ(d) penalty function 1 + 5((d/T )− 1)2

TABLE II: Parameters used in the experiments.

to handle mislabeled signals; and (3) the ability of adaptive
graph filtering to handle unseen signals.

1) Semi-Supervised Multiresolution Classification: We val-
idate the proposed framework, semi-supervised multiresolution
classification, by comparing it to generic classification and
supervised multiresolution classification with a low labeling
ratio of 10% (see Table III).

We detect three trends, the first two of which validate each
component of the framework (multiresolution classification
and semi-supervised learning), while the third validates the
entire framework: (1) Multiresolution framework improves
classification accuracy (darker columns 7-10 versus lighter
columns 3-6): supervised multiresolution classifier (MRC
SVM, dark red column 6) performs better than the corre-
sponding supervised generic classifier (SVM, light red column
2) and each semi-supervised multiresolution classifier (MRC
DF, HF, and AGF, dark blue columns 8-10) performs better
than the corresponding semi-supervised generic classifier (DF,
HF, and AGF, light blue columns 4-6). (2) Semi-supervised
learning improves classification accuracy (blue columns versus
red columns): each semi-supervised generic classifier (DF, HF,
and AGF, light blue columns 4-6) performs better than the
supervised generic classifier (SVM, light red column 3) and
each semi-supervised multiresolution classifier (MRC DF, HF,
and AGF, dark blue columns 8-10) performs better than the
supervised multiresolution classifier (MRC SVM, dark red col-
umn 7). (3) Multiresolution framework with semi-supervised
learning (MRC DF, HF, and AGF, dark blue columns 8-10)
improves classification accuracy over the supervised generic
classifier (SVM, light red column 3) by ∼ 30%.

We further validate these trends under different labeling
ratios. Figures 6–9 show the dependence of classification
accuracy on the labeling ratio for 2 vehicles averaged across
8 speeds. Figures 6 and 7 validate Trend 1 for supervised
(SVM) and semi-supervised (AGF) classifiers. In each case
and for both vehicles, multiresolution framework improves
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V S No MRC MRC
S SS S SS

SVM DF HF AGF SVM DF HF AGF

1 1 57.97 83.70 88.92 87.98 81.19 99.63 99.80 99.83
2 70.42 85.78 90.38 89.55 84.71 99.83 99.98 99.99
3 74.29 86.25 90.67 89.91 84.59 99.11 99.40 99.38
4 74.82 88.08 94.79 93.87 80.29 99.89 99.93 99.98
5 70.68 74.87 78.92 77.64 72.35 93.76 96.13 94.52
6 67.13 82.43 86.00 85.24 69.72 91.54 93.47 93.43
7 59.48 65.31 66.05 66.23 59.75 77.44 78.79 78.74
8 56.53 66.52 67.58 67.11 56.63 75.37 77.93 77.23

2 1 49.75 78.17 82.28 80.99 71.69 85.36 84.63 85.12
2 53.64 67.30 71.38 70.32 60.69 80.19 80.51 80.59
3 67.96 82.50 87.84 86.09 74.94 95.12 94.62 94.81
4 61.52 79.57 82.85 82.86 65.27 86.65 86.44 87.34
5 62.75 77.92 82.15 81.22 66.42 88.86 88.34 88.72
6 66.89 80.17 81.65 81.73 69.75 84.08 83.61 84.18
7 65.09 82.87 85.19 85.48 70.59 89.15 89.51 89.66
8 48.57 80.32 83.01 82.57 53.67 92.03 93.62 93.31

TABLE III: Accuracy comparison of Vehicles (V) 1 and 2, with Speeds (S) 1, 2, . . . , 8, and labeling ratio of 10%.

(a) Vehicle 1. (b) Vehicle 2.

Fig. 6: Trend 1: Multiresolution framework improves classi-
fication accuracy. Comparison of supervised classifiers.

classification accuracy across all labeling ratios.
Figure 8 validates Trend 2 for supervised (SVM) and

semi-supervised (AGF) multiresolution classifiers. For both
vehicles, semi-supervised learning improves classification ac-
curacy across all labeling ratios. Moreover, as the labeling
ratio decreases, accuracy drops sharply for multiresolution-
based SVM; performance of the multiresolution-based adap-
tive graph filter stays relatively flat, however, even at very low
labeling ratios.

Figure 9 validates Trend 3 for semi-supervised (AGF) mul-
tiresolution classifier and generic supervised classifier (SVM).
For both vehicles, semi-supervised multiresolution classifier
with adaptive graph filtering dramatically improves classifica-
tion accuracy across all labeling ratios.

2) Ability of Adaptive Graph Filtering to Handle Misla-
beled Signals: In real-world problems, some of the labeled
signals could be unreliable for different reasons, for example,
negligence or uncertainty. As mentioned in Section IV-A,
one of the advantages of using adaptive graph filtering is
to provide robustness to mislabeling. To validate that, we
randomly mislabel a fraction of labeled signals, feed them

(a) Vehicle 1. (b) Vehicle 2.

Fig. 7: Trend 1: Multiresolution framework improves classi-
fication accuracy. Comparison of semi-supervised classifiers.

into the classifiers together with correctly labeled signals,
and compare the fault tolerances of the three semi-supervised
classifiers. Tables IV and V show results where 20% of signals
are labeled, with 15.38% and 33.33% of these labeled signals
mislabeled, respectively. The trends from before still hold:
Multiresolution framework improves classification accuracy
(darker columns 6-8 versus lighter columns 3-5). Among
the semi-supervised multiresolution classifiers, adaptive graph
filtering (AGF, dark columns 8) performs the best in each
case. Moreover, as the ratio of mislabeled signals increases
from 15.38% to 33.33%, the performance of adaptive graph
filtering is relatively unaffected, while the performance of the
other two semi-supervised classifiers, diffusion functions and
harmonic functions, decreases dramatically. We thus conclude
that the semi-supervised multiresolution classification using
adaptive graph filtering is robust to mislabeled signals.

3) Ability of Adaptive Graph Filtering to Handle Unseen
Signals: Finally, to validate the claim from Section IV-B that
using regression allows us to handle unseen signals, we keep
a portion of signals as unseen signals. For each vehicle and
speed, we have 13 damage scenarios with 30 signals for each
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(a) Vehicle 1. (b) Vehicle 2.

Fig. 8: Trend 2: Semi-supervised learning improves classifi-
cation accuracy. Comparison of multiresolution classifiers.

V S No MRC MRC
DF HF AGF DF HF AGF

1 1 83.88 85.15 88.53 95.92 96.60 99.39
2 87.15 87.76 90.84 97.72 98.09 99.79
3 87.28 88.77 91.03 97.47 97.71 99.40
4 86.97 88.99 93.45 96.93 96.99 99.52
5 74.52 73.99 77.72 94.41 95.28 95.74
6 83.05 84.08 87.54 93.21 93.94 95.75
7 63.99 63.45 66.08 78.37 79.21 80.06
8 66.92 67.15 68.14 78.38 79.59 80.44

2 1 77.38 79.28 81.88 83.53 83.39 85.68
2 66.78 67.65 69.98 77.97 78.32 79.86
3 82.09 83.80 86.72 94.13 93.61 95.07
4 79.99 81.00 84.56 86.67 86.61 88.31
5 79.42 80.40 83.20 87.39 87.61 89.01
6 80.40 80.97 83.34 84.25 83.43 84.69
7 81.96 82.34 86.03 88.43 89.01 89.85
8 79.59 81.47 83.31 92.31 92.94 94.40

TABLE IV: Robustness to mislabeled signals: accuracy com-
parison of Vehicles (V) 1 and 2, with Speeds (S) 1, 2, . . . , 8,
with labeling ratio of 20% and misslabeling ratio of 15.38%.

for a total of 390 available signals. We assign M = 65 of
these to be unseen, leaving us with N = 325 total signals,
out of which we label L = 13. We thus have 4% (13/325)
labeled and 20% (65/325) unseen signals. Table VI shows
results for both the generic classifier (lighter columns 3-4)
and semi-supervised multiresolution classifiers with adaptive
graph filtering (darker columns 5-6). In each case, we compare
accuracies of U = 312 unlabeled signals as well as of M = 65
unseen signals. Although the unseen signals never appear in
the filtering stage, classification accuracy is close to that of
unlabeled signals. If the signal set is sufficiently large, the
adaptive graph filter learns the distribution of signals from
both labeled and unlabeled signals, which it then uses for the
unseen signals.

VI. CONCLUSIONS AND FUTURE WORK

We presented a novel classification framework that com-
bines multiresolution classification with semi-supervised
learning; adaptive graph filtering for semi-supervised classifi-
cation that allows for classifying unlabeled as well as unseen

(a) Vehicle 1. (b) Vehicle 2.

Fig. 9: Trend 3: Multiresolution framework with semi-
supervised learning improves classification accuracy.

V S No MRC MRC
DF HF AGF DF HF AGF

1 1 72.55 73.41 81.99 87.16 87.43 97.20
2 75.84 76.18 85.16 89.37 89.96 98.14
3 79.36 79.40 87.17 90.33 90.73 97.44
4 77.47 77.03 89.15 88.50 88.83 97.90
5 66.32 62.75 72.87 86.78 85.67 90.08
6 74.44 72.98 81.92 86.45 85.35 90.98
7 57.70 55.89 62.02 72.43 72.69 76.06
8 60.14 59.12 63.88 71.29 71.64 75.26

2 1 66.76 68.00 76.29 74.46 74.50 81.90
2 57.62 57.50 63.41 71.08 70.85 75.94
3 73.54 73.69 82.47 87.25 87.18 93.19
4 71.27 70.05 79.78 78.49 78.70 84.78
5 70.76 69.87 78.66 79.95 79.67 85.80
6 72.39 71.84 80.41 77.18 77.13 82.55
7 74.39 73.82 82.53 81.45 82.01 87.04
8 72.88 71.12 80.04 85.82 86.29 92.19

TABLE V: Robustness to mislabeled signals: accuracy com-
parison of Vehicles (V) 1 and 2, with Speeds (S) 1, 2, . . . , 8,
with labeling ratio of 20% and misslabeling ratio of 33.33%.

signals and for correcting mislabeled signals; and solution to
indirect bridge structural health monitoring.

The proposed framework builds upon supervised multires-
olution classification, which extracts hidden features in local-
ized time-frequency subbands, and semi-supervised learning,
which uses both labeled and unlabeled signals. We link the two
via a novel weighting algorithm that combines information
from all the subbands of all the signals to make a global
decision in a semi-supervised fashion. We propose a novel
semi-supervised classifier, adaptive graph filter; also, the first
real application of signal processing on graphs. We further
connect it to diffusion maps and diffusion wavelets and show
that it performs multiresolution classification on graphs.

We validate the proposed framework on the task of indi-
rect bridge structural health monitoring and show that: (1)
multiresolution framework on its own, (2) semi-supervised
learning on its own, and (3) the two together, all improve
classification accuracy. Furthermore, we show that adaptive
graph filtering has the ability to handle unlabeled, mislabeled
as well as unseen signals. Applications to different physiclal
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V S No MRC-AGF MRC-AGF
Unlabeled Unseen Unlabeled Unseen

1 1 76.79 74.21 99.19 96.92
2 80.34 74.72 99.26 96.77
3 83.84 79.18 97.38 94.41
4 85.67 84.51 99.70 98.77
5 67.44 73.85 82.81 80.92
6 75.20 74.97 85.35 80.97
7 62.02 62.72 72.97 71.13
8 57.97 58.05 67.39 66.97

2 1 75.63 75.38 81.99 82.41
2 56.77 57.64 76.05 76.41
3 77.13 77.08 93.25 92.00
4 71.57 72.62 80.49 81.13
5 69.31 68.77 83.73 82.62
6 73.27 74.05 78.13 78.46
7 77.98 78.10 83.60 83.59
8 74.69 77.64 86.82 87.64

TABLE VI: Robustness to unseen signals: accuracy compar-
ison of Vehicles (V) 1 and 2, with Speeds (S) 1, 2, . . . , 8,
labeling ratio of 4% and ratio of unseen signals of 20%.

situations are illustrated in [17].
Some near-future tasks are to use more features in each

time-frequency subband, prune wavelet packet tree to achieve
faster implementation and test the framework on real-world
bridge-vehicle dynamic systems.
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[29] J. Kovačević and A. Chebira, “An introduction to frames,” Found. Trends
Signal Process., vol. 2, no. 1, pp. 1–94, 2008.

[30] R. R. Coifman, Y. Meyer, S. Quake, and M. V. Wickerhauser, “Signal
processing and compression with wavelet packets,” Yale Univ., Tech.
Rep., 1991.

[31] R. M. Haralick, “Statistical and structural approaches to texture,” Proc.
IEEE, vol. 67, pp. 786–804, 1979.

[32] D. Gabor, “Theory of communication,” J. IEE, vol. 93, pp. 429–457,
1946.

[33] J. Jones and L. Palmer, “An evaluation of the two-dimensional Gabor
filter model of simple receptive fields in cat striate cortex,” J. Neuropsy-
chol., vol. 58, pp. 1233–1258, 1987.

[34] J. Daugman, “Complete discrete 2-D Gabor transforms by neural
networks for image analysis and compression,” IEEE Trans. Acoust.,
Speech, Signal Process., vol. 36, pp. 1169–1179, 1988.

[35] A. Jain and F. Farrokhnia, “Unsupervised texture segmentation using
Gabor filters,” Pattern Recogn., vol. 24, pp. 1167–1186, 1991.
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A. Hoberman, and J. Kovačević, “Otitis media vocabulary and grammar,”
in Proc. IEEE Int. Conf. Image Process., Orlando, FL, Sep. 2012, pp.
2845–2848.

[41] M. T. McCann, R. Bhagavatula, M. C. Fickus, J. A. Ozolek, and
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