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Supervised Hyperspectral Image Classification with
Rejection
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and Jelena Kovačević, Fellow, IEEE

Abstract—Hyperspectral image classification is a challenging
problem as obtaining complete and representative training sets
is costly, pixels can belong to unknown classes, and it is generally
an ill-posed problem. The need to achieve high classification
accuracy may surpass the need to classify the entire image. To
account for this scenario, we use classification with rejection by
providing the classifier with an option not to classify a pixel and
consequently reject it.

We present and analyze two approaches for supervised hyper-
spectral image classification that combine the use of contextual
priors with classification with rejection: by jointly computing
context and rejection, and by sequentially computing context
and rejection. In the joint approach, rejection is introduced as
an extra class that models the probability of classifier failure. In
the sequential approach, rejection results from the hidden field
associated with a marginal maximum a posteriori classification
of the image. We validate both approaches on real hyperspectral
data.

Index Terms—hyperspectral image classification, classification
with rejection, classification with context

I. INTRODUCTION

Supervised image classification is pivotal in a large num-
ber of hyperspectral image applications [3]. The problem of
supervised hyperspectral image classification is generally ill-
posed. Contextual information is used in image classification
as a regularizer to impose desired characteristics in the result-
ing classification, for example through the use of multilevel
logistic priors based on Markov random fields [4], widely
used in hyperspectral image classification [5], or graph-based
methods [6], [7]. Whereas there are alternatives to supervised
hyperspectral image classification, such as curve fitting of ab-
sorption bands [8], the need for contextual information based
regularization is still present. By itself, however, contextual
information does not totally remove the effects of classification
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errors associated with overlapping classes, small or incomplete
training sets, and the existence of unknown classes.

Classification errors can be mitigated if we adapt the behav-
ior of the classifier to avoid classifying samples (pixels in the
case of images) with high potential for incorrect classifications.
This can be achieved by equipping the classifier with rejection,
thus obtaining an increase in classification performance at
the expense of not classifying the entire image.

Classification with rejection was first analyzed in [9], where
Chow’s rule for optimum error-reject trade-off was presented.
Given the knowledge of posterior probabilities and of the costs
of erring and rejecting, Chow’s rule allows the derivation of a
rejection rule based on the thresholding of probabilities such
that empirical classification risk is minimized. Extensive work
exists on the design of systems for classification with rejection
(see [10] and references therein), however the application
of pixelwise classification with rejection to images has been
limited to medical image classification [11], [12].

In hyperspectral images, the acquisition of representative,
nonoverlapping, and balanced pixelwise training sets is costly,
pixels can belong to unknown classes, and the need for high
accuracy may surpass the need to classify the entire image.
These characteristics are shared among a class of image clas-
sification problems, for example, the task of histopathology
image classification [11], [12], where the combination of
classification with context and classification with rejection
has shown improved classification performances. We thus
hypothesize that applying rejection to classification can be
fruitful in hyperspectral image classification problems as well.

Classification with rejection can be conceptualized as a
coupling of a classifier (that maps feature vectors into class
labels) with a rejector (that maps class labels into a binary
decision to reject or not). There is an interplay between the
performance of the classifier and the required performance of
the rejector: the higher the accuracy obtained by the classifier,
the harder it becomes for the rejector not to reject correctly
classified pixels. This means that performance improvements
of combining rejection and context are clearer when the
performance of the classifier is lower. We will show that by
using classification with rejection systems (as schematized
in Fig. 1), we are able, with small training sets, to achieve
classification performances close to those obtained with larger
training sets.

In this paper, we combine classification with rejection with
classification with context in two different ways, correspond-
ing to two different instantiations of the general scheme in
Fig. 1:
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Fig. 1. General diagram of supervised hyperspectral image classification with rejection. The classification block corresponds to a supervised classifier trained
with labeled training pixels and applied to unlabeled test pixels. The contextual rejection block combines the classification with rejection with the classification
context. In Section III, two instantiations of contextual rejection are discussed.

• Joint computation of Context and Rejection (JCR) as
in [1], where rejection is considered as an extra class
and computed alongside with context;

• Sequential computation of Context and Rejection (SCR)
as in [2], where rejection is computed after the context
by use of a rejection field.

We extend and compare these two different formulations for
supervised hyperspectral image classification with rejection.

The contribution of this paper is two-fold: the application
of classification with rejection to the hyperspectral image
classification problem; and the development of algorithms for
contextual classification with rejection for hyperspectral image
classification.

The paper is organized as follows: Section II provides the
background on the contextual classification techniques and
performance measures for classification with rejection. Section
III describes our classification method with rejection and
context, with Section III-A corresponding to JCR and Section
III-B to SCR. Section IV presents experimental results and
Section V concludes the paper.

II. BACKGROUND

We now introduce the necessary notation and background
for the computation of classification with context by presenting
the SegSALSA algorithm, and for the evaluation of perfor-
mance of classifiers with rejection.

Let x ∈ Rd×n denote a n-pixel hyperspectral image with
d spectral bands, where xi ∈ Rd denotes the vector of d
spectral values at pixel corresponding to the image pixel i.
Let S = {1, . . . , n} be the set that indexes the image pixels,
L = {1, . . . ,K} be the set of possible K labels, and y ∈ Ln
be a labeling of the image.

A. Classification with context — SegSALSA

The goal behind classification with context is to combine
pixelwise classification results with a contextual (often spatial)
prior. Desired properties, such as piecewise smooth labelings,
are imposed on the labelings through the use of contextual pri-
ors. Classification with context is achieved by the SegSALSA
algorithm [13], [14] that combines the idea of a hidden field
driving a segmentation [15], with a vectorial total variation
prior [16], [17] in a convex segmentation formulation solved
by the SALSA algorithm [18].

Adopting a Bayesian perspective, the maximum a posteriori
(MAP) labeling ŷ is given by

ŷ = arg max
y∈Ln

p(y|x) = arg max
y∈Ln

p(x|y)p(y), (1)

where p(y|x) denotes the posterior probability of the labeling
y given the feature vectors x, p(x|y) denotes the observation
model, and p(y) denotes the prior probability of the labeling.
Assuming conditional independence of the features given the
labels, we have

p(x|y) =
∏
k∈L

∏
i∈S

p(xi|yi = k).

To introduce the hidden field [15], let z be a K ×n matrix
containing a collection of hidden random vectors zi ∈ RK , for
i ∈ S. The joint probability of labels y and field z is defined
as

p(y, z) = p(y|z)p(z),

with the assumption of conditional independence of the labels
y given the field z

p(y|z) =
∏
i∈S

p(yi|zi).

This allows us to express the joint probability of the features,
labels and fields (x,y, z) as

p(x,y, z) = p(x|y)p(y|z)p(z).

Armed with the hidden field z and the joint probabilities,
we can now marginalize on the discrete labels,

p(x, z) =
∏
i∈S

{ marginalization︷ ︸︸ ︷∑
yi∈L

p(xi|yi)p(yi|zi)
}
p(z). (2)

The marginalization in (2) corresponds to the marginalization
of the joint probability of the features x, the labels y, and
the hidden field z across the discrete labels y. This allows
us to have the joint the probabilities of the features and the
hidden field p(x, z), depending only on the continuous hidden
field z, as the features x are known. The marginal maximum
a posteriori (MMAP) is then

ẑMMAP = argmax
z∈RK×n

p(x, z),

with the soft classification obtained by p(y|ẑMMAP) and the
labeling obtained by finding the labeling y that maximizes
the soft classification.

As the kth component of the ith random vector [zi]k is
modeled by the conditional probability p(yi = k|zi), two
constraints are introduced in the hidden field z as a result:
nonnegativity [zi]k ≥ 0 and sum-to-one 1TKzi = 1.

The conditional probabilities p(yi|xi), collected in the vec-
tor pi = [p(yi = 1|xi), . . . , p(yi = K|xi)], are modeled
with a sparse multinomial logistic (MLR) with the Logistic
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Regression via Split Augmented Lagrangian (LORSAL) algo-
rithm [19] as follows. Let k(xi) be a kernel function computed
between the spectra of the ith pixel xi and the spectra of
the pixels belonging to the training set, we have that the a
posterior probabilities can be modeled as

p(yi = `|xi, [w1, . . . ,wK ]) =
ew

T
` k(xi)∑K

j=1 e
wT

j k(xi)
,

where wj is the regression vector for the jth class. We learn
the regression vectors using the LORSAL algorithm, with an
element-wise independent Laplacian prior for the regression
vectors, and computing the maximum a posteriori estimate
of W = [w1, . . . ,wK ] by solving the following decoupled
optimization problem

arg max
W,Ω

l(W) + log p(Ω), subject to W = Ω,

where l(W) demotes the log-likelihood of W and p(Ω) ∝
e−λ‖Ω‖1 promotes the sparsity of the regression vectors.

As we deal now with the marginal MAP instead of the
MAP, the prior is no longer applied on the discrete labels y
but on the continuous hidden field z. We adopt a vectorial
total variation (VTV) prior [16], [17] for the hidden field z
as it promotes piecewise smoothness of the field, preservation
and alignment of the discontinuities across the classes, and it
is convex. The prior p(z) is defined such that

− ln p(z) ≡ λTV

∑
i∈S

√
‖Dhzi‖2 + ‖Dvzi‖2, (3)

where Dh is the horizontal difference operator, Dv the vertical
difference operator, and λTV a regularization parameter. The
regularization parameter λTV controls the relative weight of
the vectorial total variation prior compared to the connection
of the hidden field to the class probabilities, thus the value
of λTV affects the piecewise smoothness of classification. A
larger value of λTV results in smoother segmentations whereas
a smaller value of λTV results in segmentations with speckles.

From the initial integer optimization problem in (1), the
contextual classification problem is then formulated as a
convex optimization problem

ẑMMAP = arg min
z∈RK×n

−
∑
i∈S

(
ln
(
pTi zi

))
− ln p(z) (4)

subject to: z ≥ 0, 1TKz = 1Tn .

This problem can be solved efficiently with SALSA
(Constraint Split Augmented Lagrangian Shrinkage Algo-
rithm) [18], an instance of the alternating direction method of
multipliers.The SALSA algorithm allows us to solve a convex
optimization problem with an arbitrary number of terms,
such as (4), using a flexible variable splitting mechanism
without the incurring on the computational costs associated
with double loops present in the Douglas-Rachford Splitting
algorithm in [20]. The problem (4) can then be solved with
a complexity of O(Kn log n). We point the interested reader
to [13] for the formulation of SegSALSA as an instance of
the SALSA algorithm.

B. Performance measures for classification with rejection

The performance of classification with rejection is fre-
quently assessed by comparing the accuracy of the subset
of nonrejected samples (in our case pixels), the nonrejected
accuracy A, with the the fraction of rejected pixels r (as
in [21], [22], [23], [24]). Let R be the set of rejected pixels (R̄
denotes the set of nonrejected pixels) and C the set of correctly
classified pixels (C̄ denotes the set of incorrectly classified
pixels) with S = R∪ R̄ = C ∪ C̄, as illustrated in Fig. 2.

(a) Classification (b) Rejection (c) Classification with
rejection

Fig. 2. Example of classification with rejection of image. Classification
(a) with correctly classified pixels in green and incorrectly classified pix-
els in orange. Rejection (b) with rejected pixels in gray and nonrejected
pixels in white. Classification with rejection (c) with intersection of re-
jected/nonrejected and correctly/incorrectly classified pixels.

We represent the rejected fraction r as

r =
|R|
|R ∪ R̄|

=
|R|
|S|

= , (5)

corresponding to the fraction of pixels that are rejected. The
nonrejected accuracy A can be represented as

A =
|C ∩ R̄|
|R̄|

= ,

with

A =
|C ∩ R̄|
|S|

1

1− r
= A(r), (6)

corresponding to the fraction of nonrejected pixels that are
correctly classified. We note that A(0) corresponds to the total
accuracy of the classifier, with no rejection in place.

The nonrejected accuracy, combined with the rejected frac-
tion, is unable to compare directly the behavior of two classi-
fiers with rejection working at different rejected fractions. A
clear example of this inability is the following. Let us consider
three cases with a classifier that classifies the same set of pixels
as follows:

case 1 case 2 case 3

nonrejected fraction 1− r 79.00% 80.00% 81.01%

nonrejected accuracy A(r) 81.01% 80.00% 79.00%

In all three cases, 64% of the pixels are correctly classified,
however, the pair rejected fraction / nonrejected accuracy will
not be able to compare the three cases working at different
rejected fractions.

To account for this, we extend the concept of nonrejected
accuracy to the classification quality Q [25].

Definition 1. Classification Quality: given a classifier defined
by the pair correctly classified and incorrectly classified pixels
(C, C̄), and a rejector defined by pair rejected and not rejected
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pixels (R, R̄), the classification quality Q measures the pro-
portion of pixels that are either correctly classified and not
rejected or incorrectly classified and rejected, relative to the
total number of pixels

Q =
|C ∩ R̄|+ |C̄ ∩ R|

|R ∪ R̄|
=
|C ∩ R̄|
|S|

+
|C̄ ∩ R|
|S|

= .

(7)

The classification quality combines the performance of the
classifier on the subset of nonrejected pixels with the perfor-
mance of the rejector on the subset of misclassified pixels.
The maximum value of classification quality is 100% and it is
achieved when R̄ = C and R = C̄, this is, if all the correctly
classified samples are not rejected and if all the incorrectly
classified samples are rejected, corresponding to a perfect
rejector that achieves a nonrejected accuracy of 100% with
the minimum number of pixels rejected. When the opposite
occurs, the classification quality achieves its minimum value
of 0%.

In (7), the classification performance on the subset of
nonrejected pixels can be obtained as

|C ∩ R̄|
|S|

= A(r)(1− r), (8)

and the rejector performance on the subset of misclassified
pixels obtained as

|C̄ ∩ R|
|S|

= (1−A(0))− |C̄ ∩ R̄|
|S|

,

|C̄ ∩ R̄|
|S|

=
|R̄|
|S|
− |C ∩ R̄|

|S|
= (1− r)−A(r)(1− r),

|C̄ ∩ R|
|S|

= −A(0) + r +A(r)(1− r). (9)

By combining (8) and (9), we are able to represent the
classification quality as

Q(r) = 2A(r)(1− r) + r −A(0), (10)

with Q(0) = A(0).
The value of Q amounts to the proportion of correct

decisions the ensemble classifier and rejector performs. This
means that a classifier with rejection that rejects a fraction r of
pixels with a value of classification quality of Q is equivalent,
in terms of correct decisions made, to a classifier with no
rejection r = 0 and accuracy numerically equal to A(0) = Q.
The classification quality allows us to directly compare the
performance of classification systems with rejection working
at different rejected fractions.

We denote Q(r)+A(0) as classification quality with offset,
allowing us to compare classification qualities of different
operating points of a classifier with rejection when the total
accuracy without rejection is unknown but equal across differ-
ent operating points. This is the situation we have in the three
cases presented.

Armed with the classification quality, we can now compare
the performance of the three aforementioned cases of a clas-
sifier with rejection. Under the assumption of unknown and

equal total accuracy with no rejection A(0), we can obtain
the following values of classification quality with offset:

case 1 case 2 case 3

nonrejected fraction 1− r 79.00% 80.00% 81.01%

nonrejected accuracy A(r) 81.01% 80.00% 79.00%

classification quality
149.00% 148.00% 146.99%with offset Q(r) +A(0)

This example shows that the operating point for case 1, where
the 79% of the data is classified with 81% of nonrejected
accuracy, achieves a higher number of correct joint decisions,
independently of the total accuracy without rejection, than the
other two cases. Thus, the use of classification quality allows
a clear discrimination of the performance of the classification
system with rejection at different operating points.

III. REJECTION AND CONTEXT

With the background for the classification with context
established, we now approach the problem of classification
with rejection applied to our supervised classification problem.

Classification with rejection can be achieved based on the
existence of simple two mechanisms:
• An implicit ordering of the pixels according to their

potential to be rejected;
• A concept of a threshold that controls the amount of

pixels that are rejected.
This can be easily achieved by considering an extension of
Chow’s rule for two class classification with rejection, that
is, the derivation of a probability threshold for a binary
classification problem that minimizes the empirical risk given a
cost matrix and the posterior probabilities [9]. Let us consider
an image with K nonrejection classes, and a K + 1 class that
corresponds to rejection. The pixelwise MAP classification of
the ith pixel is

ŷi = arg max
yi∈L∪{K+1}

p(yi|xi) (11)

where p(yi = K + 1|xi) = γ represents the probability of
rejection. The maximum probability of the K nonrejected
classes of each pixel imposes an implicit ordering of the pixels
(higher probability leading to lower potential to be rejected),
and the amount of rejection is controlled by probability of
rejection γ, the threshold.

The simple rejection scheme in (11) is limited by its pixel-
based behavior. There is no awareness of context. In image
classification, the use of context is of paramount importance
as neighboring pixels are likely to belong to the same class.
The same reasoning applies to the rejection. The potential for
a pixel to be rejected should not be independent of whether
the pixel is surrounded by other pixels that are rejected, or
surrounded by pixels that are not rejected. As discussed in
Section I, the use of context in image classification, namely
in hyperspectral image classification, is responsible for signif-
icant increase in performance.

To solve the need for contextual awareness of rejection, we
combine rejection and context. We consider two different ways
to combine classification with rejection with classification with
context. We can jointly compute context and rejection —
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(a) (b)

Fig. 3. Schemes for computation of context and rejection. (a) JCR — joint
computation of context and rejection, and (b) SCR — sequential computation
of context and rejection

JCR (as seen in Fig. 3(a)) by considering rejection to be an
extra class, subject to the same contextual cues that the other
classes are. This is explored in subsection III-A, where we
instantiate JCR with the the SegSALSA algorithm applied to
an extended set of probabilities, containing rejection as a K+1
class. On the other hand, we can harness the potential of the
SegSALSA algorithm to provide a hidden field that provides
us with an implicit ordering of the pixels according to their
potential to be rejected — the maximum value of the hidden
field for each pixel — that takes in account the contextual
cues. This allows us to compute sequentially the rejection
after the context — SCR (as seen in Fig. 3(b)). We follow
this approach in subsection III-B, where we instantiate SCR
with the rejection computed from the hidden field resulting
from the SegSALSA algorithm with K classes through the
computation of a rejection field.

A. JCR — Joint computation of context and rejection

To compute jointly context and rejection, we consider
rejection as an extra class. Rejection is conceptualized as an
extra class that should be selected when there is evidence of
probable misclassification by the classifier. In this formulation,
the threshold γ in (11) is connected to the probability of
misclassification by the classifier.

Let pri denote the probability of the classifier misclassi-
fying the ith pixel, we can easily extend the set of labels
L = {1, . . . ,K} to include the extra class K+1 corresponding
to rejection L′ = {1, . . . ,K,K + 1}. With the new rejection
class in place, we need to normalize the probabilities. The new
class probabilities p′ become

p′(yi|xi) =

{
pri , if yi = K + 1,

(1− pri )p(yi|xi), otherwise.
(12)

SegSALSA-JCR: The joint computation of context and
rejection leads to an extended SegSALSA formulation of (4),
where the hidden field is now of dimension z ∈ R(K+1)×n

and the probability vector pi becomes p′i,

ẑMMAP = arg min
z∈R(K+1)×n

−
∑
i∈S

(
ln
(
p′
T
i zi
))
− ln p(z)

subject to: z ≥ 0, 1TKz = 1Tn .

The rejection extra class is subject to the same vectorial
total variation prior as the other classes. By considering
rejection as an extra class, we are able to seamlessly combine
classification with context with classification with rejection in
the SegSALSA formulation.

The basic assumption for the JCR is that of rejection as an
extra class with a probability associated to classifier failure.
A scaling parameter γ controls the relative weight of the
probability of classifier misclassification with regard to the
probability of the other classes. By varying the value of γ
we are able to vary the amount of rejection obtained, with
larger values of γ corresponding to larger values of the rejected
fraction. We now present two different rejection schemes based
on two different models for classifier:
• Uniform probability of classifier failure — classifier

failure is equiprobable across all the pixels;
• Entropy-weighted probability of classifier failure — clas-

sifier failure is more likely in pixels with higher entropy
associated to their classification.

1) JCR-U — Uniform probability of classifier failure: This
uniformly weighted model assumes that, regardless of the
probability distribution for each of the labels on a pixel, there
is a constant probability of failure of the classifier, i.e. for all
the pixels, the probability of misclassification, and thus rejec-
tion, is constant. The rejection depends only on the scaling
parameter γ that defines how frequently misclassification is
assumed,

pri = γ.

a) Class probabilities of extended set of labels: The class
probabilities for the extended set of labels L′ are

p′(yi|xi) =

{
γ, if yi = K + 1,

(1− γ)p(yi|xi), otherwise.
(13)

In this model, misclassifications are assumed to be equiprob-
able across the entire image.

2) JCR-E — Entropy weighted probability of classifier fail-
ure: This entropy-weighted model assumes that the probability
of failure of the classifier scales with the entropy associated
with the probability vector from the classification, i.e. pixels
with higher entropy are more likely to be misclassified, and
thus rejected. The rejection depends both from the scaling
parameter γ that defines how frequent the misclassification
is assumed, and from the uncertainty associated with the
classification modeled by the entropy weighting

pri = γH(pi),

where H(pi) denotes the entropy of the probability distribu-
tion pi = [p(yi = 1|xi) . . . p(yi = K|xi)].

a) Class probabilities of extended set of labels: The class
probabilities for the extended set of labels L′ are

p′(yi|xi) =

{
γH(pi), if yi = K + 1,

(1− γH(pi))p(yi|xi), otherwise.
(14)

In this model, misclassifications are assumed to be more
probable in pixels with higher entropy.

3) Limitations of joint computation of context and rejection:
A major limitation of considering rejection as an extra class
modeling classifier failure is the inability to define a priori
the amount of rejection obtained. Whereas γ in (13) and (14)
corresponds to the scaling factor associated with the probabil-
ity of classifier failure, the use of context through SegSALSA
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makes it impossible to predict the rejected fraction before the
computation of SegSALSA. This means that, given an ordering
of the pixels according to their potential to be rejected before
the computation of context, there is no guarantee the ordering
of the pixels will be the same after the computation of context.

B. SCR — Sequential computation of context and rejection

To mitigate the aforementioned limitations associated with
the joint computation of context and rejection, we consider
a second approach where rejection is computed after the
context, i.e. a sequential approach. We start by noting that by
using SegSALSA to compute the context, in addition to the
labeling ŷ, we have the hidden field ẑMMAP resulting from the
optimization problem (4) from where the labeling is computed.

SegSALSA-SCR: This hidden field z provides an indica-
tion of the degree of confidence associated with the label of
each pixel. If [zi]k > [zj ]l, this is if the kth component of the
hidden vector associated with the ith pixel [zi]k has a larger
value than the lth component of the hidden vector associated
with jth pixel [zj ]l, then we are led to believe that assigning
the label l in the jth pixel corresponds to a lower degree of
confidence than assigning the label k in the ith pixel.

Let us consider the labeling ŷ

ŷ = arg max
y∈Ln

p(y|ẑMMAP),

and the associated maximum probabilities of the labeling zŷ,
such that

zŷi = p(ŷi|ẑMMAP). (15)

If [zi]ŷi > [zj ]ŷj , there is strong evidence that a higher degree
of confidence exists in the labeling of the ith pixel as ŷi than
in the labeling of the jth pixel as ŷj . We denote the resulting
field zŷ as rejection field.

By sorting zŷ we obtain an ordering of the pixels according
to their relative confidence. Thus, from the hidden field z and
the resulting rejection field zŷ , we obtain an implicit ordering
of the pixels according to their potential to be rejected. The
selection of a fraction of the lowest confidence pixels to be
rejected yields a simple, yet effective scheme for rejection.
This method allows one not only to define arbitrary values of
the rejected fraction, but also to change the values on the fly,
without the need to re-solve any contextual problem.

By promoting preservation and alignment of the discontinu-
ities across the classes, the vectorial total variation prior (3),
when applied to the hidden field z, influences the behavior
of the rejection field zŷ. This results on an emergent prior
behavior on the rejection field. The preservation and alignment
of the discontinuities is thus imposed on the rejection field.

1) Approximation effects of rejection by rejection field:
By obtaining rejection through the use of a rejection field
computed from the hidden field, pixels cannot switch label as a
result of the introduction of rejection. The influence that a pixel
and its assigned label (before rejection) exerts on neighboring
pixels does not disappear when the pixel is rejected. This is
illustrated in Fig. 4, where the top-right pixel, assigned to
class 1 (green), is influenced by the green label assigned to
the bottom-right pixel, otherwise being assigned to the class

(a) classification (b) JCR (c) SCR

Fig. 4. Approximation effects of joint vs. sequential context and rejection.

2 (blue). If the rejection is computed jointly with context
(rejection as an extra class), the rejection of the bottom-right
pixel stops the interaction (green) that forces the top-right pixel
to belong to class 1 (green), and consequently the top-right
pixel switches to class 2 (blue). If the rejection is computed
from a rejection field, the interaction (green) that forces the
top-right pixel to belong to class 1 (green) persists even though
the bottom-right pixel is rejected. In practice, the changes
caused by these effects apply only to a very small portion
of the data.

IV. EXPERIMENTAL RESULTS

To evaluate the proposed methodologies of joint and se-
quential computation of context and rejection, we apply them
to the task of supervised hyperspectral image classification of
two well known hyperspectral scenes: AVIRIS Indian Pines
and ROSIS Pavia University scene. In both scenes, the labeled
ground truth is only available for a portion of the image. We
apply the methodologies on the entire image and assess the
performance on the subset of pixels that belongs to the labeled
ground truth. We aim to show the following characteristics of
supervised hyperspectral image classification with rejection:
• Classification with context and rejection can outperform

classification with context only;
• Classification with rejection does not affect all the classes

equally;
• By using classification with context and rejection with

small training sets, we are able to achieve performances
comparable to context only with larger training sets.

This is achieved by assessing the performance of the joint
(SegSALSA-JCR-U and SegSALSA-JCR-E) and sequential
(SegSALSA-SCR) schemes for context and rejection using
SegSALSA to compute the context. The multinomial lo-
gistic regression (MLR) weights are modeled with LOR-
SAL [19], thus obtaining the LORSAL-SegSALSA-JCR-U,
LORSAL-SegSALSA-JCR-E, and LORSAL-SegSALSA-SCR
methods for image classification with context and rejection.
The SegSALSA algorithm requires the existence of class
probabilities, which restrict us to the use of classifiers that
output probabilities. The use of a MLR modeled with LOR-
SAL can be easily replaced by the use of a probabilistic
extension to support vector machines, such as relevance vector
machines [26]. The LORSAL parameters used are λ = 0.01,
θ = 0.001 with radial basis function (RBF) kernels with a
width of 1. For the SegSALSA algorithm, the value of λTV is
2. Computational complexities of both LORSAL-SegSALSA-
SCR and LORSAL-SegSALSA-JCR approaches is dominated
by the SegSALSA, which is O(Kn log n), with K the number
of classes and n the number of image pixels. This means
that computing LORSAL-SegSALSA-SCR has complexity of
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O(Kn log n) and computing LORSAL-SegSALSA-JCR has
complexity of O((K + 1)n log n). In LORSAL-SegSALSA-
JCR-U and LORSAL-SegSALSA-JCR-E, a sweep on the
scaling parameter of γ from 0 to 1 is performed to observe the
joint variation of nonrejected accuracy, classification quality
and fraction of rejected pixels.

A. Indian Pine
The AVIRIS Indian Pine scene (Fig. 5) was acquired by the

AVIRIS sensor in NorthWest Indiana, USA. The scene consists
of 145×145 pixel section with 200 spectral bands (with water
absorption bands already purged) and contains 16 mutually
nonexclussive classes, with the classification accuracy and
classification quality being measured on those 16 classes.
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(a) ground truth (b) MAP LORSAL

(c) LORSAL-SegSALSA (d) LORSAL-SegSALSA-JCR-U

(e) LORSAL-SegSALSA-JCR-E (f) LORSAL-SegSALSA-SCR

Fig. 5. Classification results for Indian Pines (10 pixels per class as training
set), with rejection in black. Ground truth (a), MAP classification using
LORSAL (b), and classification with context - LORSAL-SegSALSA (c).
Classification with context and rejection with maximum classification quality
for LORSAL-SegSALSA-JCR-U (d), LORSAL-SegSALSA-JCR-E (e), and
LORSAL-SegSALSA-SCR (f). Overall and class-wise nonrejected accuracy,
rejected fraction and classification quality in Table I.

The classification maps present in Fig. 5 show clearly the
effects of classification with context and rejection: a significant
number of misclassified pixels are rejected, thus increasing
classification performance. We start from an accuracy of
51.39% with the MAP classification (with the training set
composed of 10 pixels randomly selected per class, roughly
1.6% of the entire labeled data set) in Fig. 5 (b), and
by computing the context alone with LORSAL-SegSALSA
achieve an accuracy of 69.55% in Fig. 5 (c).

In Fig. 5 (d)-(f), we show the classification maps for the re-
jected fraction that corresponds to the maximum classification

quality. This means that starting from the 69.55% accuracy of
LORSAL-SegSALSA, the value of rejected fraction is selected
such that the number of correct decisions (rejected the pixel
when incorrectly classified, and not reject the pixel when
correctly classified) is maximized. For LORSAL-SegSALSA-
JCR-U, we achieve a nonrejected accuracy of 80.31% at a
rejected fraction of 20.65% leading to a classification quality
of 78.56%. This means that by not classifying the entire image,
we depart from an accuracy of 69.55% on the entire image to
an accuracy of 80.31% on 79.35% of the image, with 78.56%
of the pixels either correctly classified and not rejected, or
incorrectly classified and rejected. For LORSAL-SegSALSA-
JCR-E, we achieve a nonrejected accuracy of 76.01% at a re-
jected fraction of 15.85% leading to a classification quality of
74.23%. For LORSAL-SegSALSA-SCR, we achieve 79.97%
nonrejected accuracy at a rejected fraction of 23.75% and a
classification quality of 76.16%.

The introduction of rejection does not affect all the classes
equally. Some classes are more positively affected by rejec-
tion, whereas the classification performance of other classes
suffers. The classwise classification performances are shown in
Table I, with classwise performance improvement highlighted
in green and classwise performance decrease highlighted in
red.
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Fig. 6. Performance for classification with rejection of the Indian Pine
scene (10 pixels per class as training set). Classification with LORSAL-
SegSALSA-SCR (black), and by LORSAL-SegSALSA-JCR-U (red) and
LORSAL-SegSALSA-JCR-E (blue).

In Fig. 6, we illustrate the variation of the performance
measures for classification with rejection as a function of the
rejected fraction. It is clear the a steady increase of nonrejected
accuracy by increasing the amount of the image rejected.
On the other hand, by using the classification quality, we
can compare the number of correct decisions made as we
change the rejected fraction. From not rejecting any portion
of the image, leading to a classification quality equal to the
accuracy of the LORSAL-SegSALSA, we are able to increase
the performance until it peaks, corresponding to a higher
accuracy on the nonrejected pixels without rejecting too much
of the image. We note the close position of peaks of the
classification qualities for the LORSAL-SegSALSA-JCR-U
and the LORSAL-SegSALSA-SCR approaches.

To compare the approaches of classification with rejection
with the state of the art methods, we need to consider an
increase of the training set dimension. In Table II, we
compare the performance of our methods with the results

1As all the pixels corresponding to the oats class are rejected, it is not
possible to compute the nonrejected accuracy.
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TABLE I
PERFORMANCE OF CLASSIFICATION WITH REJECTION FOR INDIAN PINE (10 PIXELS PER CLASS AS TRAINING SET). OVERALL AND CLASSWISE

NONREJECTED ACCURACY, REJECTED FRACTION AND CLASSIFICATION QUALITY CORRESPONDING TO MAXIMUM OVERALL CLASSIFICATION. INCREASE
IN PERFORMANCE (GREEN) AND DECREASE IN PERFORMANCE (RED). BEST CLASSWISE CLASSIFICATION PERFORMANCE IN BOLD TYPESET.

no rejection LORSAL-SegSALSA-JCR-U LORSAL-SegSALSA-JCR-E LORSAL-SegSALSA-SCR

class number initial nonrej. rejected class. nonrej. rejected class. nonrej. rejected class.
pixels accuracy accuracy fraction quality accuracy fraction quality accuracy fraction quality

alfalfa 46 95.65% 100.00% 6.52% 97.83% 100.00% 4.35% 100.00% 100.00% 4.35% 100.00%
corn-notill 1428 54.55% 63.66% 32.35% 63.94% 57.45% 29.06% 56.02% 63.15% 29.69% 63.94%
corn-mintill 830 25.66% 44.54% 55.90% 69.52% 38.62% 42.29% 61.20% 40.59% 51.33% 65.18%
corn 237 99.16% 100.00% 2.53% 98.31% 99.16% 0.00% 99.16% 100.00% 5.06% 95.78%
grass-pasture 483 82.82% 88.01% 8.49% 86.75% 84.60% 4.55% 83.23% 87.33% 8.49% 85.51%
grass-trees 730 96.85% 97.41% 4.66% 93.56% 97.34% 7.40% 90.82% 97.54% 5.48% 93.01%
grass-mowed 28 100.00% 100.00% 14.29% 85.71% 100.00% 0.00% 100.00% 100.00% 14.29% 85.71%
hay-windrowed 478 99.37% 100.00% 0.42% 100.00% 99.37% 0.00% 99.37% 99.37% 0.42% 98.95%
oats 20 95.00% NaN1 100.00% 5.00% 95.00% 0.00% 95.00% 100.00% 60.00% 45.00%
soybean-notill 972 86.42% 98.44% 20.99% 90.12% 93.94% 16.87% 86.63% 94.88% 19.55% 85.80%
soybean-mintill 2455 52.75% 62.60% 24.20% 66.35% 58.15% 18.74% 60.49% 59.46% 24.44% 61.55%
soybean-clean 593 72.68% 85.62% 21.42% 83.31% 78.85% 14.67% 76.56% 83.70% 23.44% 78.92%
wheat 205 99.51% 100.00% 1.46% 99.02% 99.51% 0.00% 99.51% 100.00% 1.46% 99.02%
woods 1265 89.09% 91.88% 2.69% 92.41% 88.82% 0.32% 88.30% 90.79% 3.00% 90.04%
buildings 386 63.21% 63.14% 29.02% 55.44% 65.73% 16.84% 62.95% 61.59% 28.50% 53.37%
stone-steel 93 93.55% 100.00% 6.45% 100.00% 93.55% 0.00% 93.55% 100.00% 6.45% 100.00%

all 10249 69.55% 80.31% 20.65% 78.56% 76.01% 15.85% 74.23% 79.97% 23.75% 76.16%

available in [27] for multiple classifiers with large training
sets (10% of the pixels as training set): classifiers without
context, classifiers with context, and classifiers with context
based on superpixelization (where an unsupervised segmen-
tation produces an oversegmented partitioning of the image
and forces pixels belonging to the same partition element to
belong to the same class). We compare the performance of our
methods with equivalent and smaller training sets (10% and
5% of pixels randomly selected as training set respectively).

For the classifiers without context, we consider support
vector machines (SVM) [28] and LORSAL [19]. For the
classifiers with context, we consider SVM with composite
kernels (SVM-CK) [29], LORSAL with multilevel logistic
Markov random field priors (LORSAL-MLL) [19], sparse
representation-based classification (SRC) [30], multinomial
logistic regression with generalized composite kernel (MLR-
GCK) [31], and LORSAL-SegSALSA [13]. For the classi-
fiers with context based on superpixelization, we consider
the superpixel-based classification via multiple kernels (SC-
MK) [27] and its simplified version (INTRASC-MK) [27].

The use of classification with context and rejection is
able to obtain significant performance improvements. We note
that, by using classification with context and rejection with
smaller training sets, both in sequential (SCR) and joint
(JCR) approaches, we are able to achieve performances on the
nonrejected data equivalent to those achieved by using classi-
fication with context only in larger training sets (highlighted
in magenta in Table II) not considering the superpixel-based
methods. For example, with 5% of the pixels as training set,
and while rejecting close to 15% of the pixels, we are able to
achieve performances close to the ones achieved by context
only with 10% of the pixels as training set, such as LORSAL-
MLL, SRC, MLR-CGK, and SegSALSA.

On the other hand, we can achieve accuracies equivalent
to the accuracies of superpixel-based methods (highlighted in
cyan in Table II), with equivalent training set size, by using
rejection. By using context and rejection, we are able to close
the gap between the state of the art methods using superpixels
(98.06% overall accuracy) and SegSALSA (92.26% overall

accuracy). The rejection of 15% of the pixels in SCR allows us
to attain values of nonrejected accuracy (97.64%) comparable
to the state of the art.

As pointed in the introduction, the performance improve-
ments resulting from the combination of rejection and con-
text are more significant for weaker classifiers with lower
performance. This is illustrated in Fig.7, where the strength
of the classifier is a result of the training set size (from
0.5% to 20% of the labeled pixels used as training set). It
is interesting to note the shift of the peak of classification
quality to lower values of rejected fraction as the classification
problem gets easier and the classifier gets more accurate. There
is an increased dependency on the rejector as the classifier gets
weaker.
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Fig. 7. Effect of weak vs. strong classifiers in classification with rejection.
SegSALSA-JCR and SegSALSA-SCR approaches with increasing training
size. Stronger classifiers (larger training sets) achieve peak classification
quality with smaller values of rejected fraction than weak classifiers (smaller
training sets).

B. Pavia University

The Pavia University scene (Fig. 8) was acquired with
the ROSIS sensor in Pavia (Italy). The scene consists of a
610× 340 pixel hyperspectral image with 103 spectral bands
containing 9 not mutually exclusive classes, with the classifi-
cation accuracy and classification quality being measured on
those 9 classes.
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TABLE II
COMPARISON OF CLASSIFICATION PERFORMANCE FOR INDIAN PINE.

OVERALL ACCURACY (WITH NO REJECTION) FOR MULTIPLE CLASSIFIERS
WITH 10% OF PIXELS AS TRAINING SET. COMPARISON WITH SCR AND
JCR FOR 5% AND 10% OF PIXELS AS TRAINING SET FOR DIFFERENT

REJECTED FRACTIONS. COMPARABLE NONREJECTED ACCURACIES FOR
CLASSIFICATION WITH CONTEXT ONLY (MAGENTA), AND FOR

CLASSIFICATION WITH CONTEXT ONLY BASED ON SUPERPIXELS (CYAN).

training nonrej. acc. rej. frac. class. qual
classifier set size A(r) r Q(r)

SVM [28] 10% 79.53% 0.00% 79.53%
SVM-CK [29] 10% 91.51% 0.00% 91.51%
LORSAL-MLL [19] 10% 94.73% 0.00% 94.73%
SRC [30] 10% 94.66% 0.00% 94.66%
MLR-CGK [31] 10% 96.29% 0.00% 96.29%
INTRASC-MK [27] 10% 97.53% 0.00% 97.53%
SC-MK [27] 10% 98.06% 0.00% 98.06%

LORSAL [19] 5% 72.72% 0.00% 72.72%
LORSAL-SegSALSA [25] 5% 86.01% 0.00% 86.01%

LORSAL-SegSALSA-SCR 5%

88.97% 5.00% 88.03%
91.36% 10.00% 88.44%
93.63% 15.00% 88.15%
95.16% 20.00% 86.24%

LORSAL-SegSALSA-JCR-U 5%

89.52% 5.03% 88.93%
92.06% 10.05% 89.53%
93.74% 15.00% 88.23%
95.16% 19.92% 86.19%

LORSAL-SegSALSA-JCR-E 5%

89.43% 5.01% 88.78%
91.35% 10.04% 88, 25%
92.73% 14.99% 86.53%
93.87% 20.02% 84.01%

LORSAL [19] 10% 78.57% 0.00% 78.57%
LORSAL-SegSALSA [25] 10% 92.26% 0.00% 92.26%

LORSAL-SegSALSA-SCR 10%

94.72% 5.00% 92.70%
96.38% 10.00% 91.22%
97.64% 15.00% 88.71%
98.66% 20.00% 85.59%

LORSAL-SegSALSA-JCR-U 10%

95.55% 5.03% 94.02%
96.61% 10.00% 91.39%
97.52% 15.02% 88.27%
98.63% 20.05% 85.27%

LORSAL-SegSALSA-JCR-E 10%

94.38% 5.02% 91.81%
95.60% 10.00% 89.58%
96.21% 15.00% 86.07%
97.19% 20.04% 82.97%

The classification maps in Fig. 8, show an easier problem
for the LORSAL and LORSAL-SegSALSA, with higher clas-
sification performances with context only (seen in Table III)
when compared to the Indian Pine scene. The rejector will
have a harder task to improve the performance, leading to
maximum classification qualities with smaller respective re-
jected fractions, i.e. a larger proportion of correct decisions is
achieved by rejecting less.

We start from an accuracy of 70.13% with the MAP
classification (with the training set composed of 10 pixels
randomly selected per class, roughly 0.2% of the entire labeled
data set) in Fig. 8 (b), and by computing the context alone with
SegSALSA achieve an accuracy of 80.67% in Fig. 8 (c).

In Fig. 8 (d)-(f), we show the classification maps that corre-
spond to the maximum classification quality. This means that
starting from the 80.67% accuracy of LORSAL-SegSALSA,
we reject such that the number of correct decisions is maxi-
mized. For LORSAL-SegSALSA-JCR-U, we achieve a non-
rejected accuracy of 82.25% at a rejected fraction of 3.12%
leading to a classification quality of 81.81%. For LORSAL-
SegSALSA-JCR-E, we achieve a nonrejected accuracy of
86.45% at a rejected fraction of 12.75% leading to a classifi-
cation quality of 82.93%. This means that by not classifying
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(a) ground truth (b) MAP LORSAL (c) LORSAL-SegSALSA

(d) LORSAL- (e) LORSAL- (f) LORSAL-
SegSALSA-JCR-U SegSALSA-JCR-E SegSALSA-SCR

Fig. 8. Classification results for Pavia University (rejection in black). Ground
truth (a), MAP classification using LORSAL (b), and classification with
context - LORSAL-SegSALSA (c). Classification with context and rejection
with maximum classification quality for LORSAL-SegSALSA-JCR-U (d),
LORSAL-SegSALSA-JCR-E (e), and LORSAL-SegSALSA-SCR. Overall
and class-wise nonrejected accuracy, rejected fraction and classification qual-
ity in Table III.

the entire image, we depart from an accuracy of 80.67% on
the entire image to an accuracy of 86.45% on 86.25% of the
image, with 82.93% of the pixels either correctly classified
and not rejected, or incorrectly classified and rejected. For
LORSAL-SegSALSA-SCR, we achieve 84.54% nonrejected
accuracy at a rejected fraction of 9.16% and a classification
quality of 82.08%.

The classwise classification performances are shown in
Table III. Taking the example of the LORSAL-SegSALSA-
JCR-E results, only the classification performance of the
meadows class is increased, with the performance of the
other classes decreasing slightly. However, the abundance of
the meadows class compensates the results, with a resulting
increase in overall classifier performance. There is no decrease
on nonrejected accuracies, in LORSAL-SegSALSA-JCR-E a
large portion of correctly classified samples are being rejected
across all the classes with exception of the meadows class.

In Fig. 9, we illustrate the variation of the performance
measures for classification with rejection as a function of
the rejected fraction. The peak in classification quality is
achieved for values of rejected fraction smaller than the
ones in the Indian Pine case. This is a result of an easier
classification problem: the high performances achieved by the
classifier leads to a low impact of the rejector. As most of
the data is correctly classified, it is harder for the rejector to
correctly reject pixels. This means that the rejected fraction
that optimizes the classification quality, the number of correct
decisions made, is much smaller than in the Indian Pine case.
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TABLE III
PERFORMANCE OF CLASSIFICATION WITH REJECTION FOR PAVIA UNIVERSITY. OVERALL AND CLASS-WISE NONREJECTED ACCURACY, REJECTED

FRACTION AND CLASSIFICATION QUALITY CORRESPONDING TO MAXIMUM OVERALL CLASSIFICATION QUALITY. INCREASE IN PERFORMANCE (GREEN)
ANDDECREASE IN PERFORMANCE (RED). BEST CLASSWISE CLASSIFICATION PERFORMANCE IN BOLD TYPESET.

no rejection LORSAL-SegSALSA-JCR-U LORSAL-SegSALSA-JCR-E LORSAL-SegSALSA-SCR

class number initial nonrej. rejected class. nonrej. rejected class. nonrej. rejected class.
pixels accuracy accuracy fraction quality accuracy fraction quality accuracy fraction quality

asphalt 6631 96.80% 97.94% 4.13% 95.11% 97.50% 9.03% 89.61% 98.19% 8.11% 91.77%
meadows 18649 65.88% 67.15% 1.86% 67.79% 74.63% 17.32% 74.85% 70.47% 10.11% 70.92%
gravel 2099 71.56% 74.57% 8.00% 73.65% 77.15% 20.77% 71.46% 76.35% 15.01% 73.23%
trees 3064 88.41% 90.66% 4.28% 89.43% 90.27% 5.42% 87.76% 91.76% 9.73% 86.98%
metal sheets 1345 100.00% 100.00% 0.00% 100.00% 100.00% 0.00% 100.00% 100.00% 0.00% 100.00%
bare soil 5029 92.19% 94.60% 2.03% 95.21% 96.08% 10.10% 90.67% 95.72% 7.62% 92.28%
bitumen 1330 95.11% 95.78% 0.30% 96.17% 95.11% 0.23% 94.89% 96.89% 3.16% 95.71%
bricks 3682 92.40% 96.24% 8.31% 92.40% 97.20% 13.82% 88.95% 97.71% 12.33% 91.25%
shadows 947 99.89% 99.89% 0.21% 99.68% 99.89% 0.11% 99.79% 99.89% 0.21% 99.68%

all 42776 80.67% 82.25% 3.12% 81.81% 86.45% 12.75% 82.93% 84.54% 9.16% 82.08%
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Fig. 9. Performance for classification with rejection of the Pavia University
scene. Classification with rejection by LORSAL-SegSALSA-SCR (black), and
LORSAL-SegSALSA-JCR-U (red) and LORSAL-SegSALSA-JCR-E (blue)
cost.

C. Approximation effects

Whereas the JCR approaches, with LORSAL-SegSALSA-
JCR-U in Indian Pine and LORSAL-SegSALSA-JCR-E in
Pavia University, achieve higher performance than the SCR
approach for smaller training sets (10 pixels per class), they
are computationally more expensive. Firstly, there is not a
clear direct connection between the value of γ and the rejected
fraction, this connection is largely affected by the computation
of the context. Whereas an increase of the value of γ can
lead to larger rejected fractions, it is not possible to predict
how much is rejected by the joint context and rejection. This
is clear in Table II, where we are able to precisely define
a priori the rejected fraction for the LORSAL-SegSALSA-
SCR approaches, but not able to do so for the LORSAL-
SegSALSA-JCR approaches.

Secondly, obtaining the results for joint context and re-
jection requires a parameter sweep on the value of γ. This
implies, for each value of γ, to compute the SegSALSA
algorithm, or any other context computing algorithm, with
K+1 classes. For the SCR approach, the rejection is computed
after the context, allowing us to obtain all possible values of
the rejected fraction in a single computation of the SegSALSA
algorithm,or any other context computing algorithm that pro-
vides a rejection field. However the sequential approach is
subject to the approximation effect described in Fig. 4. This
is clear when we observe in detail the accuracy rejection
curves, both for Indian Pine and Pavia University, in Fig. 10.
For the LORSAL-SegSALSA-JCR-U (in red), there is an
increase of classification accuracy with no rejection happening.
This corresponds to a change on the labeling simply by the
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Fig. 10. Approximation effects of SCR vs. JCR. Detail of nonre-
jected accuracy-rejection curve. Classification with LORSAL-SegSALSA-
SCR (black), and with LORSAL-SegSALSA-JCR-U (red) and LORSAL-
SegSALSA-JCR-E (blue). Increase of accuracy in the joint approaches due
to the introduction of the rejected option.

inclusion of the rejection class, as illustrated in Fig.4. The
effect of the alteration of the labeling by introduction of the
rejection class cannot be captured in any SCR approach, as
the only change on the labeling allowed is for a pixel to be
rejected.

V. CONCLUDING REMARKS

In this paper we introduced classification with rejection in
hyperspectral image classification problem as a way to cope
with classification errors arising from known and unknown
sources. We presented two different approaches for achieving
classification with rejection using context based on joint and
sequential computations of context and rejection. We present
experimental results of the methods for supervised hyperspec-
tral image classification with rejection, with context computed
using the SegSALSA algorithm. By classifying with rejection,
not only we are able to deal with imperfect knowledge in
the training set and with smaller training sets, but also attain
performance gains equivalent to increasing the training set
size.
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for classification systems with rejection,” Preprint, 2015, http://arxiv.
org/abs/1504.02763 [cs.CV].

[26] B. Demir and S. Ertürk, “Hyperspectral image classification using
relevance vector machines,” IEEE Geosci. Remote Sens. Let., vol. 4,
no. 4, pp. 586–590, Oct. 2007.

[27] L. Fang, S. Li, W. Duan, J. Ren, and J. Benediktsson, “Classification
of hyperspectral images by exploiting spectral-spatial information of
superpixel via multiple kernels,” IEEE Trans. Geosci. Remote Sens.,
vol. 53, no. 12, pp. 6663–6674, Dec. 2015.

[28] F. Melgani and L. Bruzzone, “Classification of hyperspectral remote
sensing images with support vector machines,” IEEE Trans. Geosci.
Remote Sens., vol. 42, no. 8, pp. 1778–1790, Aug. 2004.

[29] G. Camps-Valls, L. Gomez-Chova, J. Mu noz Marı́, J. Vila-Francés,
and J. Calpe-Maravilla, “Composite kernels for hyperspectral image
classification,” IEEE Geosci. Remote Sens. Lett., vol. 3, no. 1, pp. 93–
97, Jan. 2006.

[30] Y. Chen, N. Nasrabadi, and T. Tran, “Hyperspectral image classification
using dictionary-based sparse representation,” IEEE Trans. Geosci.
Remote Sens., vol. 49, no. 10, pp. 3973–3985, Oct. 2011.

[31] J. Li, P. Marpu, A. Plaza, J. Bioucas-Dias, and J. Benediktsson, “Gen-
eralized composite kernel framework for hyperspectral image classifica-
tion,” IEEE Trans. Geosci. Remote Sens., vol. 51, no. 9, pp. 4816–4829,
Sept. 2013.



12

Filipe Condessa (S’13) received the BSc. and MSc.
degree from Instituto Superior Técnico (IST), Tech-
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