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Tilings of the Time-Frequency Plane: Construction of
Arbitrary Orthogonal Bases and Fast
Tiling Algorithms

Cormac Herley, Jelena Kovacevié, Member, IEEE, Kannan Ramchandran,
and Martin Vetterli, Senior Member, IEEE

Abstract—We consider expansions which give arbitrary or-
thonormal tilings of the time-frequency plane. These differ
from the short-time Fourier transform, wavelet transform, and
wavelet packets tilings in that they change over time. We show
how this can be achieved using time-varying orthogonal tree
structures, which preserve orthogonality, even across transi-
tions. The method is based on the construction of boundary and
transition filters; these allow us to construct essentially arbi-
trary tilings. Time-varying modulated lapped transforms are a
special case, where both boundary and overlapping solutions
are possible with filters obtained by modulation. We present a
double-tree algorithm which for a given signal decides on the
best binary segmentation in both time and frequency. That is,
it is a joint optimization of time and frequency splitting. The
algorithm is optimal for additive cost functions (e.g., rate-dis-
tortion), and results in time-varying best bases, the main ap-
plication of which is for compression of nonstationary signals.
Experiments on test signals are presented.

I. INTRODUCTION

ECENTLY, there has been a renewal of interest in
linear expansions of signals, particularly using wave-

lets and some of their generalizations [1]-[3]. It is well
known that the short-time Fourier transform (STFT), or
Gabor transform, and the more recent wavelet transform
(WT), are just two of many possible tilings of the time-
frequency plane. These are illustrated in Fig. 1(a) and (b).
We use the term time~frequency tile of a particular ba-
sis function to designate the region in the plane which
contains most of that function’s energy. The tiling also
shows the sampling in time and frequency, since it indi-
cates where basis functions are localized in time and fre-
quency. The rectangular representation for a tile is purely
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Fig. 1. Tilings of the time-frequency plane. (a) Short-time Fourier trans-
form tiling. (b) Wavelet tiling. (¢) Wavelet packet tiling. (d) Generalized
tiling which adapts in time as well as in frequency. From (0, T)) the tiling
is as in (a) and is denoted by the solid black line one the left. From (T,
T,), the tiling is as in (c) and is denoted by the gray line, while from (T3,
T,). the tiling is as in (b) and is denoted by the dashed line on the left.

symbolic, since no function can have compact support in
both time and frequency. Fig. 2 shows, for a Gaussian
window w(f), the product T(t, ) = |w(®|* * |W(w)]*,
where W(w) is the Fourier transform of w(?) W(w) =
fw(t)e 72™' dr). As can be seen, the shape of T(t, w) is
not rectangular, but it is clear where most of the energy
is actually localized.

For a function x(f), we can define its time spread (as-
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Fig. 2. An elementary tile corresponding to a Gaussian window.

suming that x(z) has unit norm, that is, { |x(1)|* dt = 1) as
A = S x(@)|? dr. (1)

Similarly, its frequency spread, or bandwidth, can be de-
fined as

A, = S_ W X(w)|? des (2)

where X(w) is the Fourier transform of x(#). Then, the
well-known uncertainty principle [4], imposes the follow-
ing lower bound on the product of time and frequency
spreads:

Al - AL = . 3)

That is, one cannot have arbitrarily fine time and fre-
quency resolutions, but can trade one for the other. In
other words, the area of a time-frequency tile is roughly
constant.

Consider, for example, Fig. 1(a) and (b) where two
specific tilings are given, namely the short-time Fourier
and the wavelet tilings. Note how in the former case, all
tiles are of the same shape and size (i.e., time and fre-
quency resolutions are constant), while in the latter case,
the tiles are of different shapes (but of constant area) and
trade frequency resolution for time resolution and vice
versa.

One elegant generalization that contains, at least con-
ceptually, Gabor and wavelet transforms as special cases,
is the idea of wavelet packets (WP) [S]-[7], or arbitrary
subband coding trees. An example of a wavelet packet
tiling is given in Fig. 1(c). The main characteristic of the
wavelet packet tiling is that it produces an arbitrary fre-
quency split, which can be adapted to the signal. While
wavelet packets create arbitrary binary slicing of frequen-
cies (with associated time resolution), they do not change
over time. Often a signal is first arbitrarily segmented,
and then, the wavelet packet decomposition is performed
on each segment in an independent manner. An obvious
question is whether we can find a wavelet packet decom-
position that changes over time, that is, an arbitrary tiling
of the time-frequency plane. An example of such a gen-
eralized tiling is shown in Fig. 1(d). We use the term “‘ar-
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Fig. 3. Tilings from expansions using different bases. (a) Expansion using
the unit sample functions as basis functions. (b) Expansion using the dis-
crete Fourier transform as the basis. (¢) Expansion using a discrete wavelet
transform. (d) Expansion derived from time-varying filter banks.
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bitrary’’ somewhat freely, since the tiling is restricted to
those produced by binary tree structures (possibly other
trees if multiband filter banks are used).

The advantage of considering time-varying structures
is illustrated in Fig. 3; here the signal consists of just 64
points, and so is sufficiently simple that we can display
the energy contributed by the coefficient of each individ-
ual basis function. The signal consists of a high-frequency
sinusoid and a spike, and is expanded using four different
bases. In Fig. 3(a) the basis functions are the unit sample
sequences, so only time-domain information is displayed:
the spike is clearly seen, but the sinusoid is less obvious.
In Fig. 3(b) we have used the discrete Fourier transform;
as one might expect the frequency of the sinusoid is very
evident, but the spike is not apparent. Fig. 3(c) shows the
expansion using a discrete wavelet transform, which here
has done quite badly, since it has very poor frequency
resolution at high frequencies. Finally, Fig. 3(d) shows
that a parsimonious representation of this signal is possi-
ble using a time-varying basis. Bases of this kind are con-
structed in Section III.

It is important to note that wavelet packet expansions,
and the time-varying bases we will consider, are usually
signal dependent. That is, given a signal, an algorithm
finds the best set of basis functions for the expansion of
this particular signal (out of a library of possible bases).
This is similar to the Karhunen-Loéve transform, which
is a signal-dependent linear transform.

In this paper, we develop a generalized wavelet packet
decomposition, in the sense that the signal segmentation
and the wavelet packet decomposition in each segment are
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found jointly. We call this an adaptive wavelet packet de-
composition. Just as in regular wavelet packets, an or-
thonormal decomposition is performed, that is, for a given
signal x, we want to find a complete set of basis functions
such that we can write x as

X = § (x, d0) bx @)

where (-, ) denotes the inner product, and the set of ba-
sis functions is orthonormal

(D, &) = &y &)

The aim of this paper is twofold. First, we would like to
construct more general orthonormal sets of basis func-
tions than the ones in the current literature (short-time
Fourier transform, wavelet transform, wavelet packet
transform). For example, in an adaptive wavelet packet
scheme, we want basis functions which have overlaps be-
tween adjacent, but different, wavelet packet decompo-
sitions in order to avoid discontinuities at the boundaries.
Such time-varying bases, which retain orthogonality as
well, will be constructed.

Second, given an input signal, we want to find the
“‘best’” set of basis functions for that particular signal. A
key question is what criterion should be used. Since we
have orthogonal basis functions and a possible application
is compression, we choose a rate-distortion framework,
although any additive cost criterion can be used. Rate-
distortion criterion is a typical example where one can
trade one cost for the other. One-sided criteria (such as
distortion only or entropy only [5]), are a particular case
of the more general, two-sided additive criterion frame-
work used here. For a rate-distortion approach to wavelet
packets, see [7]. Since the number of bases is extremely
large, the design of efficient algorithms to search for the
best bases is an important problem, and will be addressed
in the paper as well.

We will start by constructing discrete-time bases, which
can be used for compression applications. Then, we ex-
plore the relationship between these discrete-time con-
structions and continuous-time ones, along the lines of
wavelet constructions based on filter banks [1]. These lead
to ‘‘arbitrary’’ continuous-time tilings, which are mostly
of theoretical interest.

The relation of the results presented here with previous
work is as follows: our work is an extension of wavelet
packets [5], [6] and their construction in a rate-distortion
sense [7]. Some preliminary results were given in [8]. For
deriving our discrete-time results, we take a filter bank
point of view [9]-[11]. Time-varying filter banks were
constructed in [12] using a numerical optimization pro-
cedure but neither orthogonality nor algorithms to find the
best basis were addressed. A development of continuous-
time bases from discrete-time ones follows the work of
Daubechies [1]. The particular case of boundary filters
leads to wavelet constructions on the interval, a problem
solved also in [13] using a different method. Finally, time-
varying modulated lapped transforms (MLT’s) have been
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considered briefly in [6]. The application of the double-
tree algorithm to image compression, has shown promis-
ing results [14].

The outline of the paper is as follows: In Section II, we
start by discussing signal expansions in the three-dimen-
sional space of (time, frequency, scale). Recall, that the
short-time Fourier transform and the wavelet transforms
are expansions in (time, frequency) and (time, scale), re-
spectively. Next, we construct adaptive wavelet packets,
that is, time-varying forms of arbitrary subband coding
trees. Two approaches are shown. The first, relies on
boundary filters, and amounts to segmenting the signal
without overlaps between adjacent wavelet packet decom-
positions. The second, and more general construction,
leads to decompositions which change in time while
avoiding abrupt transitions by using overlaps, either be-
tween different filters or different filter bank topologies.
In Section IV, we investigate a special case of the general
constructions from Section III, namely, time-varying
modulated lapped transforms, and we present both bound-
ary and overlapping solutions, where all the filters in-
volved are obtained by modulation. In Section V, we de-
scribe algorithms to find best bases in a rate-distortion
sense. After reviewing the algorithm for wavelet packets
[7] which can be used for time-varying modulated lapped
transforms as well, we develop the double-tree algorithm
which we employ to jointly find the best segmentation of
the signal together with the best wavelet packet expansion
for every segment. Section VI presents experimental re-
sults both on synthetic and real signals. Improvements
over nonadaptive wavelet packets are shown.

II. SioNaL ExpansioNs OverR TIME, FREQUENCY, AND
ScALE

Given a basis function, denote by /, the time interval
which contains 90% of the function’s energy. Similarly,
call I, the frequency interval containing 90% of the en-
ergy of the Fourier transform of the basis function. Then,
when choosing a basis function for a signal expansion,
there are three essential parameters:

e its time location, given by 7, which corresponds to
the center of the time interval /,;

e its frequency location, given by w, corresponding to
the center of the frequency interval /,; and

e its scale, given by s, corresponding to the size of the
basis function, or length of the interval /,.

The scale is related to the time and frequency resolu-
tions of the basis function, since the larger the scale, or
size, of the basis function, the better its frequency local-
ization (and inversely, the poorer its time localization).
Thus, at least conceptually, one can think of analyzing a
signal with what we could call a three-indexed transform,
as shown in Fig. 4, where the expansion space (7, w, §)
is shown. For a constant scale sy, we obviously have a
short-time Fourier transform, which is indicated by the
vertical plane in Fig. 4. Along the curve s * @ = a, the
basis functions are scaled versions of each other (within
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Fig. 4. Three-indexed transform. The expansion space is (7, w. $).

a scalar factor and a time shift). Thus, for various «;’s,
we have different wavelet transforms on the surface ob-
tained by translating in time the curve s - w = «; (where
«; 1s proportional to the number of periods of the modu-
lation function present in the wavelet). One such wavelet
family is indicated by the surface obtained from a hyper-
bole and its translation along the 7 axis in Fig. 4.

While the three-indexed transform is useful as a con-
ceptual framework to think about frequency and scale, it
is not practical. Instead, we will turn to the discrete-time
case and to filter banks, where the question of orthonor-
mal bases is easy to study since it is more constrained.
First, the sampling density question is easily solved. Each
time the spectrum is divided into N equal pieces, the sam-
pling is reduced by N as well.

Consider the time-frequency tiling obtained by a wave-
let packet decomposition over a time interval, as shown
in Fig. 5(a). It is clear that the slicing of the frequency
axis does not change over time. Consider now Fig. 5(b),
which is conceptually a dual to Fig. 5(a), since now time
is sliced up, and this slicing does not change over fre-
quency. What system produces such a dual time-fre-
quency tiling? A uniform filter bank, where the number
of channels changes over time. This can be achieved with
time-varying modulated lapped transforms which are dis-
cussed in Section IV. Mixing the two special cases shown
in Fig. 5(a) and (b) will produce more general, arbitrary
tilings, and this is the topic of the constructions in Section
III, which we call adaptive wavelet packets. Note, that
since the wavelet tiling is the special case of the wavelet
packet tiling, its dual can be obtained as a special case of
time-varying modulated lapped transforms, as shown in
Fig. 5(c) and (d).
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Fig. 5. Wavelet packets have their dual in time-varying modulated lapped
transforms. (a) Wavelet packet tiling. (b) The dual time-varying MLT til-
ing. (¢) Wavelet transform tiling. (d) The dual time-varying MLT tiling.

Due to the relative ease of constructing these discrete-
time bases, it is desirable to use them to derive continu-
ous-time counterparts. The well-known construction of
wavelets from octave band filter banks indicates that there
are continuous-time orthogonal bases in the (time, fre-
quency, scale) space (namely on the (s * @ = «, 7) sur-
face in Fig. 4). Wavelet packets give other possible or-
thogonal bases, and we will show that adaptive wavelet
packets can be used as well to construct fairly general
orthogonal bases in the (time, frequency, scale) space.

ITII. ARBITRARY TREES Basep oN Two-CHANNEL
FILTER BANKS

Having set the goals that we wish to achieve, we now
give our attention to two-channel filter banks and examine
how to change between orthogonal trees based on such
structures. The ability to change trees and filters will al-
low the construction of time-varying bases. This leads to
general tilings of the type shown in Figs. 1(d) and 3(d).
In this section, we indicate the various constructions and
give examples involving small filters. For greater detail
on the constructions, we refer the interested reader to [15],
[16].

One convenient way to look at multirate filter banks is
in terms of the time-domain operator notation. Here the
action of the analysis filter pair Hy(z) and H,(z) on the
infinite signal column vectorx = [ - - x(—1), x(0), x(1),
x(2), -+ - 17, as depicted in Fig. 6(a), can be expressed as
y=T-xwherey = [+ y(0), »(0), yo(1), yi(D), - - - 1"
and T is the doubly-infinite block Toeplitz matrix [11],
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Fig. 6. Splitting of the input signal x using orthogonal two-channel filter
banks. (a) Single division. (b) Iterated division.

[17], [18]

hQ2) -
ho(0) - - -
m@©@ - - -

© ho(0) ho(1)

© @) (D)
0 0
0 0

L

The rows of T are made up of the impulse responses, with
even shifts, of the filters hq(n) and h,(n); it is readily ver-
ified that if these are filters from an orthogonal filter set
then

« h

- h
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(b)
© hy(N — 1) 0 0
(N =1 0 0
< hoN — 3) ho(N —2) ho(N—1) - -~ (6)
I(N - 3) hI(N - 2) hl(N - ]) e

Relax the first of these assumptions. Consider the fol-
lowing simple example: suppose we wish to split a signal
x using length-4 orthogonal analysis filters Hy(z) and
H,\(z), but only in the time interval 0 < n < n,. Since we
wish to retain orthogonality, the truncated matrix must be

T = T'T = square; so consider the following truncation:
Cho()  ho@ k) 00 0 ]
ho(2)  —ho(l)  he(0) 0 0 0
0 ho(0)  ho(D) ho(2)  ho(3) 0
0 —ho(3)  ho(2)  —ho(1) ho(0) 0
M = (7
0 ho(0)  ho(1)  ho(2)  ho(3)
0 —ho(3) ho(2)  —ho(1)  ho(0) 0
0 0 0 ho(0)  ho(1)  ho(2)
L0 0 0 —ho(3) ho(2) —ho(l) ]

where filter coefficients are assumed to be real. Further,
in order to have an orthogonal FIR filter set, Hy(z) must
be of even length [17], and H,(z) = 22X~ 'Hy(—z""); we
shall assume this form from now on, and take k = N/2
without loss of generality.

A. Boundary Filters

The assumptions of stationary filter bank analysis are
that we are operating over an infinite signal (the matrix in
(6) is infinite), and that the filters do not change over time
(T is block Toeplitz, so all blocks are the same).

We have made use of the identity H (z) = VT Hyz™Y)
in writing the coefficients of H,(z). For convenience label
the rows of this matrix as My, M,, - - + , M,,. An impor-
tant point is that this matrix is still of full rank; that is,
the rows containing the truncated filters (My, M;, M, —,
and M,) are linearly independent of each other, and of
the other rows (M;, 2 < i < n; — 2) as well. To see
this examine, for example, M, and M,; these are clearly
orthogonal to M; for i = 2 since the truncation has not
affected this orthogonality (there is no overlap); thus the
truncated filters are linearly independent of the others. To
show that M, and M, are linearly independent of each
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other, suppose that they are not, i.e., aM, = M, for some
o € R. Thus,

a(hy(1), ho(2), ho(3)) = (ho(2), —ho(1), ho(0)).

This implies ahy(l) = ho(2) and ahy(2) = —he(1); the
only solution is @« = =+ j which is clearly inadmissible,
since we require both filters to be real. The truncated ma-
trix, of course, is no longer unitary, since M, and M, are
not orthogonal. Since we have a full set of linearly inde-
pendent vectors, however, we can restore orthogonality
using the Gram-Schmidt procedure. Obviously,

(M, M)y =0, ie{0, 1},

je{273a..'nlilsnl} (8)

this is inherited from the matrix (6). To orthogonalize the
left boundary, start by normalizing the first vector My =
M,/ ||Myl, and then

ni

M = M, — (M,, M{) My — ,-;3 (M, MyM;, (9

= M, — (M, M) M}, (10)

The simplification is a consequence of (8). Finally, set
M; = M} /|M:|. Note that since M, and M} each have
only three nonzero entries, so does M{ from (10). The
same procedure is applied to the other boundary vectors
M,, _, and M,,. A new matrix M"” which has rows

{Mg, M, My, My, ~ -+ M, o, My, M} (1)

is then obviously unitary. What is important to note is that
M" has exactly the same zero entries as M; i.e., the or-
thogonal boundary filters have the same support as the
truncated filters.

One might imagine that this is a peculiarity of the case
involving length-4 filters, but we can use exactly the same
arguments for the length-6 case, taking a truncation where
the top left corner is

[ h2) ho3)  ho@)  hy(5)
—ho(3) he(@) —ho(1) he(0)
ho0) ho(1)  ho(2) ho(3)

M= | —hyS) h@ —ho3) ho(2)
0 0 ho(0)  ho(1)
0 0 —ho(5)  ho(4)

Taking the same labeling convention as before, M, and
M, are clearly orthogonal to all the other rows, and are
linearly independent of them, and each other. Hence,
again applying the Gram-Schmidt procedure produces a
unitary matrix with the same zero entries as the truncated
matrix.

Obviously, the orthogonalization given by Gram-
Schmidt is not unique. If we choose a different set of lin-
early independent vectors as the input to the orthogonal-
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ization, we get a different set of orthogonal boundary vec-
tors out. To explore the whole space of possible solutions

{My, M}} and {M,, _, My} we can premultiply M by the
matrix
u o0 o
o I, , O 13)
0 0 U

where U, and U, are 2 X 2 unitary matrices (rotations).
Note that the particular form of the truncation was care-
fully chosen in the above two examples to preserve the
rank of the truncated matrix. For longer filters there will
be more than two boundary vectors, and proving that one
can always choose a truncation which retains full rank
becomes nontrivial. Nonetheless, for any FIR orthogonal
filter bank, the orthogonal boundary filters always remain
localized in the region of the boundary. We state this for-
mally as follows.

Proposition 3.1 [16]: To apply a two-channel orthog-
onal filter bank, with length-N filters, to a finite length
signal, requires a set of (N — 2)/2 + d) vectors at each
boundary, each of which has only (N — 2 + d) nonzero
values, for any d = 0.

Since it is somewhat lengthy, the proof is given in [16].
Here, we are mostly interested in applications of the re-
sult, and thus, we merely communicate the main idea be-
hind it. Note that boundary conditions have been studied
before, for example, in [19]. However, here we are in-
terested in solutions where the boundary filters are them-
selves orthogonal, and our method is constructive and
complete.

Recall, once more, that N, the filter length, is always
even. In the case where N = 4k we choose d = 0, and
when N = 4k — 2 we choose d = 1; this gives an even
number of boundary filters in each case. Let us consider
the N = 4k — 2 case and assume that we want to apply

0 0

0 0

ho(4)  ho(5)
—ho(1)  ho(0)

ho(2) ho(3)  ho(4)  ho(S)
—ho(3) ho(2) —ho(1) ho(0)

(12)

the filter bank to a signal of length L, where L is even.
First define

2=100 G 0]

where G is the 2k X N + 2(k — 1) matrix containing the
shifted filter impulse responses of the filters hg(r) and
hy(n), and 0, is a 2k X 1 column vector of zeros. It is
easily shown that P = (I — 07Q) is the orthogonal pro-
jection onto the space orthogonal to the row space of 0.

(14)
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Hence, any row output from the Gram-Schmidt proce-
dure must have the form

el =U-Q'Q e

for some e;. The critical observation is that (I — QTQ) has

the following form
I - U, 0

a-979 =

L 0 I-1L,
where the blocks U, and L are of dimension (N — 2 +
d) X (N — 2 + d) each.

Thus, a vector e; input to the orthogonalization proce-
dure will always produce an output that has nonzero en-
tries only in the first and/or last N — 1 positions. When
the signal length L is large enough (roughly twice the fil-
ter length) the two nonzero portions of the Gram-Schmidt
outputs e/ are nonoverlapping. In this case, we can choose
half of the inputs to the procedure to have zeros in the last
N — 1 positions. Then, the corresponding outputs will
have nonzero values only in the first N — 1 positions.

Similarly, the second half of the Gram-Schmidt inputs
can be chosen such that the outputs have nonzero values
only in the last N — 1 positions. The N = 4 case con-
structed first was of this form, so that there were two fil-
ters each with three nonzero values at each boundary. An
example of such a set of boundary filters for the length-4
Daubechies filters is given in Table 1. The boundary filters
hy(n), hi(n), hg(n), and hi(n) contain the three nonzero
coefficients of My, M{, M, _, and M}, respectively. So-

ho(0) ho(1)  ho(2) ho(3) O 0
—ho(3) ho(2) —he(1) he(0) O 0
0 0 L0 (1) (2) 0
0 0 LO)y L) L®2) 0
0 0 0 0 0 L(3)
0 0 0 0 0 ;5(3)
0 0 0 0 0 20(0)
0 0 0 0 0 —gu5)
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TABLE I
COEFFICIENTS OF THE BOUNDARY FILTERS IN THE NORMALIZED VERSION OF
(7), WHERE hg(n) 1s THE LENGTH-4 DAUBECHIES FILTER
1 | ho(n) hy(n) hy(n) hi(n)
0 | 0.9390708015 | -0.3437237693 | 0.4034491106. | 0.2953452472
1
2

0.2976735161 | 0.8132591701 | 0.6987943579 | 0.5115529740
-0.1718618846 | -0.4695354007 | 0.5906904945 | -0.8068982213

lutions which have nonzero values at both boundaries cor-
respond to the circulant solutions and variations.

B. Transitions Between Filter Banks with the Same
Number of Channels

We can use boundary filters to make a nonoverlapping
orthogonal transition between one filter set and another,
or between two filter trees. For example, suppose we
wished to change from the length-4 filter set {hy(n), k,(n)}
to length-6 filter set { go(n), g,(n)} at some time ny. We
could let T, be the half-infinite block Toeplitz matrix con-
taining the impulse responses of the filters {hy(n), h;(n)}
in the region (— oo, ng), and T, be the half-infinite block
Toeplitz matrix containing the impulse responses of
{go(n), gi(m} in the region (n, + 1, ); both matrices
must contain the appropriate boundary filters. In this case
we can use the operator

e {TO 0]
0 T,

which gives the appropriate transition between the filters
at time ny. This transition is of the form

(15)

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0
L@ hL5) L®) 0 0
L&) LGS) L6 0 0
go() 82 8(3) g &i5)
g0 —20(3) 8(2) —go(1) &o(0)

(16)

We noted before that it was possible to explore all pos-
sible boundary filters for the length-4, and length-6 filter
banks by premultiplying by 2 X 2 unitary matrices, as in
(13). If we premultiply (16) by a matrix

I 0 0
0 U 0 an
0 0 I
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where U, is an arbitrary 4 X 4 unitary matrix, we get that
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the resulting matrix is still unitary. In general, however,

all of the vectors will have support on both sides of the boundary

ho(0) ho(1)  ho(2) ho(3) O 0
=ho(3) ho(2) —he(1) he(0) O 0
0 0 L0 () Q) lh(3)
0 0 Loy () L)  LG3)
0 0 LO) L) L2) LOB)
0 0 L) L) L(2) 5(3)
0 0 0 0 0 g0
0 0 0 0 0 —g)

We refer to the /;(n) as transition filters. Note that the
boundary filter solution is contained as a special case:
lo(n), li(n) = 0 forn = 3, 4,5, 6, and I,(n), I1(n) =0
forn = 0, 1, 2. This clearly gives a nonoverlapping tran-
sition as in (15). An example of an overlapping solution
is given in Table II.

C. Growing and Pruning the Tree

A main application is where we wish to change the
structure of the tree over time; for example, if we wish to
add a stage in going from the structure of Fig. 6(a) to that
of (b) at some time n,. To achieve this we would leave
the output y;(n) alone, and process yy(n) with a further
two-channel division, beginning at n,. In operator nota-
tion the operation on y, could be written

r {I, 0}
1" Yo = 0T Yo

where I, is a half-infinite identity matrix extending infi-
nitely to the left and T, is a half-infinite matrix containing
a set of boundary filters on the left, and then the filter
impulse responses extending infinitely to the right. Then
the overall operation can be expressed

T 0 YO:| {Tx 0}
T, - = . = P 19
: [0 1} L o ) T
T, 0
= -P-T-x (20)
0 I

ko) hy(1) ho(2) O
0 ho(O) ho(1) ho(2)
H() =

0 0 0 hy0)

0 0 0 0 0
0 0 0 0 0
lp(4) L(5)  1(6) 0 0
L@ LG6) L6 0 0
L4  LG) L6) 0 0 (18)
L&)  LG) L6) 0 0
g 8@ g0B)  g@) g5
8@ —8(3) 22 —g(1) g(0)

where P is the orthogonal permutation matrix that reor-
ders the elements of y

P-y=1["" 30,y 2, "+, »(0), yi(1),
»n@, 1"
=[y; ¥

and T is as in (6). Clearly T, is also orthogonal, and is
again doubly infinite. Any binary tree based on orthogo-
nal two-channel filter banks can thus be written as a cas-
cade of such matrices.

D. Continuous-Time Bases from Discrete-Time Ones

So far we have considered only the construction of dis-
crete-time orthogonal bases. In [1], [20], it was shown
how discrete-time bases for [2(Z) could be used, under
certain conditions, to generate continuous-time ones for
L*(R); we will now suggest how the novel time-varying
bases presented above may be used to derive continuous-
time ones. This will lead to wavelet bases for interval re-
gions, wavelet bases where the analyzing wavelet varies
with time, and wavelet-like bases where the segmentation
changes with time. Using a different approach wavelet
bases for interval regions have also been investigated by
Cohen, Daubechies, and Vial [13].

Again, we will rely heavily on matrix notation, and we
examine the length-4 case for illustration. Consider the
half-infinite block Toeplitz matrix which contains as rows
the shifted impulse response of hg(n), and has the low-
pass boundary filter in the first row

0 0 0 00
B3 0 0 00

ho(1) ho(2) ho(3) 0 O @
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TABLE II
COEFFICIENTS OF THE TRANSITION FILTERS IN (17), WHERE ho(n) AND go(n)
ARE THE LENGTH-4 AND LENGTH-6 DAUBECHIES FILTERS, RESPECTIVELY

lo(n) li(n) ly(n) l3(n)
4.8341612202e-01 | 1.2770611953e-01 | 0 0
8.3730128454e-01 | 2.2119348747e-01 | 0 0

2.2435420301e-01 | -8.4926579221e-01

4.7788264955¢-01 | -6.4014861015e-03

-1.1503507360e-01 | 4.3545140498e-01

8.2771702907e-01 | -1.1087699171e-02

3.5159731296e-02 | -1.3309292472e-01

-2.4617419606e-01 | 5.1193184389e-01

1.9200602790e-02 | -7.2681567455e-02

-1.4881697564e-01 | -7.9408837886e-01

DWW =IOl 3

-7.9161511473e-03 | 2.9965635968e-02

6.1355244174e-02 | 3.2739199389e-01

Denote by L;(z) the z-transform of the coefficients of the
ith row of H¥

L@ = 2 Hyl, mz™".
Clearly L (z) = Hy@), Ly () = 7 'Hy(2), Ly(x) =

2 *Hy(2). To find the L;(z) we must examine the product
H?. We find

L@ = 27 TP Hy @ Ho2D), i > 1
and, in general
ji-1
L) =<' I HEH > 1. Q)

The function L,;(z) can easily be recognized as the
z-transform of the ‘‘graphical iteration’’ [1] to find the
scaling function ¢(r) of a compactly supported wavelet
scheme [17]. That is, if we define from L;(z) a continu-
ous-time function

O =L n/2) st<@+1)/2 23

it can be shown that fY)(r) converges to the scaling func-
tion ¢(¢f) as i = oo [under some constraints on sg(n)]. Sim-
ilarly, the other rows L;(z), i > 1, can be used to con-
verge to ¢(t — i — 2). For the case of L,;(z) we can define
a continuous-time function in a manner similar to (23). If
this converges as j — oo we call it the left-boundary scal-
ing function. The wavelet ¥(#) and the left-boundary
wavelet function are found by examining the convergence
of the rows of H, - HE. Right boundary functions are
found using the right boundary filters. The left and right
boundary wavelet functions along with ¥,(z) and ¥,(t —
1) are shown in Fig. 7. When we deal with Daubechies’
filters we use the subscript to denote the order of the filters
involved; i.e., ¢,(n) and ¥,(¢) are the scaling function and
wavelet derived from the length-2n Daubechies’ filters.
In a similar way, we can consider iterates of the matrix
containing the transition filters. For example, if Hy is the
doubly infinite matrix containing the even-indexed rows
of T from (18) then the rows of H '5 give the iterates of the
graphical recursion that converges to ¢,(r — n) for rows
n < 0, to ¢5(t — n) for rows n = 3, and to transition
functions for n = 0, 1, 2. This is illustrated in Fig. 8,
which shows the appropriate scaling and transition func-
tions. It should be noted that the number of transition
functions is not necessarily equal to the number of tran-
sition filters. Finding transition functions by considering
iterates of matrices containing the transition filters be-

0 05 1 1.5 é 2?5 3 35 4
Fig. 7. Boundary functions for wavelet basis for the interval [0, 4). Left
and right boundary functions at one scale are shown; these are supported
on [0, 2), and [2, 4), respectively. The wavelets ¥alt), ¥o(t — 1) are also
shown.

25 v T T T T T

2+

L5t i 1
1+

0.5F

0

0.5F Vi 1

2 1 0 1 2 3 4 5 6 7
Fig. 8. Transition functions for the transition between ¢,(r) and @;(1).
There are three orthogonal transition functions shown, which span the null
space, at one scale, between {¢,(t + 1), ,( + 2), -+ - } and {¢5(t — 2),
ot — 3), }

tween different filter bank topologies is investigated in
[16].

The orthogonality properties that we desire of a wavelet
basis (i.e., with respect to shift and scale) still hold for
systems containing boundary and transition filters. As an
illustration observe

HY - (H)' = (Ho - H)' =1
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and
. HE-#HY = H, - HY =0

This ensures that the graphical recursions that converge
to the wavelet and scaling function are orthogonal with
respect to translates at the kth iteration; and this holds
true in the limit as k — oo also.

Equally, the kth iteration to the wavelet is orthogonal
to the (k — 1)st (i.e., its stretched version)

H - Hy - (HY)'™'- Hf = H, - Hy - HY = 0. (24)
In the limit this gives orthogonality across scales. More

complete and formal statements of these arguments can
be found in [15], [16].

E. Discussion

We have shown how to obtain arbitrary decompositions
that can change over time. This can be achieved using
time-varying orthogonal tree structures, which preserve
orthogonality, even across transitions. The method is
based on the construction of both boundary and transition
filters; these allow us to construct essentially arbitrary til-
ings. The time-varying discrete-time bases were shown to
generate time-varying continuous-time ones. A special
case of the constructions presented in this section are the
time-varying modulated lapped transforms given in the
next section. We will show that boundary and overlapping
solutions are possible there as well,

IV. TIME-VARYING MODULATED LAPPED TRANSFORMS

We have mentioned previously that the wavelet packets
and time-varying modulated lapped transforms (MLT’s)
can, at least conceptually, be seen as duals of each other
[see Fig. 5(a) and (b)]. By the same token, the wavelet
tiling, being a special case of the wavelet packet tiling,
has a dual in a particular time-varying modulated lapped
transform tiling [see Fig. 5(c) and (d)].

Our aim in this section is to offer ways of constructing
these dual tilings, by using either boundary or overlap-
ping modulated lapped transforms. By boundary modu-
lated lapped transforms, we denote the time-varying tiling
of the time-frequency plane where the basis functions do
not overlap, while the opposite is true for overlapping
modulated lapped transforms, that is, the basis functions
from adjacent decompositions do overlap. Although the
tilings obtained via time-varying modulated lapped trans-
forms are somewhat restricted as compared to those that
can be obtained using the general theory presented in the
last section (see Fig. 5), they offer the advantage that all
the filters, both at transitions, and within decompositions,
are obtained by modulation. Time-varying lapped trans-
forms are also studied in [24].

A. Modulated Lapped Transforms

By modulated lapped transforms [21], [22], we will de-
note a class of perfect reconstruction filter banks which
uses a single prototype filter, window, w(n) of length 2N
(where N is the number of channels and is even) to con-

IEEE TRANSACTIONS ON SIGNAL PROCESSING. VOL. 41. NO. 12, DECEMBER 1993

struct all of the filters kg, - - -, hy_, as follows:

1 2k + 1
h(n) = ﬁ w(n) - cos < Y 2n — N + 1)7r>

(25)

withk=0,--- N—-1,n=0,---,2N — 1, and

where the prototype low-pass filter w(n) is symmetric

(win) =w@N —1-n),n=N, -+ ,2N — 1) and

satisfies the following [22]:

win) + wWN =1 -n) =2, n=0 -+ ,N—1.
(26)

This last condition, imposed on the window, ensures
that the resulting modulated lapped transform is orthog-
onal. The two symmetric halves of the window are called
“tails.”’

We have seen in the last section, a convenient way of
analyzing filter banks in the time domain, via infinite ma-
trices, such as the one given in (6). For modulated lapped
transforms, the matrix T can be written as

S A, A
A() Al

@n

where blocks A, A, are of sizes N X N, and contain the
impulse responses of the filters. Note that the filter length
is twice the number of channels. For example, the jth row
of A;is [;;(2N — 1 — iN) - - - hy(N — iN)] fori = 0,
1. For an orthogonal, perfect reconstruction solution, the
matrix T has to be unitary, which is equivalent to the fol-
lowing [11]:

AAl + A AT =1, AA =0 AAl = (28)

The second and third conditions in the above are called
the “*orthogonality of tails’” conditions [11].

We want to point out an interesting fact here, that will
be used in later constructions. In the matrix T, denote by
w, the window function corresponding to the block A,.
Take the same block, that is, Ay, and change the window
function to wg. Call this newly obtained block B,. Then

ByBj = A A} 29

that is, the product AyA{ does not depend on the window
(the proof of which is given in the Appendix). The same
is true of the other block A,. An interesting consequence
of the above, is that

ByBj + A\ A] = A)Al + B, B] = AjA] + A AT = I
(30)

or, in other words, any combination of blocks with dif-
ferent window ‘‘tails’’ will be unitary, or, we will have a
nonsymmetric window. Note, however, that this is not
sufficient for a valid orthogonal transform, since the ‘‘or-
thogonality of tails’’ conditions from (28) do not hold,
namely Ag BT # 0 (similarly for B,AT). Nevertheless, the
fact that [A, B,] is unitary despite Ay and B, having dif-
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ferent windows, is going to be very useful in constructing
boundary and overlapping modulated lapped transforms.

B. Boundary Modulated Lapped Transforms

Let us now try to construct a set of boundary filters for
the modulated lapped transforms. From the results in the
last section, we know that we can always do this by ap-
plying the Gram-Schmidt procedure to the appropriately
truncated matrix 7. However, our approach here is dif-
ferent; namely, we want the boundary filters to be ob-
tained by modulation as well. Therefore, consider the fol-
lowing matrix:

[ B, A
Ao A

I

T, (€2))

Ay A
L_ A() B]_
where A; are size-(N X N) blocks as introduced in (27),
and B; are size-(N X N/2) blocks with the associated win-
dow

{ﬁ n=N/2, - ,3N/2 -1,
wg(n) = .
0 otherwise.
For example, the ith row of B, is given by [h;((3/2)N —
1) - - hy(N)], where hj,(n) is as given in (25) with the
window wg(n). Note how the truncation was performed
here as compared to that in (7). In T}, instead of using Aq
at the left boundary, for example, and then truncating it,
we have performed the truncation by using a shorter win-
dow (of length N instead of 2 N). The net result is a square
matrix, for which we only have to check whether it is
unitary. Using (28) and (30), it can be easily checked that
T,T] = I, holds.

Therefore, we have demonstrated how to construct
boundary filters for a given modulated lapped transform,

(32)

A4, A] = ,ov Ag

N2=N/2 N

so as to be able to change decompositions over time. The
transform is still orthogonal, as demonstrated by the fact
that T, T} = I. There are still N boundary filters, of length
3N/2. The way they are obtained is by using a nonsym-
metric window (which was shown to be possible in the
last subsection).

C. Overlapping Modulated Lapped Transforms

Suppose now that we want to be able to switch between
two different modulated lapped transforms, but with fil-
ters (basis functions) that overlap. We will first show how
to change between two same-size modulated lapped trans-
forms but with different windows, and then we will ex-
amine the case of switching between different-size trans-
forms.

1) Same-Size Transforms: Let us now demonstrate
how one can switch between two same-size modulated

Aoy

!

(N2—N1)/2
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lapped transforms with different windows. Consider the
following matrix:

By B,
B, B
B, A,
Ay A
Ay A

L |
Here, blocks [B, B] represent the N-channel modulated
lapped transform with the window wg, while [4, A/]
represent the N-channel transform with the window w. It
is easily checked that the above matrix is unitary, leading
to an orthogonal transform (even across the transition).
Note how the transition [B;, A,] uses a nonsymmetric
window (or half of the window wy and half of the window
w,) to achieve a transition that is still orthogonal.

2) Different-Size Transforms: We will now explain
how to switch between different-size transforms. Note that
a similar result, without details of the construction or the
proof, was mentioned in [6].

Here, we want to show that one can switch from an
N,-channel modulated lapped transform to an N,-channel
modulated lapped transform (where Ny < N, and N; =
2™ N, = 2™) as follows.

a) Since the maximum overlap between the two mod-
ulated lapped transforms is N, one has to adjust the size
of the window of the N,-channel modulated lapped trans-
form accordingly, that is, its length has to be reduced to
N, + N, or the outer (N, — N,)/2 coefficients of each
window tail have to be zero. This means that the N,-chan-
nel transform can be expressed as follows:

(33)

Al]

[N

N

(N2=N)/2 N

(34)

(N2—N1/2

where the blocks Ay and A, have been split into three sub-
blocks each, to account for the fact that some of the coef-
ficients of the window are set to 0. Therefore, the blocks
Ag; and A, are those where the window is constant.

b) Then, construct the N;-channel modulated lapped
transform [A), Ajg] from the N,-channel one as follows:

— ——

' '
AOO 10
1 1
AOO 10
Ap Ao

All AIO

Ay

(35
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(a)

V0% % %% % D G G

(b)

R >T > ><

(©)

S XXRXXX T ><

(d)

(e)

Fig. 9. (a) Switching from a 2-channel to a 4-channel modulated lapped
transform. The thick line denotes the switching point. On top of the tiling,
basis functions with appropriate overlaps are given. (b) Example of switch-
ing from a 2-channel to an 8-channel modulated lapped transform. Win-
dows with appropriate overlaps are given. Direct switching according to
the theorem resulting in only one degree of freedom for designing the win-
dow. (c) Use of a transition (4-channel modulated lapped transform) allow-
ing for longer window in the 8-channel modulated lapped transform. (d)
Use of transition and 4-channel modulated lapped transforms. (e) Avoiding
the transition by using 4-channel modulated lapped transforms. All the
windows are symmetric and have the same tails.

where the blocks Aj and Ajg are of size N, X N, and are
obtained from the blocks Ay and A, by scaling by
VN, /N, and retaining N| rows with the indexes in the
following set:

_ ). 2N 2N,
S—{z Nl,(z+1) N 1},

1

AT
) -
Therefore, if we denote by h;, g the basis functions of
the N, /N,-channel modulated lapped transforms, respec-

tively,
N, N, — N,
= [— h + —
glm) = | N, <n >

forn € [0, N; — 1] and

N 3N, — N,
&(n) = N, hy ('l + >

forne[N,,2N, — 1] and k' € S.

The proof that the above construction indeed leads to
an orthogonal transform with overlapping basis functions,
is given in the Appendix.

As a simple example, refer to Fig. 9(a), where we want

i=0,--- (36)

(37

(38)
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to switch between a 2-channel and a 4-channel modulated
lapped transform. Thus, we first shorten the window of
the 4-channel modulated lapped transform to length 6 as
follows:

0 n € {0, 7},
N2 ne {3, 4},
w(n) = 39)
a n € {1, 6},
2-d nef2,5),
and choose § = {0, 3}. Then one obtains
V2 he(n + 1)  nedo, 1},
= 40
84 {x/i he(n +5)  ne {2 3) @0

with £ = 0, 1 and k" = 0, 3. Fig. 9(b)-(e) shows another
simple example, that is, a switch from a 2-channel to an
8-channel modulated lapped transform. A few possibili-
ties are explored: 1) switch directly ending up with 1 de-
gree of freedom; 2) use a nonsymmetric 4-channel trans-
form to obtain a transition; 3) the same as in 2) except
that the transition is followed by 4-channel transforms for
a while; and 4) avoid a nonsymmetric transform and use
4-channel transforms instead.

D. Discussion

We have shown how to construct bases which can be
seen as duals both of wavelets and wavelet packets. This
was achieved using time-varying modulated lapped trans-
forms, with both overlapping and nonoverlapping basis
functions. The constructions we gave are, however, more
restricted than in the wavelet packets case. In particular,
the filter length (basis functions) is restricted to twice the
number of channels. On the other hand, the advantage of
these time-varying modulated lapped transforms is the ex-
istence of a fast algorithm together with the fact that all
the filters involved are obtained by modulation.

V. FAST ALGORITHMS FOR ARBITRARY
TIME-FREQUENCY TILINGS

We have so far considered the construction of time-
varying bases. An obvious remaining question is how we
may find the ‘*best basis’’ {5] for a given input signal,
i.e., the orthonormal expansion which best matches the
signal’s characteristics. This question has been studied for
wavelet packet bases [5], [7]. However, the ‘‘best basis’’
of [5] gives the ‘‘best’’ (binary) tiling for the unseg-
mented signal. Here, we seek to generalize this to jointly
find the best split in time and in frequency. It must be
noted that the tasks of finding the best signal time split
and the best frequency split for each time segment are not
sequential operations, and are found jointly, using the
double-tree fast algorithm, to be described in Section V-E.

This algorithm, like the ‘‘best basis’’ scheme of [5],
relies on the orthogonality of the decomposition basis sets
for its optimality. This was a major motivation for the
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construction of orthogonal boundary filters in the previous
section. It is important to emphasize that, although we
resort to a rate-distortion measure here, the double-tree
algorithm is valid for any additive cost measure over the
set of sequences (as is the ‘‘best basis’’ method of [5]).
Before we describe the double-tree algorithm we will first
try to motivate the relevance of the R-D cost criterion we
use in this work (as in [7}), and briefly describe the best
basis algorithm using this measure, and show its use in
finding adaptive modulated lapped transform (MLT) de-
compositions.

A. Motivation for the Rate-Distortion Measure

Among the various cost measures that one can pick for
finding adaptive time—frequency decompositions, we pick
rate—distortion. The benefits of this are twofold. Firstly,
since the rate—distortion (R-D) measure is two-sided, it is
more general than one-sided measures like entropy only
(as used in [5]) or distortion only. In fact, these are spe-
cial cases of the more general R-D measure, correspond-
ing to the endpoints of the operational R-D characteristic,
which can be generated in its entirety if a two-sided mea-
sure were employed. Secondly, the R-D measure is the
most sensible for compression applications.

We pick that basis (from the entire wavelet packet fam-
ily of orthonormal bases) which minimizes a combination
of: 1) the number of bits (or rate R) required to represent
the signal; and 2) the distortion (D) representing the
squared error between the original signal and the approx-
imation using R bits. The trade-off between rate and dis-
tortion is given by the R-D function, which represents the
minimum achievable distortion for a maximum target rate
or bit budget, or conversely the minimum rate needed to
achieve a maximum tolerable distortion level. Note that
each combination of a basis and quantization choice rep-
resents a single R-D operating point. Thus the con-
strained optimization problem of seeking the best basis in
an R-D sense involves the search for that basis which
minimizes the average distortion for a target average bit
rate. This ‘‘hard’’ constrained problem is converted to an
‘‘easy’’ equivalent unconstrained problem by ‘‘merging’’
rate and distortion through the minimization of the La-
grangian cost function defined as

J(N) = D + AR. (41)

For example, if R represents the entropy of the signal, and
D the mean-squared-error, then the entropy-only and
mean-squared-error-only cost cost measures of [S5] be-
come special cases of this more general Lagrangian cost
measure corresponding to A = o and A = 0, respectively.
We now summarize the solution to (41), briefly outline
the R-D optimal wavelet packet construction [7], and then
present its generalization to time-varying bases.

B. Rate-Distortion Optimality

We consider a wavelet packet framework with inde-
pendent coding of the nodes of the wavelet packet tree
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and a mean squared error (MSE) distortion metric. Due
to additivity of the rate and distortion measures over tree
nodes, the quantizer search for the nodes can be done in-
dependently using the Lagrangian cost measure of (41).
It can be shown that at R-D optimality, all nodes must
operate at a constant slope point \ on their R-D curves
[23].

The intuition for this result can be seen from the argu-
ment that at optimality, each allocated bit must do an equal
amount of “‘good’’ (in the distortion sense), for otherwise
one could redistribute bits from ‘unprofitable’’ to *‘prof-
itable’’ elements. It is obviously cost-effective to keep
doing this until an optimum is reached, where no element
can spend the next available bit any more profitably than
any other, i.e., until all subsignals have the same slope
(M) on their rate-distortion function. The desired optimal
constant slope value \* is not known a priori and depends
on the particular target budget or quality constraint. For-
tunately, however, A* can be obtained relatively pain-
lessly via a fast convex recursion in A using the bisection
algorithm [7].

C. “‘Best Basis’’ Wavelet Packet: The Single-Tree
Algorithm

We now summarize the best wavelet packet basis search
in a rate-distortion sense, described in [7] as an extension
of the one-sided entropy only or distortion only criterion
used in [5]. The problem is to determine the optimal com-
bination of best basis wavelet packet subtree (from among
the entire basis family for a given wavelet set of filters)
and its best quantizer (from among the admissible set of
quantizers). This problem is solved for arbitrary coding
scenarios (within the constraints of independent coding of
the wavelet packet tree nodes and an additive distortion
measure) with arbitrary quantizers assumed at each node.

As a first step to finding a fast algorithm, the con-
strained R-D problem is transformed to an unconstrained
one using the Lagrange multiplier A. Then, a fast dynamic
programming algorithm is employed to find the best basis/
best quantizer choice for the fixed A. Finally, the optimal
value of N for the given budget is solved. The first step
involves converting all (R, D) points of the full-depth
wavelet packet tree to their associated Lagrangian costs J
= D + AR. The second step involves: 1) populating each
internal wavelet packet tree node with the minimum (over
all quantization choices) Lagrangian cost J(node) =
D(node) + AR(node) to get the best quantizer at each
node; and 2) ‘‘pruning’’ the full-depth tree (using a fast
algorithm based on Bellman’s optimality principle) into
that subtree which has minimum total sum-of-leaves cost,
to get the best basis. The pruning criterion applied at each
node is that of deciding in favor of the parent or its chil-
dren based on which has the lower Lagrangian cost (for
the fixed quality factor A). See Fig. 10. Finally, the ‘‘cor-
rect’’ value of A, A*, which results in the desired convex-
hull operating point for the target bit budget of the origi-
nal constrained problem is found by a fast convex recur-
sion in A.
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Fig. 10. Lagrangian cost pruning criterion for ‘‘quality criterion’* \ for
each parent node of the wavelet packet tree. This condition is used recur-
sively to do fast pruning from the complete tree depth towards the root to
find the optimal subtree for a given \.

The best basis wavelet packet construction summarized
above will be referred to as the single-tree algorithm be-
cause a single tree is pruned into the R-D optimal wavelet
packet basis subtree.

D. Optimal Time-Varying Modulated Lapped
Transforms

We now consider tiling using the time-varying modu-
lated lapped transforms designed in Section IV retaining
the constraint of seeking R-D optimality. We will con-
sider two cases: 1) the special case where the tails of the
prototype window have the same ‘‘slope’’ in the transi-
tion region between the different size trees [see Fig. 9(e)];
and 2) the general case where the tails for the different
size MLT’s have arbitrary slopes [see Fig. 9(d)].

1) See Fig. 9(e) for the case where the tails of the pro-
totype windows of the MLT filter-bank transition region
have the same shape or slope. Fig. 11 shows a family tree
of such orthogonal windows, where the different tree lev-
els correspond to different size MLT’s. Due to the inde-
pendence in the optimal orthonormal decomposition splits
for adjacent signal segments of the MLT tree, it is ob-
vious that this MLT tree is the time-domain dual of the
wavelet packet tree described earlier and can therefore be
pruned optimally using the single-tree algorithm. To be
specific, in Fig. 11, the decision on whether or not to split
node B1 into nodes C1 and C2 is independent of the op-
timal split/merge decision for node B2, due to the con-
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Fig. 11. Variable-size modulated lapped transform tree of adjacent or-
thogonal windows where the slopes of the window tails are constant. The
optimal tree rooted at Bl is obtained independently of the optimal tree rooted
at B2 and the single tree algorithm is therefore optimal here.

stant shape property of the transition tails. The single-tree
algorithm is thus optimal.

2) See Fig. 9(d) for the more general case where ar-
bitrary tail shapes are permitted. Here, changing between
MLT trees becomes a ‘‘dependent’’ problem. Fig. 12
shows an example of changing at time instant T from an
8-channel MLT to both a 16-channel MLT (with a more
‘‘gradual’’ slope to mitigate segmentation discontinuity)
and a ‘‘sharper’’ 4-channel bank. Here, clearly the single-
tree wavelet packet algorithm does not work due to the
loss of independence between signal decompositions be-
fore and after the transition boundary, i.e., one cannot
find an optimal split for the segment to the left of T with-
out knowing the optimal split to its right, and the optimal
algorithm becomes a difficult dependent problem for the
general case. Note, however, that when the transition
boundary between MLT’s is a negligible proportion of the
signal (as is likely for most cases), then the boundary ef-
fect which causes loss of independence (between points
Ty and T, in Fig. 12) becomes negligible. Thus, barring
the small disturbance effect at the transition boundaries,
the single-tree algorithm would be nearly always optimal.

E. Optimal Arbitrary Binary Tiling: The Double-Tree
Algorithm

We now proceed to find the R-D optimal time-varying
binary tiling of the time-frequency plane, obviously de-
sirable from a coding perspective. We emphasize that the
framework in which we seek optimality is dependent on
the coding environment. Thus, the optimal tiling for one
application corresponding to a particular choice of a
wavelet filter set, quantizer set, and compression scheme
need not be optimal for another. We solve the arbitrary
tiling problem by extending the fast wavelet packet sin-
gle-tree algorithm to a double-tree algorithm. This finds
the optimal binary segmentation of the input signal, and
the optimal wavelet packet tree to use over each segment.
The time split and the frequency split are found jointly,
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8 channel MLT 16 channel MLT

8 channel MLT 4 channel MLT

T, T T,

Fig. 12. Transition between different size MLT-trees where the tails of the ‘

transition windows do not have the same shape. The split to the left of
transition time 7 is no longer independent of the split to its right, as the
MLT size (4 or 16 channel) to the right of T affects the split to its left (8
channel). However, barring a small disturbance effect between times T,
and T, the single tree algorithm is nearly optimal.

so this is not a sequential optimization. Within the con-
straints of the tree structure imposed by the chosen set of
wavelet filters and their associated boundary filters de-
signed in Section III, this gives us, for a given signal and
set of quantizers, the optimal tiling of the time-frequency
plane in the R-D sense.

Although we summarize the flowchart of the double-
tree algorithm later, the basic idea is easiest explained
through a ‘‘toy’’ example. See Fig. 13. Assume a length-4
input signal [1, 2, 3, 4] and a Haar basis as the wavelet
filter _set (.e., {[1/v@ 1/V@) 1/J@ -
1/\/@]}). Since no boundary filters are required for the
Haar basis, the analysis is the simplest possible. To find
the optimal split, optimal wavelet packet subtrees are
found for all possible binary signal subsets: {[1, 2, 3, 4],
[1, 21, [3, 4], [11, [2], [3], [4]} as shown in Fig. 13(a).
A scalar quantizer of step size 4 has been picked for this
example to quantize all wavelet packet coefficients. As
before, a Lagrangian cost criterion corresponding to A is
used for the optimal tree pruning operation. Then, the
costs associated with the best bases determined in the first
step are used to populate a second tree called the splitting
tree as shown in Fig. 13(b). The root of the splitting tree
is populated with the cost associated with the best basis
wavelet packet for the [1, 2, 3, 4] signal split, the first
tree level with the two costs corresponding to the [1, 2]
and [3, 4] splits, respectively, etc. The splitting tree is
pruned using the same single-tree fast algorithm as that
used to find the best bases whose costs populate its nodes.

F. Complete Tiling Algorithm

Having established the main idea, we now summarize
the complete algorithm. As in [7], this will be done in
two phases. First, the optimal algorithm for a given op-
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Fig. 13. The double-tree optimal orthonormal splitting algorithm on the
input signal (1, 2, 3, 4) in R* for the Haar kernel and a scalar quantizer of
step size 4. Lagrangian costs are shown in brackets (A = 0 used here). (a)
The best basis wavelet packet subtrees corresponding to all feasible signal
subsets. (b) The splitting tree whose nodes are populated from the best
basis cost of (a).

erating slope A will be given, followed by a summary of
how to hunt for the optimal operating slope A*.

1) Initialization: Prior to the ‘‘pruning’’ operation, a
single fixed cost of gathering the statistics enlisted in Step
0 below must be paid.

Step 0: Generate the wavelet packet coefficients and
the quantizer set dependent (R, D) values for the complete
tree for each binary subset of the signal to be coded. Thus,
for a length-N signal, this entails growing one length-N
wavelet packet basis tree, two length-N /2 trees, four



3356

length-N /4 trees, etc., up to the desired maximum tree
depth. Note that the operation of populating the wavelet
packet trees for the binary subsets of the signal uses the
appropriate boundary filters (as designed in Section III)
between signal segment boundaries. This guarantees or-
thonormality of the bases, a requirement of the fast prun-
ing algorithm.

2) Phase I: Optimality for a Fixed Operating Slope:
Phase I of the algorithm is run for a fixed slope value of
A, and could be considered a subroutine called by Phase
1I.

Step 1: For the N of the current iteration, solve the
wavelet packet problem for each binary subset of the sig-
nal to be coded; i.e., run the single-tree algorithm on each
binary subset. This requires finding the minimal La-
grangian costs associated with the best basis/quantizer
choice for each of the halves, quarters, eighths, six-
teenths, etc., of the original signal.

Step 2: Populate the global splitting tree with the min-
imal Lagrangian costs obtained from Step 1 for each bi-
nary signal segment (see Fig. 13 of the toy example).

Step 3: Prune the splitting tree of Step 2 exactly as was
done for each tree in Step 1, i.e., using the single-tree
pruning algorithm [7]. This gives the ‘‘best binary split™
tree for the signal (see Fig. 13 of the toy example). For
the picked N\, we now have the R-D optimal binary tiling
of the time-frequency plane for the given signal and cod-
ing parameters.

3) Phase II: Iterating Towards the Optimal Operating
Point: The optimal value of A, A*, which solves the given
budget constraint Ry,q, is found using the convex-search
bisection algorithm as described in [7]. The basic idea is
that starting from a known initial interval engulfing the
desired operating slope, the search intervals are made suc-
cessively smaller (exploiting the convex relationship of
both global rate and global distortion with respect to the
operating slope A\ [23]) until convergence is achieved. If
NP and AY are the lower and upper bounds to \* at iter-
ation i, then the convexity property is exploited in tight-
ening either the upper or the lower bound at the (i + 1)th
iteration to N ¥V = |[(AD/AR)]?|, where [(AD/AR)]"
(the ratio of the difference in distortion and rate associated
with the slopes A{’ and A\ of the ith iteration) provides
a closer approximation to A* than available at the ith it-
eration. Phase I of the algorithm is thus called recursively
for converging values of N in Phase II, and A\* solves the
given budget constrained problem to within a convex hull
approximation.

G. Complexity

We now address the complexity of the double-tree al-
gorithm. As a prelude, it is important to note that the
complexity of the single-tree wavelet packet algorithm for
a signal of size N (assumed to be a power of 2) is O(N log
N). This follows from the complexity being of O(N) at
each level of the wavelet packet tree, and there being log
N levels in the complete tree. Now, consider the double-

IEEE TRANSACTIONS ON SIGNAL PROCESSING. VOL. 41. NO. 12, DECEMBER 1993

tree with the splitting tree grown to the complete depth of
log N. The splitting tree is populated with the results of
the wavelet packet single trees grown on each of its nodes.
A single wavelet packet tree of length N is grown at the
root [of complexity O(N log N)], two N /2-size trees are
grown at depth 1 [of complexity OQ2 * (N/2) log (N/2))
= O(N log (N/2))], four N/4-size trees [of complexity
O(N log (N/4))] at depth 2, etc. Thus, the total complex-
ity is bounded by O(N log N) at each level of the splitting
tree, to give a total complexity of O(N(log N)?).

Thus, the increase in complexity between the single
wavelet packet tree algorithm and the double-tree adap-
tive wavelet packet algorithm is from O(N log N) to
O(N(log N ). This implies that if one considers non-
overlapping 1024-point segments of an input signal, for
an order of magnitude increase in computational com-
plexity over that of the wavelet packet best basis single-
tree algorithm, one can find the optimal adaptive wavelet
packet tree using the double-tree algorithm.

VI. EXPERIMENTAL RESULTS

The single-tree algorithm was used to find the optimal
time-varying modulated lapped transform decomposition.
A description of the experiments involving time-varying
MLT’s follows next.

A. MLT Experiments Using the Single-Tree Algorithm

The single-tree algorithm was used to find the optimal
tiling for a synthetic 512 point signal consisting of a cas-
cade of a 256-point first-order autoregressive signal of
variance 10 and a correlation coefficient of 0.1 (i.e.,
nearly uncorrelated) and a 256-point signal with a corre-
lation of 0.9 (i.e., highly correlated). See Fig. 14(a). The
single-tree algorithm was used to select adaptively from
MLT filter banks of sizes 8, 16, and 32, with the switch-
ing between banks being done so as to preserve ortho-
normality, as explained in Section IV. Fig. 14(b) shows
the time-frequency tiling of the signal using this time-
varying MLT decomposition for a quantizer step size of
3and N = 0. As expected, the first part of the signal gets
finer time-resolution, while the latter part gets better fre-
quency-resolution. Note how the maximum frequency
resolution (afforded by the 32-channel MLT bank) is
picked for the latter half of the signal, which is more ‘sta-
tionary’’ than the first half.

B. Adaptive Wavelet Packet Experiments Using the
Double-Tree Algorithm

The double-tree algorithm was used to find the optimal
tiling for several test signals. As expected, it beats the
single-tree wavelet packet algorithm (of which it is a gen-
eralization) for many signals, both real and synthetic. We
must emphasize the sensitivity (in terms of the picked
segmentation and trees for each segment) of the algorithm
to such parameters as the quantization step size, the
smallest signal split desired, and the coding scheme (fixed
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Fig. 14. Optimal tiling using adaptive modulated lapped transforms for a
synthetic 512-point test signal: (a) Input signal consisting of two parts: the
first half is an autoregressive first-order Markov sequence with variance =
10 and p = 0.1, while the second half has p = 0.9. (b) Optimal tiling using
adaptive MLT banks of sizes 8, 16, and 32. Switching between MLT banks
is accomplished as explained in Section IV. Note, how the second half of
the signal, which is more ‘‘stationary’’ gets better frequency resolution,
while the first part, which is more uncorrelated gets better time resolution.
(Shown for a quantizer step size of 3 and X\ = 0).

bit rate or entropy coded). Also, the time-variance of the
decomposition will be highlighted, as evidenced by the
algorithm’s sensitivity to phase shifts of the input signal.
In the experiments that follow, uniform scalar quantizers
were used along with first-order entropy and MSE as the
rate and distortion measures for all cases. The Daubechies
length-4 filter (called D, filter) and its boundary filters
were used as the wavelet packet tree kernel. Note that the
overhead of sending the splitting map has been included
in the results.

1) Speech Input: The optimal split for a 512-point
speech segment to a maximum tree depth of 7 (i.e., leaf
size of 8) is shown in Fig. 15. A scalar quantizer of step
size 20 was used. The optimal split using the double-tree
algorithm achieves 1.99 bits /sample with 27.98 MSE,
while the best basis wavelet packet (single) tree algorithm
needs 2.44 bits /sample with 28.33 MSE, highlighting the
usefulness of efficient binary tiling.

2) Synthetic Signal: Sum of an Impulse and a
Sinusoid: Fig. 16(a) shows the second test input consist-
ing of an impulse and a sinusoid, with Fig. 16(b) and (c)
showing the optimal tiling representations for the double-
tree and the single-tree algorithms, respectively. A scalar
quantizer of step size 0.1 is used (to ensure fine quanti-
zation) with the tree grown to a smallest split of 16, for A
= 1. As seen from Fig. 16(b), the double-tree split
“‘adapts’” well to the input signal, finding a split with good
time resolution around the impulse, and good frequency
resolution around the sinusoid. The wavelet packet sin-
gle-tree tiling of Fig. 16(c), on the other hand, fails to
isolate the impulse.

-300

filter, a scalar quantizer of step size 20, and maximum tree depth of 7.
First-order entropy and MSE are used as the rate and distortion measures.
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Fig. 16. Optimal tiling for a synthetic test signal consisting of a Dirac and
a sinusoid: (a) Input signal with time impulse at7 = 4, and sinusoid starting
att = 65. (b) Optimal split using the double-tree algorithm. Note how both
the Dirac in time and Dirac in frequency are detected with good resolution.
(c) Optimal single tree (WP) split. Note how the impulse in time is not
detected. (Shown for the Daubechies D, filter, quantizer step size of 0.1
(fine quantization), A = 1, and the tree grown to a maximumn depth of 6,
i.e., to a leaf size of 16. First-order entropy and MSE are used as the rate
and distortion measures.)

3) Basis Signal Input: The wavelet basis function (of
nonzero length 22) from a tree depth of 3 derived from
the length-4 Daubechies D, filter set is analyzed next (see
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Fig. 17. Time variance of the double-tree algorithm shown for basis input
signal: (a) Synthetic test input signals consisting of different phases of the
depth-3 wavelet basis of the Daubechies D, filter: i) ‘‘in-phase’’ (t = 74
tor = 95) and ii) ‘‘out-of-phase’’ ( = 84 to r = 105). (b) Tiling of signal
i). Note how the wavelet basis is located. (c) Tiling of signal ii). Note that
the wavelet tiling is lost.

Fig. 17). This experiment highlights the sensitivity of the
algorithm to the phase of the input signal. When the input
basis function is positioned at the correct phase (starting
atr = (k * 8 + 2) for positive integer values of k), the
optimal split is verified to correspond to the depth-3
wavelet basis function with a single nonzero wavelet
packet coefficient. Fig. 17(b) depicts how the algorithm
““finds’” the input basis signal corresponding to the in-
phase signal i) of Fig. 17(a) (corresponding to t = 74).
The time variance of the algorithm should be evident from
Fig. 17(c) corresponding to the split for the same signal
shifted by 10 samples (signal ii), starting at t = 84). This
phase-sensitivity is common to bases which are not shift-
invariant.

4) Discussion: The segmentation in time performed by
our adaptive wavelet packet construction makes it less
sensitive to the phase of the signal than wavelets or
wavelet packets, as borne out by experiments. For ex-
ample, in the impulse and sinusoid signal example of Sec-
tion VI-B-2, we found that the adaptive wavelet packet
construction tracked the phase of the impulse with re-
markable precision when it was changed, something that
the wavelet packet single-tree algorithm failed to do.
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APPENDIX
TIME-VARYING MODULATED LAPPED TRANSFORMS:
PrOOFs

A. Proof of (29)
To prove (29), denote by a; the ith row of Ay. Then,

2 wi(n) - cos <%(2n - N+ l)1r>

N
* COS <2]+1(2n—N+ l)7r>

2i+ 1
—_— —-N+1
s< aN 2n + )7r>

2+ 1
0s <’4—N(2n N+ 1)7r>

20+ 1
4N
2ji+1
- cos <ﬁ- (5N —2n — 1)7r>jl
2 /N1 2i+ 1
N o2 s T

2j+1
cos< aN (2n N+1)7r>

+ (2 — win) - cos < (5N —2n - 1)1r>

2n—- N+ 1)7r>

where we have used (26), and the fact that

2i + 1 SN — on — 1
cos 4N( n )T

2i + 1
cos< '4N @n - N+ Dr — i + 1)1r>

2i + 1
cos< '4N @n — N + 1)7r>.

It is thus obvious that a; af does not depend on the window
and is the same for any set of modulated lapped transform
filters.

B. Construction of Overlapping Modulated Lapped
Transforms

To check that the construction is valid, one has first to
prove that the orthogonality of tails for the N,-channel
bank holds. To prove that, remember that the N,-channel
bank is perfect reconstruction by assumption, and thus,
orthogonality of its tails holds, together with the fact that
all of its basis functions are unitary. The tails in the
N,-channel case are obtained from the tails of the N,-
channel bank, and thus, by construction, they will be or-
thogonal to each other (since the tails in the N,-channel
bank are). Also by construction, the overlapping tails of
the N,- and N,-channel banks will be orthogonal. The two
facts left to show are that the resulting vectors from the
N,-channel modulated lapped transform are unitary, as
well as that they are mutually orthogonal. Call the vectors
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from the N,-channel modulated lapped transform, g,, ac-
cording to (37) and (38). Then

N
T _2<hl,.hk,_

8k * & = N,
where h,. is the vector from the N,-channel bank corre-
sponding to the one from the N;-channel one, and, since
N,-channel bank is perfect reconstruction hl - hy = 1.
The sum term in parentheses is

(3BN2—N1/2

h%(n)) 42)

n=MN)+N2/2

(3N2 = N)/2
2 ki
n=(N1+N2/2
2 ‘3”‘2””/2 (AL
= — 0 - —
Nz n=(N+N2)/2 cos 4N2 7r( " 2 + ) ’
- o v
(43)
2 Na—1
- = Z 2 + 2
Ny nm 62 cos” (x) + cos
2k + 1
(2, 0), wn
2
2 N2—1
== % 2 in® 4
Ny n= (45 Ny /2 (cos” (x) + sin” (x)), (45)
_M =N
= N, (46)
Substituting this into (42), we obtain
N N, — N
T 2 2 1
. ==l -——7—)=1
8 " & N, ( N, > 7

and thus, the vectors are unitary. To prove that they are
mutually orthogonal, one has to form all the products
gl g, i # j. After some manipulations, and with indices
in the range as given in (36), it can be shown that all of
these products are zero. O
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