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Perfect Reconstruction Filter Banks with Rational 
Sampling Factors 

Jelena KovaCeviC, Member, IEEE, and Martin Vetterli, Senior Member, IEEE 

Abstract-This paper solves an open problem, namely, how 
to construct perfect reconstruction filter banks with rational 
sampling factors. Such filter banks have N branches, each one 
having a sampling factor of p i / q i  and their sum equals to one. 
In this way, the well-known theory of filter banks with uniform 
band splitting is extended to allow for nonuniform divisions of 
the spectrum. This can be very useful in the analysis of speech 
and music. The theory relies on two transforms, 1 and 2. While 
Transform 1, when applied, leads to uniform filter banks hav- 
ing polyphase components as individual filters, Transform 2 re- 
sults in a uniform filter bank containing shifted versions of same 
filters. This, in turn, introduces dependencies in design, and is 
left for future work. As an illustration, several design examples 
for the (2/3, 1/3) case are given. Filter banks are then classi- 
fied according to the possible ways in which they can be built. 
It is also shown that some cases cannot be solved even with ideal 
filters (with real coefficients). 

I. INTRODUCTION 
HE most studied case of filter banks is the one with T integer sampling factors. However, if one wants to 

analyze the signal into unequal subbands (for example, in 
acoustics [l]), rational sampling factors have to be al- 
lowed (see Fig. 2(a)). Then, each channel would have a 
sampling factor p i / q i  and their sum equals to one (so as 
to preserve the sampling density). For some cases, it was 
known how to solve this problem in practice, since one 
could divide the spectrum into Q = lcm (qi) parts and then 
resynthesize the appropriate subspectra. However, be- 
cause this approach is indirect, it is suboptimal in terms 
of computational complexity and filter quality, and not all 
cases can be solved. Previous work in this area was aimed 
at aliasing cancellation [2], solutions that are built through 
tree splitting [3] and numerical solutions [4]. 

In this paper we present a direct method for designing 
perfect reconstruction filter banks with rational sampling 
factors. It relies on two transforms, 1 and 2.  While Trans- 
form 1, when applied, leads to uniform filter banks having 
polyphase components as individual filters, Transform 2 
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results in a uniform filter bank containing shifted versions 
of the same filters. This, in turn, introduces dependencies 
in design, and is left for future work. Note that this is a 
continuation of previous work [5]-[7]. 

The outline of the paper is as follows: Section I1 briefly 
reviews necessary facts from the theory of perfect recon- 
struction filter banks. Section I11 presents an extensive 
discussion on realizability of various filter banks with ra- 
tional sampling factors, showing possible problems. Sec- 
tion IV develops the direct design method and the tools 
that enable it. In Section V, filter banks are classified ac- 
cording to the way they can be built. Section VI gives 
several filter designs and compares them to the indirect 
ones. 

In what follows, all filters will be assumed to have real 
coefficients, unless stated otherwise. 

11. A GLIMPSE AT PERFECT RECONSTRUCTION FIR 
FILTER BANKS 

Here, we briefly recall some of the concepts from the 
theory of perfect reconstruction filter banks that are going 
to be used in the remainder of this paper. For a more ex- 
tensive treatment of the subject, refer to [3], [8]-[lo]. 

An analysis filter bank is a signal processing device that 
splits the input signal into M channel signals by means of 
filtering and downsampling by N (where N 5 M ) .  In what 
follows, we will assume that N = M ,  i.e., the filter bank 
is critically sampled. The synthesis filter bank performs 
the inverse task (see Fig. l(a)). Due to the fact that the 
downsampling is a periodically shift-variant operation 
with period N (that is, if the input x ( n )  produces output 
y ( n ) ,  then the input x ( n  - no) will produce output y ( n  - 
n l )  only if no = N n l ) ,  the whole system becomes period- 
ically shift variant. A way to make the analysis of such a 
system easier, is to decompose both signals and filters into 
so-called polyphase components. For a filter, each poly- 
phase component would then represent one of N impulse 
responses (at times 0, 1, . - , N - 1). Thus, a filter can 
be expressed as 

N -  I 

H , ( z )  = ,E Z-'H,;(zN) (1) 
r = O  

where Hj i ( z )  is the ith polyphase component of the filter 
Hj ( z ) ,  and is given by 

q i ( z )  = h,(nN + i) . z-". (2) 
n 
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3)  A pair of useful identities known under the name of 
‘‘noble identities” 191, gives conditions under which shift- 
invariant filters can be passed across up- and downsam- 
plers. They state that any filter in the downsampled do- 
main can be represented in the upsampled domain by sim- 
ply upsampling its impulse response. Very similarly, a 
filter with z-transform H ( z )  placed in front of upsampling 
by N can be moved past the upsampler and represented as 
H ( z N )  191. 

Y - 

(b) 
Fig. 1 .  (a) Analysislsynthesis filter banks. (b) Filter bank in the polyphase 

domain. 

It turns out that the output of the system can be conveni- 
ently expressed in terms of analysis and synthesis poly- 
phase matrices (that is, matrices containing polyphase 
components of analysis and synthesis filters), as well as 
forward and inverse polyphase transforms. Forward 
polyphase transform inputs the signal and outputs its N 
polyphase components by means of shifting and down- 
sampling by N .  The inverse polyphase transform per- 
forms the inverse task, that is, the forward and the inverse 
polyphase transforms are inverses of each other. Perfect 
reconstruction is equivalent to forcing the synthesis poly- 
phase matrix to be the inverse of the analysis one. A 
filter bank expressed in the polyphase domain is given in 
Fig. l(b). One of the easiest ways to achieve perfect re- 
construction (i.e., to obtain the output as a perfect replica 
of the input), is to construct a paraunitary analysis matrix 
(or orthogonal, lossless). In other words, the analysis 
polyphase matrix has to satisfy the following [ 111:  

(3)  
Then the synthesis polyphase matrix can be chosen as 
Z - ~ H ; ( Z - ’ ) ,  which in turn yields filters that are the same 
as the analysis filters (within shift reversal). 

Let us also point out some facts on multirate filtering 
that are going to be used later. 

1 )  Upsampling by p and downsampling by q can be 
interchanged if and only if p and q are relatively prime 

2)  The output after filtering by H ( z )  and downsampling 

HL(z-I) * H,(z) = I .  

~ 9 1 .  

by N can be written as [8] 

1 N - l  
Y(z)  = - c H ( W p )  x(w;zl/N) (4) 

N k = O  

where WN denotes the Nth root of unity, i.e., WN = 
e-jV.*/N). 

111. FILTER BANKS WITH RATIONAL SAMPLING 
FACTORS 

In this section, filter banks with rational sampling fac- 
tors are investigated, and some intuition for possible so- 
lutions and problems is developed. In order to do so, we 
will often resort to ideal filters (with real coefficients), 
that is, filters with box function magnitude responses. 

The goal is to realize a filter bank with rational sam- 
pling factors as shown in Fig. 2(a), performing a spectral 
analysis as depicted in Fig. 2(b). First, a fact on the po- 
sition of an ideal real qth band filter in the spectrum, nec- 
essary for further analysis, is presented. This is followed 
by the discussion of an indirect method, which always 
leads to perfect reconstruction, but may produce ‘‘shuf- 
fling” of frequencies within subbands (that is, some lower 
frequencies may appear above higher ones). The direct 
method is investigated, where sometimes, there are no so- 
lutions even using ideal filters (assuming contiguous pass- 
bands and real coefficients). This leads to the question of 
equivalence between direct and indirect methods. Tree 
structures are also considered, being the simplest repre- 
sentatives of unequal bandwidth filter banks. 

We shall use the notation [po/q0 ,  p l / q l ,  * . , 
p N  - , / q N  - I ]  to denote a filter bank where the i th channel 
(numbered with increasing frequency) has rate p i  / q i ,  and 
contains input frequencies ranging over 

where the sum is defined to be 0 if the upper bound is 
negative. We will also assume that the filter bank is crit- 
ically sampled, that is 

N -  1 

C P ’ = l .  (6)  
1 = O  q1 

Note also that “mirroring” will describe the process in 
which the spectrum is the reversed version of the true 
spectrum, that is, lXmlrrored(~)I = (X(w + n)l (assuming 
real signals). “Shuffling,” however, will denote the pro- 
cess in which a part of the signal’s spectrum has been 
translated to another part in the spectrum. For example, 
assume that the signal occupies the part of the spectrum 
from [0, 27r/3] ,  and after processing, the part from [0, 
~ / 3 ]  is moved to [27r/3,  TI. Thus, the spectrum that the 
signal occupies after processing is from [7r/3,  7 r ] .  How- 
ever, the ordering of the frequencies inside the signal 
spectrum has been reshuffled. 
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Po 90 

PN-1, 
qN- 1 

pq pq -1 
(b) 

Fig 2 Filter bank with rational sampling factors. (a) a block diagram and 
(b) the desired spectrum splitting 

A .  Position of the Ideal 9th Band Filter with Real 
Coeficients in the Spectrum 

Consider a branch consisting of an ideal bandpass filter 
H (with real coefficients), downsampler by q, unsampler 
by q, and the same bandpass filter H. By the sampling 
theorem, H has to be a qth band filter in order to avoid 
aliasing, and moreover: 

Proposition 3.1: A 9th band filter H with real coeffi- 
cients, meant to avoid aliasing in the system as above, 
has to be situated at 

H -n,- + I T ]  
9 9 

(7) 

for some s E (0, 
tive frequencies). 

* 

The proof is given in Appendix B. 

, 9 - 1)  (symmetrically for nega- 

B. Indirect Method 
An easy way to achieve the desired factors of Fig. 2(a) 

is as follows; Call Q the least common multiple of all the 
downsampling factors, and analyze the input into 

(8) Q = lcm (90, 91 * * * , q N - 1 )  

subbands. Define 
pi . Q p ;  = - 

9; 
(9) 

Then, to obtain a perfect reconstruction filter bank, one 
can combine an analysis filter bank having Q filters with 
N synthesis filter banks, each withp: filters (i = 0, * * , 
N - 1). Such a scheme is shown in Fig. 3 .  Obviously, if 
analysis and synthesis banks are perfect reconstruction, 
the overall system will be perfect reconstruction as well. 
This purely algebraic result does not guarantee, however, 
that the spectral analysis performed by the filter bank is 
meaningful in the sense that a subband represents a piece 
of the inpdt spectrum (as is, for example, the case for 
uniform filter banks). 

To give a flair of possible problems, consider first an 
indirect design of a filter bank with sampling factors (2 / 3 ,  
1/3) (that is, the low-pass filter of width 2 n / 3  and the 
high-pass filter of width 7r/3), as shown in Fig. 4(a). It 
can be verified that the low-pass channel is a “faithful” 
representation of the frequencies from 0 to 2 a / 3  in the 
input signal, when the synthesis filter bank uses a low- 
pass filter for channel 0 and a high-pass for channel 1 in 
the synthesis bank (see Fig. 4(c)). By “faithful” we mean 
that the range of input frequencies is conserved in the cor- 
rect order. 

Note that if the synthesis would instead use high-pass 
and low-pass filters for channels 0 and 1 respectively, the 
system would still be perfect reconstruction, but now, the 
spectrum in the rate 2 n / 3  subband would be the mirror 
image of the true spectrum of the signal (that is, “high” 
frequencies would appear before “low” ones). 

Consider now a filter bank with sampling factors (1 / 3 ,  
2/3) ,  that is, the high-pass filter now uses recombination 
(see Fig. 5(a)). From the spectra available at the input of 
the synthesis bank, it can be seen that the original spectral 
relations cannot be preserved. With a low-pasdhigh-pass 
pair, one gets a shuffled and mirrored version of the spec- 
tral band of interest, while with a high-pass/low-pass pair, 
low and high bands are interchanged. It is important to 
note that while we still have perfect reconstruction, there 
is no simple “bandpass” interpretation anymore due to 
the spectral shuffling and mirroring. 

To formalize the previous discussion, we will show now 
under which condition the indirect method works. To 
start, we first state some assumptions. In what follows, 
the synthesis banks used for recombination will contain 
bandpass filters with central frequencies in increasing or- 
der, that is, the situations as the one described in Fig. 4(c) 
with (Go, G,) a high-pass/low-pass pair, are not consid- 
ered. Then, we will state the result for a single subband, 
that is P = p,’ branches from the analysis bank, followed 
by size p,’ synthesis bank (and we assume P > 1). For 
the whole system to work, the conditions that follow have 
to be satisfied for i = 0, . * , N - 1. Note that here, P 
and Q are not necessarily prime (as can be seen from (9)). 

Therefore, suppose we want to extract the following 
part of the input signal: 

( k  + P ) a  
Q 

k 2nn 
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ANALYSIS SYNTHESIS: 0 

L1 

Fig. 3. Nonuniform filter bank designed indirectly. 

R1 L1 R1 
I - 

3W2 2x 

It 3W2 2x 
(c) 

Fig. 4. Indirect method with ideal filters for (2/3,  1 /3) splitting. (a) Three- 
band analysis followed by two-band synthesis of the low-pass filter. (b) 
Original spectrum indicating the pieces retained by the analysis filter bank. 
(c) Spectra before entering Go and GI.  If (Go, GI)  is a low-padhigh-pass 
pair, the spectrum of Yo will be a correct representation of the input spec- 
trum. If it is a high-passllow-pass pair instead, the spectrum will be incor- 
rect. R and L denote the right- and left-hand sides of the magnitude re- 
sponses, respectively. 

by means of P analyzing ideal bandpass filters and the 
same number of synthesizing ones ( X ,  denotes the right- 
hand side of the spectrum). After downsampling by Q fol- 
lowed by upsampling by P, in the first branch, aliased 
versions will appear at 

k & 2nQ - 2i ( k  + 1) k 2nQ - 2i 
P xR: [ r, 

W2 x 3W2 2x 

6 2  x 3x12 2n 
(C) 

Fig. 5 .  Indirect method with ideal filters for (1 / 3 , 2 / 3 )  splitting. (a) Three- 
band analysis followed by two-band synthesis of the high-pass filter. (b) 
Original spectrum indicating the pieces retained by the analysis filter bank. 
(c) Spectra before entering Go and G, .  Neither a low-padhigh-pass nor a 
high-pass/low-pass pair will preserve the original spectral relations. 

To avoid shuffling of frequencies, one of the XR,’s has to 
descend to [0, alp], since otherwise, its mirrored version 
will appear in that region, followed by the ones from the 
channels 1 through P - 1. This means that 

k & 2nQ - 2i 
P 

n = O  

or 

and thus: 
k = 2i 7 2nQ (13) 
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(b) 
Fig. 6. Perfect reconstruction obtained using ideal filters. (a) Filter bank and (b) spectral analysis (shaded lines represent mag- 

nitude responses of ideal filters). 

Proposition 3.2: Not to have shuffling of frequencies 
in the indirect method, k (as defined above), has to be 
even (assuming P > 1). 

This result immediately disqualifies the case with sam- 
pling factors (1 /3, 2 /3) considered earlier, since the sec- 
ond subband should cover [7r/3, 7r], i.e., k = 1. How- 
ever, the case (1/6, 1 /6,4/6 = 2/3), that has the same 
high-pass, is possible. 

Note here that this method, when it works, i.e., when 
it does not produce frequency shuffling, is suboptimal in 
terms of computational complexity and filter quality. It 
will be shown later that in some cases, one can transform 
this system into one as in Fig. 2(a), thus being able to 
control the characteristics of the equivalent nonuniform 
bandpass filters. 

C. Direct Method 
Consider a direct implementation of the (2 / 3 ,  1 /3) fil- 

ter bank as shown in Fig. 6. Using ideal filters (with real 
coefficients) one gets perfect reconstruction as can be seen 
from the spectra in Fig. 6. However, if one tries to im- 
plement a (1 /3, 2/3) filter bank (with a low-pass of width 
a / 3  and a high-pass of width 2n/3,  see Fig. 7(a)), then 
aliasing cannot be avoided and perfect reconstruction is 
impossible. The reason is that the spectrum of interest is 
situated, after upsampling by 2, at [7r/6, r/2] ,  which by 
Proposition 3.1 cannot be subsampled by 3 without alias- 
ing (see Fig. 7(b)). Using a more complicated filter for 
the high-pass channel instead, (as shown in Fig. 7(c)) al- 

(C) 
Fig. 7 .  Direct method for the ( 1 / 3 ,  2/3) splitting. (a) Analysis bank. (b) 
Band-pass filter for spectrum of interest leading to aliasing when downsam- 
pled by 3 .  (c) Another filter for spectrum of interest which does not lead 
to aliasing, but leads to shuffling of frequencies and does not have contig- 
uous spectrum. 

lows one to downsample by 3 without aliasing, thus per- 
mitting perfect reconstruction, but still producing fre- 
quency shuffling in Y , .  Therefore, in what follows, we 
will assume only filters with contiguous passbands, hence 
excluding the one from Fig. 7(c). The previous discussion 
showed that even in the simplest, two-channel case, a 
number of problems can arise. Thus, the question we want 
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to ask now is, given a branch with upsampling by p fol- 
lowed by an ideal bandpass filter H (with contiguous spec- 
trum and real coefficients) and downsampling by q,  with 
H satisfying Proposition 3 .1 ,  which part of the input sig- 
nal’s spectrum can we extract? Note that p and q are as- 
sumed to be coprime. 

To get an answer, note first that by Proposition 3 . 1 ,  the 
available bandpass filters reside from 
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Call a “half-image” of the input signal either its part sit- 
uated at positive frequencies or the part at negative fre- 
quencies. To get a valid part of the input signal’s spec- 
trum, they have to fall within one of the half-images of 
the input signal after upsampling, that is, if a half-image 
is from 

then the following has to be satisfied: 

or, in other words 

(17) P P 
4 9 

(s + 1) - - 1 I 1 I s -. 

This leads to the following proposition: 
Proposition 3.3: Assuming available bandpass filters 

are given in (14), if there is I E (0 ,  p - l}, such that (17) 
is satisfied, then the following part of the signal is ex- 
tracted : 

X,: [ (s: - I )  7r, ( ( s  + 1 ) :  - 1 )  7r] (18) 

for even I, or 

x,: [(I + 1 - ( s  + 1 ) -  R, I + 1 - s -  7r 
p ,  4 ( Pq) 1 ( 1 9 )  

for 1 odd. 
The question can also be posed in the other direction, 

i.e., is it possible to extract a particular part of the signal, 
and if it is, which is the bandpass filter to use. 

Proposition 3.4: It is possible to extract the following 
part of the input signal’s spectrum 

if there exist 1, s such that one of the following is satisfied: 

0 = sp - lq, 1 = 2t (21) 

(22) 
w h e r e l = O ,  e . .  , p -  l , s = O ; * *  , q -  l , a n d o =  
0, * * * , q - p .  If there is a solution, the filter to be used 

0 - q + p = 1q - sp,  1 = 2t + 1 

is 

(23) 

As an example consider Fig. 7 .  We would like to extract 
[ a / 3 ,  a] from the signal, i.e., o = 1, and 1 = 0, 1 .  It is 
easy to see that in this case neither (21)  nor (22 )  can be 
satisfied, and thus we are not able to extract the desired 
part of the input signal’s spectrum. 

As for the indirect method, the direct method has to be 
checked for each branch. 

D. Indirect versus Direct Method 
The intent in this section is to make a connection be- 

tween the indirect and the direct methods. In order to do 
this, we will use the partial solution developed in [5 ] .  

Start with the indirect method as described in Section 
111-B and assume that all the p I’s are coprime with Q (this 
will not be the case in general). But Q can be written as 

Q = lcm (40, q l ,  - - 7 qN- 1 )  = riqi, 

i = o , . * .  , N - 1  
and thus 

Now if one wantsp; and Q to be coprime for i = 0, - - - , 
N - 1 ,  ri has to equal to 1 ,  i = 0 ,  - * - , N - 1 ,  and this 
in turn implies 

(24) 

p; = p i ,  i = O ,  e . .  , N -  1 .  (25) 

qo = * - - = q N W l  = q 

and 

Conditions (24)  and (25 )  are necessary for the transfor- 
mations that follow to work. On the other hand, for the 
indirect method to work, one can use Proposition 3 .2  to 
conclude that pi’s  have to satisfy the following conditions 
( C l ) :  

1) If q is even, then p2i  is odd and p2i + = 1. 
2 )  If q is odd, then if p2i  is odd, p2i  + I = 1, or if p2i  is 

even, p 2 i +  is even as well. 
In Fig. 3 ,  consider the block i which has the rational 

sampling factorpi/qi = p i / q .  Since p i  and q are coprime, 
upsampling and downsampling can be interchanged. 
Then, as explained in Section 11, upsampling can be 
moved across the analysis filters (raising z to the pith 
power), and the downsampling across the synthesis filters 
(raising z to the qth power). This results in p i  filters in 
parallel, each preceded by upsampling by p i  and followed 
by downsampling by q.  This is equivalent to a single filter 
with the transfer function 

pi  - 1 

/ = o  H,JZ) = ,Z q,(~?) - ~ ~ ( 2 9 )  (26) 

wherej ’ = EbZbp, + j and the filters in the analysis and 
synthesis banks are denoted by H and G, respectively. As 
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Answer = N 

an example, for the (2/3,  1/3) case, the equivalent low- 
pass filter would be given by 

&,(z) = Ho(z*)Go(z~)  + Hi (z2)G1 ( z3 ) .  (27) 
This is obviously a powerful tool since one can design the 
filter bank having the complete control over the filters’ 
magnitude responses. Unfortunately, this method does not 
cover all possible cases since all the p I’s will not in gen- 
eral be coprime with Q. Another point is that both an anal- 
ysis and a synthesis bank are being designed for a system 
that has to perform only analysis. 

Now we are ready to show the following. 
Proposition 3.5: If (24) and (25) are satisfied, and if 

the indirect method works, the direct one works as well. 
The proof is given in Appendix B. Unfortunately, the 

other direction is not true, i.e., the direct method working 
does not imply that the indirect one is working as well. A 
simple counterexample is the case with sampling factors 
(3/7, 3/7, 1 /7). It can be checked that the direct method 
will work, while the indirect one will not (the middle 
channel starts at k = 3 violating Proposition 3.2). 

Note that the discussion in this section was based on 
the partial solution, that is, on the assumption that all 
downsampling factors are the same and all pi’s are co- 
prime with q. When this is not the case, the indirect 
method can work, e.g., (1/6, 1/6, 4/6,  = 2/3),  while 
the direct one will not. 

E. Miscellaneous Remarks 
1)  Tree Structures: If we say that a filter bank has a 

tree structure, it will mean that its sampling factors could 
be obtained by cascading uniform filter banks. A neces- 
sary condition for a tree structure is 

Beside testing whether all upsampling factors are 1 ,  one 
has to test further whether the set of downsampling fac- 
tors (40, - * * , q,,- I )  represents a tree. To that end, Fig. 
8 shows the procedure to determine that fact, that is, the 
routine that is recursively used for testing first the main 
tree and then branching into subtrees. Note that ordering 
is important, that is, for (2, 4 ,  4) the algorithm will give 
a positive answer, while for (4, 2, 4) it will not. 

Just by virtue of the fact that in this case the same filter 
bank could be built by cascading uniform filter banks (al- 
though with possibly different filters), these structures are 
always realizable (since there is no difference when ideal 
filters are used). However, a slight problem might arise, 
one that we will call “permutation of the bands.” Con- 
sider the case with sampling factors ( 1  /2,  1 /4,  1 /4). It 
is easy to check that the low-pass from [0, 1/21, band- 
pass from [1/2, 31/43 and high-pass from [31/4,  1 1 ,  
since positioned properly in the spectrum, will not pro- 
duce aliasing. If the same system were built using two 
cascaded filter banks, both of them having ideal low-pass 
and high-pass filters, the first channel would still be the 
same, the second one (high-pass followed by a low-pass) 

1 
Answer= Y; cMlntl= 1; 
Do until (Answer = Y or Count1 > M) 

Temp = Y; Count2 = 1; 
Do untll (Temp = N or Count?. > r-s) 

Is subtree Count2 a tree?; 
Count2++; 

-; 
Answer = Temp; Countl++; 

En* 

Fig. 8.  The routine that determines whether a set of downsampling factors 
represents a tree. The filter banks is assumed to be critically sampled. 

will be from [31/4,  11, and the last one would reside 
from [1/2,  31/41. As can be seen, the second and the 
third channel have changed place. This is only an artificial 
problem though, since resolving it consists only in re- 
naming, or permuting, the bands. 

Note also that in these cases, there is a subtle question 
in design, that is, lower complexity filters (obtained when 
filter banks are cascaded) versus more general ones (ob- 
tained when the design is direct). 

2) Compatible Sets [2]: In [2], the authors have pre- 
sented the concept of “compatible sets,” that we sum- 
marize here for completeness. 

Dejnition 3.Z [2]: Let S = {qo, - * be an 
ordered set of positive integers, qo I q1 I * * I q N -  I .  

S is compatible if it satisfies the following conditions: 

, qN- 

N =  I 1)  c;=o 1/q; = 1 .  
2) For every qi, l i ,  (1; 5 qi - l ) ,  there exist qj, l j ,  ( l j  

I qj - I), with qi # qj, such that W:, = W$. 
The concept of compatible sets arises when looking at 

the “alias cancellation” matrix in the z domain. It im- 
mediately tells that the case (1/2, 1/3,  1/6) is not real- 
izable. The authors also state that every tree-structured 
filter bank will produce a compatible set, but the converse 
is not true. For more details, refer to [2]. 

3) Existence of the Polyphase Transform: Moving 
away for a moment from the ideal filters, assume that they 
are simple delays instead, and try to obtain the polyphase 
transform, that is, try to represent the input signal com- 
pletely by its polyphase components with respect to var- 
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ious sampling factors. We will just mention two simple 
cases in order to hint at possible problems. 

As stated earlier, the case (1 / 2 ,  1 / 3 ,  1 /6) cannot be 
realized with ideal filters. However, permuting the factors 
as follows (1 / 2 ,  1 /6, 1 / 3 ) ,  one obtains a system in which 
all bandpass filters conform to the requirement of Propo- 
sition 3.1, i.e., aliasing is canceled with ideal filters. At 
the other end of the spectrum, one would like to find the 
polyphase transform, which turns out to be impossible for 
both cases. Note that the existence of polyphase transform 
does not depend on the ordering of the sampling factors, 
and thus in the above, although one case can and the other 
cannot be realized with ideal filters, none of them pos- 
sesses a polyphase transform. 

Another interesting case is with sampling factors (1 / 2 ,  
1/4,  1/4), which has an ideal solution, while its per- 
mutation (1/4, 1 / 2 ,  1/4)  does not. However, since we 
know that the first one has a polyphase transform, the sec- 
ond one will have it as well. 

4) Modulation: Note that modulation is not used in the 
filter banks we are considering, thus down- and upsam- 
plers are the only periodically shift-varying devices in the 
system. If modulation were used, however, one could 
solve most of the cases, by shifting (modulating) filter’s 
spectrum to the required positions. 

5) Mirroring in Uniform Filter Banks: Let us stress 
once more the fact that has been overlooked in the liter- 

2 )  All signals are assumed to be real. 
3 )  All filter banks are critically sampled. 
4) In the indirect method, the synthesis banks used for 

recombination will contain bandpass filters with central 
frequencies in increasing order. 

5 )  Unless otherwise stated, the upsampling and down- 
sampling factors in a single branch ( pi, qi), are coprime. 

6) Modulation is not used to achieve desired solutions. 

IV. A DIRECT DESIGN METHOD 
A. Towards a General Solution 

In what follows, we will be dealing only with realizable 
cases (as explained in Section 111). The ideal filters dis- 
cussed previously, although conceptually natural, are 
clearly not practical. So the question now is whether a 
system with rational sampling factors can be realized with 
finite length filters. The answer has been known to be po- 
sitive in the case with sampling factors ri = 1/N, i = 0 ,  

, N - 1. The purpose of this section is to show the 
realizability in two specific cases that will lead to the di- 
rect design method presented in Section IV-B. 

Consider first the case with sampling factors 

- 

ro = i, rl  = f (29) 

and note that the output of the upper branch at point 3 in 
Fig. 6, yo(n) ,  can be written as follows: 

h,(L - 2 )  ho(L - 4) x ( n  + 1) . (30) 

0 ho(L - 1) : : : I  \x(n ; 2 ) )  

ature dealing with uniform filter banks, that is, that for 
odd indices, the spectra after downsampling will be the 
mirrored versions of the corresponding parts of the input 
signal’s spectrum (see the concluding remarks in Section 
111-A). As noted earlier, if one would need a true repre- 
sentation it would suffice to reverse the spectrum, or, 
multiply the sequence by (- 

6) Word of Care: The present section, although in no 
way complete, was meant to give a glimpse at possible 
problems arising if one wants to deal with filter banks 
having rational sampling factors. It was shown, that even 
in very simple cases, one has to be very careful and aware 
of possible problems (mirroring, reshuffling of frequen- 
cies, permutation of the bands), and that some cases can- 
not be solved, even with ideal filters. 

The following is the list of assumptions that are going 
to be used throughout the rest of the paper: 

1) All filters are assumed to be FIR with real coeffi- 
cients and contiguous passbands. 

It is worth noting here that the outputs yo (2n) are obtained 
by convolving ho(2n) with x ( n ) ,  while yo(2n + 1) is the 
result of the convolution of ho(2n + 3) with x ( n ) ,  sug- 
gesting that the filter ho actually behaves as two filters in 
parallel hoo and hol (hoi being the i th polyphase compo- 
nent of ho). This reasoning led to Transform 1 given in 
Section IV-B. Note, however, that the fact that this case 
leads to the filter being implemented as its two polyphase 
components in parallel (appropriately shifted), is due to 
the fact that the up/downsampling factors are relatively 
prime (not true in general). 

Thus, the whole system could be implemented as fol- 
lows (see Fig. 9(a)): design a 3-channel filter bank (with 
downsampling by 3), where the first filter is the first 
polyphase component of the desired filter ho, the second 
filter is the shifted second polyphase component of ho, and 
the third filter is h l .  To obtain the channel signal yo, one 
has to interleave the outputs of the first two branches, this 
process being equivalent to upsampling the two outputs, 
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YZ 

(b) 
Fig. 9 .  Direct designs of the filter banks with sampling factors (a) (2 /3 ,  

1 /3)  and (b) ( 1  / 2 ,  1 /4, 1 /4). 

delaying the second one and putting them together. This, 
in turn, is equivalent to passing the channel signals 
through the inverse polyphase transform (IPT) blocks. Let 
us now try to perform the same analysis in the case with 
sampling factors 

ro = i, rl = r2 = t. (31) 
Note that this filter bank could be built using a tree. The 
aim here is to see whether it can be implemented directly 
instead, in such a way that other solutions are possible. 
The channel signals can now be expressed as 

1 /3) .  The aim here is to extend this approach into trans- 
forming a single branch with upsampling by p and down- 
sampling by q using ap-channel analysis bank with down- 
sampling by q and an inverse polyphase transform of size 
p ,  assuming p and q are coprime and p > 1. As in the 
last section, one can see that the output of the branch is 
the convolution of the input signal and a particular poly- 
phase component of the filter, and thus the filter can be 
expressed as p filters in parallel, each one of them being 
(see Fig. 10(a)) 

HI ( z )  = zd' HI, ( z )  (33) 

not greater than x ) ,  ti = q * i mod p and Ho, * * 7 Hp-l 
where di = Lq i /pJ  ( LxJ denotes the largest integer 

are the polyphase components of H with respect to p .  It 
should be noted that fo rp  = 1 there is no transform, i.e., 
Hb = zdoHto = zoHo = H since the only polyphase com- 
ponent with respect to p = 1 is the filter itself. 

Note that the same transform, developed in a different 
context (minimization of the number of arithmetic oper- 
ations per unit time), was first given in [ 121, and thus, for 
the proof that the two representations are equivalent, the 
reader is referred to [12]. 

At this point, one could apply Transform 1 to all 
branches in Fig. 2 (a). If qo = * = q N -  = q, nothing 
else has to be done, since the transform will result in 
C i=o  pi = q branches followed by downsampling by q .  
Thus, the problem has been reduced into finding a perfect 
reconstruction structure for a q-channel filter bank, with 

If, however, not all 4;'s are the same, applying Trans- 
form 1 will, for each branch i, produce pi branches fol- 

N -  1 

design constraints imposed on filters H,, * 3 HN- 1 .  

In other words, such a case could be implemented as a 4- 
channel filter bank where the first two filters are ho and its 
shifted version by 2, while the last two filters are hl  and 
h2 (see Fig. 9(b)). This type of implementation led to 
Transform 2, presented in Section IV-B. Note also, that 
this case is fundamentally different from the previous one, 
in that the first two filters are obtained just by shifting a 
single filter, the fact that introduces dependencies and 
problems in design. 

B. Transforms for Implementing the Direct Solution 
As shown in Section IV-A, there is a way to implement 

directly the filter bank with rational sampling factors (2/3, 

lowed by downsampling by qi (note that those with pi = 
1 will remain the same). Thus, what one would like to do 
is to transform this into a system having Q branches fol- 
lowed by downsampling by Q .  For example, the case 
given in Section IV-A with rational sampling factors (1 /2, 
1 /4, 1 /4), would remain untouched by Transform 1 ,  and 
thus one wants to transform it further so as to obtain four 
branches followed by downsampling by 4, as was shown 
in Section IV-A. The same approach as the one used in 
that case leads to Transform 2. 

Therefore, now we show how to express a single branch 
with downsampling by q using a p-channel analysis bank 
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I TRANSFORM 1: (p,q) = 1 I 

P 4 

.., ,..,..,..,. . . . . ... . 

Use transform 1 in each branch .ayo PN-1 HN- 1 9N-1 yN-l - ' 
X 

1 Use transform 2 in each branch 1 

L 

YO -l 

X 

-YO 

yN-l 

(C) 
Fig. IO.  (a) Transform 1: expressing a slngle branch with upsampling by p and downsampling by q using ap-channel analysis 
bank with sampling by q and an inverse polyphase transform of size p. All the filters involved are just shifted polyphase 
components of the original filter. For p = 1 there is no transform. Also, p and q are assumed to be coprime. (b) Transform 2: 
expressing a single branch with downsampling by q using a p-channel analysis bank with sampling by Q = p q  and an inverse 
polyphase transform of size p. All the filters involved are just shifted versions of the original filter. Note the dependency that 
appears in the filter banks after, Transfoim 2. (3) To transform any bank we first apply Transform 1 and then Transform 2 in  
each branch. As a result an analysls bank with sampling by Q = lcm (qo, . . . , q N -  ,) and Q branches is obtained. 
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with downsampling by Q = p q  and an inverse polyphase 
transform of size p .  The method is given in Fig. lO(b). 
The filter in the i th branch is just a shifted version of the 
original filter 

H,( z )  = z"H(z) .  (34) 

An algebraic proof that the two representations in Fig. 
10(b) are equivalent can be found in [13]. Here, a sim- 
pler, graphic proof, due to an anonymous reviewer, is 
outlined. In Fig. 10(b), move the filter H out of each 
branch and represent downsampling by Q ,  as downsam- 
pling by q followed by downsampling by p .  Then, using 
the noble identities, one can move downsampling by q in 
front of delays, causing downsampling of the delays by 
q. The resulting system is then as follows: filter H fol- 
lowed by downsampling by q ,  followed by an identity 
system, i.e.,  the starting scheme. 

Finally, Fig. 1O(c) shows how by using the above 
transforms one can implement a filter bank from Fig. 2(a). 
First Transform 1 i s  applied in each branch which yields 
an analysis bank with n = Er=-: p ,  branches and sampling 
factors qo, . * , qN - I )  
we apply Transform 2 in each branch to obtain an analysis 
bank with 

, qN I .  Now if Q = lcm (qo, 

N -  I Q P n =  . C p j . - = ~  C J = Q  
r = O  q; i = o  q; 

N -  1 

branches and downsampling by Q. 
Note first that, as we said before, the case we want to 

implement has to be realizable. Then, if only Transform 
1 is needed, all traditional methods for finding perfect re- 
construction structures can be used. However, if Trans- 
form 2 has to be used as well, the problem becomes more 
complicated since this transform introduces dependencies 
among filters, unknown in the theory of u n i f o q  filter 
banks. This issue is left for future work. 

It is also worth noting here the difference between the 
indirect and the direct methods (when they both work). In 
the indirect one, the two stages of the analysis bank are 
designed separately and moreover the characteristics of 
the equivalent filters (Ho ,  - , H N p  I from Fig. 2(a)) are 
unknown since we do not know how these filters are re- 
lated to the filters in the analyzing and resynthesizing 
banks. Using a direct method however, allows one to de- 
sign a filter bank with rational sampling factors, having 
at the same time the complete control over the desired 
characteristics of the filters Ho, * * , HN- 

V.  CLASSIFICATION OF FILTER BANKS 
In this section, realizable filter banks (as discussed in 

Section 111) are divided into four classes. The first three, 
apart from being designed using a direct method (with 
more freedom in filter design) can be obtained using either 
partial solution from [5] or tree-splitting schemes or both 
(with more restricted filters). The fourth one however, can 
only be obtained using the method described in this paper. 

To start, recall that in the filter bank we want to design 

(see Fig. 2(a)) all the pairs (pi, qi) are coprime. The clas- 
sification is then as follows (see also Fig. 11). 

A .  Class I :  The ( 2 / 3 ,  1 / 3 )  Case 
This class contains all filter banks that could be de- 

signed using the partial solution from [ 5 ] .  Equation (24) 
gives a necessary condition, together with the two facts 
that follow. Thus, the case (3/7, 1/7,  3/7)  would be- 
long to this class, but (3/7,  3 /7 ,  l /7) would not. In Fig. 
11, these facts are used to test whether a particular filter 
bank belongs to this class. A representative is the case 
with sampling factors (2/3,  1/3). Note here that if the 
partial solution is used, filters obtained will be of the form 
(26), while using the direct method does not necessarily 
impose a particular structure, leading possibly to other 
solutions. 

To construct this case, one could now choose one of 
the following methods: 1) use partial solution obtained in 
[ 5 ] ,  yielding a low-pass of the form (27) or 2) use the 
direct method as given in Fig. 9(a). 

Note that in the first one, one would have to design two 
banks, a 3-channel analysis, and a 2-channel synthesis, 
while in the second one, only a 3-channel analysis bank 
has to be constructed. In the first approach, one would 
use (27) and perform optimization on the low-pass and 
high-pass filters directly. In the second approach, a per- 
fect reconstruction structure for a 3-channel analysis bank 
could be taken and then the magnitude responses of the 
two filters would be optimized. The structure should build 
a polyphase matrix that for this case would be 

Hp = H/3 Hl5 ZH/I (35) c 13 
where Hl0, * * - , H15 are the polyphase components of the 
low-pass filter with respect to 6 ,  i.e.,  the low-pass filter 
is given by 

Hi(Z) = H/o(z6) + Z- '  ( z6)  + z - ~ H ~ ~ ( z ~ )  

and Hho, H h l ,  Hh2 are the polyphase components of the 
high-pass filter with respect to 3, i.e., the high-pass filter 
is given by 

Hh(Z) = Hh0(Z3) + z-'Hhl (z3) + Y2Hh2(z3 ) .  (37) 

In both approaches, specific structures should be chosen 
so as to obtain filters with prescribed properties, e.g., or- 
thogonality or linear phase. 

B. Class 2: The ( I  / 2 ,  1 / 4 ,  I / 4 )  Case 
This class consists of all filter banks that could be built 

using tree-splitting schemes. Again, if tree splitting is 
used, the filters obtained are products of individual filters 
(possibly upsampled), while if the direct method is used, 
other solutions might be possible. A necessary condition 
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Fig. 11. Algorithm to perform classification of filter banks. Conditions C1 are given in Section 111-D, while conditions C2 are 
given in Section V. 

for a tree structure is given in (28), and the algorithm for 
testing whether the set of downsampling factors (qO, - , 
qN- ,) represents a tree is indicated in Fig. 8. A repre- 
sentative of this class is the case with sampling factors 
(1/2, 1/4,  1/4). 

C. Class 3: The ( 2 / 3 ,  1 / 6 ,  1 / 6 )  Case 
This class consists of all filter banks that can be built 

through combination of tree-splitting schemes and partial 
solutions (bearing in mind, however, that the direct ap- 
proach might give more freedom in design). To be able 
to do that note that if one discards the synthesis banks 
(corresponding to recombinations), the rest still has to be 
a tree. Based on this define 

T(q0, e - 9 q N - 1 )  

= (qo, * 9 40, * * 9 ~ N - I ,  * * * ~ N - I ) .  (38) 
p N  - , times - p,times 

Define as conditions C2 conditions C1 from Section 
111-D applied on upsampling factors obtained from the first 
tree of T(qo, - - , q N - , ) .  Forthecase (2/3,  1 /6 ,  1/6),  
T(3, 6, 6) = (3, 3,  6, 6) which yields the first 3-channel 
tree, and po  = 2, pl = 1, q = 3. Fig. 11 shows then that 
if not all downsampling factors are equal and if there is 
at least one upsampling factor greater than one, then test- 
ing whether T(qo,  - , qN-  ]) is a tree and C2 is satis- 
fied, would yield filter banks belonging to this class. A 
representative is the case with sampling factors (2/3, 
1 /6 ,  1/61. 

D. Class 4: The (3/  7, 3 /  7, I / 7) Case 
This class would then contain all filter banks that do 

not fit in the above three classes, i.e., all those that cannot 
be built using intermediate methods but have to be con- 

structed using the direct design technique shown in this 
paper. A representative of this class is the case with sam- 
pling factors (3/7,  3/7,  1/7). To design such a filter 
bank, the only possibility is to use the direct design 
method, i.e., design just one 7-channel analysis bank. 
Note that in view of the discussion given in Section 111, 
this case can be constructed with ideal filters, and it will 
possess a polyphase transform. Designing a 7-channel 
analysis bank (leading to perfect reconstruction), one can 
cover the solutions in between these two extreme cases, 
as well. 

VI. DESIGN EXAMPLES 
In this section a representative case, namely, sampling 

by 2 / 3  and 1 / 3  is going to be considered. Note that the 
case uses only Transform 1. The first three cases will give 
designs using the partial solution while the last two will 
use the direct design method. The filters obtained are of 
different lengths (low-pass of size 50 and high-pass of size 
15 in cases, 1, 2 and 3,  low-pass of size 32 and high-pass 
of size 15 in cases 4 and 5). 

A .  Indirect Method versus Partial Solution 
Case 1: As the first step let us construct such a filter 

bank indirectly (see Fig. 4(a)). Thus a 3-channel analysis 
filter bank and a 2-channel synthesis bank are needed. We 
use optimized lossless filter banks that already appeared 
in the literature in [ l l]  and 1141. Since both banks are 
orthogonal the resulting filter bank is going to be orthog- 
onal as well. To prove this fact, after some manipula- 
tions, the equivalent polyphase matrix becomes 

(39) 



K O V A ~ E V I C  A N D  VETTERLI: PERFECT RECONSTRUCTION FILTER BANKS 2059 

where H,(z), Gp(z )  are the 3 x 3 analysis and 2 X 2 
synthesis matrices, respectively. It is then trivial to check 
that the whole matrix is orthogonal if both Hp and C, are 
orthogonal. 

The 3-channel analysis filter bank is built using lossless 
building blocks consisting of delay matrices and constant 
unitary matrices. These unitary matrices are constructed 
as a sequence of planar rotations, and thus the angles in- 
volved are free variables when constructing the filter bank. 
The same is true for the 2-channel synthesis bank except 
that normalization can be performed simplifying the op- 
timization process. For more details refer to [ 111, [ 141. 
The 2-channel optimized bank (we will refer to it as PP2) 
contains filters of length 8 with lattice coefficients as given 
in Table I. The 3-channel optimized bank (we will refer 
to it as PP3) contains filters of length 15 with angles as 
given in Table 11. Using tools that were developed in [ 5 ]  
and reviewed in Section 111, the equivalent low-pass filter 
can be expressed as in (27). We remind the reader that 
the filters denoted by Hi, i = 0, 1, 2 belong to the 3- 
channel analysis bank and the ones denoted by Gi, i = 0 ,  
1 belong to the 2-channel synthesis bank (see Fig. 4(a)). 
Thus the equivalent low-pass filter is now of length 50. 
Recall that this equivalent filter is located between upsam- 
pling by 2 and downsampling by 3 and thus when plotting 
its magnitude response one should bear in mind that it is 
actually plotted in the upsampled domain (thus if one 
wants a filter covering 2 / 3  of the spectrum, in the upsam- 
pled domain it would appear as a third-band filter). The 
high-pass filter is the third filter from the 3-channel anal- 
ysis bank H2. The magnitude response plots of the two 
filters are given in Fig. 12(a). As can be seen from the 
figure, the low-pass filter obtained in this fashion is of 
poor quality (see the response in the stopband). 

Case 2: As the first step in analyzing this example, we 
want to see how well we can do if the optimization is 
performed directly on the low-pass filter as given in (27). 
For this case, the high-pass filter will be left the same, 
meaning that the optimization is done on the free vari- 
ables of the 2-channel bank only (four of them). Ideally, 
one would like to have a low-pass with the transition band 
of 26 in the original domain. Since the low-pass filter is 
being designed in the upsampled domain, the aim is to 
achieve as close a response to the one of a third-band filter 
with transition band of E. As a criterion for optimization, 
the error in the stopband will be evaluated, i.e.,  

TABLE I 
CASE 1 : COEFFICIENTS OF THE SEPARATELY OPTIMIZED 2-CHANNEL FILTER 

BANK FROM [ 141 

2-Channel Bank PP2 

f l l  -2.638026 

f l l  -0.2598476 
U2 0 .7  154463 

f14 0.06388361 

TABLE I1 
C A S E  1 COEFFICIENTS OF THE SEPARATELY OPTIMIZED 3-CHANNEL FILTER 

BANK FROM [ 1 1 1  
~~~ ~ 

3-Channel Bank PP3 

f f l  2.35919 PI - 1.57089 
ff2  0.296676 P 2  - 1.93762 
ff3 1.41305 P 3  3.14115 

ff5 1.57091 P c  2 .356  16 
a 4  - 1.23644 P a  - 1.73044 

best local minimum obtained yields coefficients of the 2- 
channel bank as in Table 111 and filters (the high pass is 
the same as in Case 1) as in Fig. 12(b). As can be seen 
the improvement is obvious, the passband has been flat- 
tened and the stopband has been substantially reduced. 

Case 3: In the previous case, the 3-channel bank has 
not been touched in order not to ruin the high-pass filter. 
The goal now is to try to optimize the filters using both 
filter banks. The optimization function is 

The number of optimization variables is 14 (4 from the 
2-channel and 10 from the 3-channel bank). As an edu- 
cated guess we ran the optimization routine with coeffi- 
cients as in Case 2 as initial values. After trying with other 
initial values, the first local minimum turned out to be the 
best. The coefficients of the optimized banks are given in 
Tables IV-V, and the filters’ magnitude responses in Fig. 
12(c). From the figures it is obvious that we have obtained 
a design that is even better than the previous one (compare 
the stopbands and the passbands). To achieve this im- 
provement we have traded the sharpness of the transition 
band. 

(40) B. Using the Direct Design Method 

Note that in the lossless case, minimizing the error in the 
stopband automatically minimizes the error in the pass- 
band. To be able to compare this design to the one from 
Case 1, the same transition band as the one in [ 1 I], namely 
E = 0.382764898 is used. The numerical optimization 
routine was taken from [15] and is based on a so-called 
“downhill simplex algorithm” in multidimensions. After 

Case 4: Let us first use the same 3-channel bank as in 
Case 1 and see how the equivalent filters look. Designing 
the 3-channel bank means designing a size 3 X 3 lossless 
polyphase matrix which in turn yields filters Ho, H I ,  and 
H2. Filter Hh = H2 is the high-pass filter we are interested 
in while the equivalent low-pass is given by (see Fig. 9(a)) 

running it with an extensive number of initial guesses, the H,(z) = Hl0(Z2) + z-’H,,(z*) (42) 
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Fig. 12. (a) Case 1 :  Magnitude response plots of the filters obtained when separately optimizing two banks. (Conrinuedon nexi 

page. ) 

where HIo = Ho and H I ,  = z-’H1. The high-pass filter is 
still of length 15 (it is the same as in Case 1) while the 
low-pass one is of length 32. The results are far from ac- 
ceptable. The magnitude responses are given in Fig. 13(a) 
(high-pass is the same as in Case 1) .  

Case 5: Thus we now perform optimization directly on 
the magnitude responses of the two filters. The optimi- 
zation criterion is the same as in (41). The final result is 
given in Table VI, while the magnitude responses are 
given in Figure 13(b). The insight and power obtained by 
using the direct design method are obvious, just compare 
the magnitude responses in Cases 4 and 5 .  

VII. CONCLUSIONS AND FURTHER DIRECTIONS 

The paper generalizes the theory of perfect reconstruc- 
tion filter banks to the rational case thereby allowing for 
nonuniform division of the spectrum, a feature that could 
be useful in speech and music analysis (see [13]). The 

commonly used filter banks with integer sampling factors 
thus become a special case. It was shown that in some 
cases various problems might arise, such as mirroring, 
reshuffling of frequencies, permutation of the bands, and 
can lead to nonrealizable systems. The first such system 
was pointed out in [2], leading to the notion of “compat- 
ible sets. ” Assuming realizable cases, the tools enabling 
the direct design method were developed, the first of 
which leads to structures where traditional methods from 
the theory of uniform filter banks can be used. The second 
one, however, introduces dependencies in the system, 
making the design much more involved. The development 
of structures tuned to Transform 2 is left for future work. 
The classification of filter banks was then performed and 
the discussion of particular structures was presented. Sev- 
eral design examples were given. 

An interesting direction for future work might be to ex- 
tend this theory to the multidimensional case. Instead of 
sampling factors one would deal with sampling lattices. 
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Fig. 12. (Continued.) (b) Case 2: Magnitude response plots of the filters obtained when optimizing the 2-channel bank without 

touching the 3-channel one. Therefore, the high-pass filter is the same as in Case 1.  (Continued on next page.)  

A necessary condition for critical sampling would then be 

det (Dl .) 
i det (4,) 
c----=1 

where D,,'s represent upsampling lattices and 4 , ' s  rep- 
resent downsampling lattices. Since Transform 1 depends 
on the interchangeability of up/downsampling, a key in- 
gredient needed would be the commutativity of up/down- 
sampling that appeared in [7]. 

Note also, that due to recently developed connection 
between wavelet theory and filter banks, there exist a 
number of questions of interest concerning the connection 
in the present rational case, some of which are addressed 
in [13]. 

APPENDIX A 
TREE-SPLITTING VERSUS DIRECT DESIGN METHOD: 

THE LOSSLESS CASE FOR N = 2 
This Appendix aims to show that if the system obtained 

by tree splitting for the (1 /2, 1 /4, 1 /4) case is lossless, 
then the system in Fig. 9(b) is lossless as well. In other 

words, all lossless solutions obtained by tree-splitting 
schemes can be generated using the direct design method 
as expected. Assume that for the tree-splitting scheme the 
first filter bank has filters denoted by Ho and HI, while the 

,second one has filters To and T I .  Note that the two fourth- 
band filters (in Fig. 9(b)) can be expressed as HI (z)T0(z2) 
and H I  (z)Tl ( z 2 )  (just by moving filters To and TI  across 
downsamplers). Thus, after some manipulations, the 
polyphase matrix in Fig. 9(b), that is, the polyphase ma- 
trix of the expanded analysis bank in Fig. 9(b), can be 
expressed in terms of filters from the tree-splitting scheme 
as 

Hp = (' T p )  (" DHj JH,  dDHo) = T - H (43) 

where Tp is a lossless matrix containing polyphase com- 
ponents of filters To and TI and thus the whole matrix T 
is lossless. Moreover, since T i s  lossless the only fact left 
to prove is that H is lossless, since the cascade of two 
lossless matrices would give a lossless H,. In (43), J ,  D ,  
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lowpass filter in case 3 

Highpaes filter in case 3 '7 

(C) 

Fig. 12. (Continued.) (c) Case 3: Magnitude response plots of the filters obtained when optimizing both banks at the same time. 

TABLE I11 
CASE 2: COEFFICIENTS OF THE OPTIMIZED 2-CHANNEL FILTER BANK WHEN 

THE 3-CHANNEL BANK IS NOT TOUCHED 

2-Channel Bank OP2a 

-0.371 151 a1 
a2 2.732850 
a3 1.056070 
0 4  0.664108 

TABLE IV 
CASE 3: COEFFICIENTS OF THE 2-CHANNEL FILTER BANK WHEN BOTH THE 2- 

CHANNEL AND 3-CHANNEL BANKS ARE OFTIMIZED AT THE SAME TIME 

2-Channel Bank OP2b 
~~~ ~ 

a1 -0.5 13454 
a2 3.072208 

1.566488 0 3  
0.3057 14 a4 

TABLE V 
CASE 3: COEFFICIENTS OF THE 3-CHANNEL FILTER BANK WHEN BOTH THE 

2-CHANNEL AND 3-CHANNEL FILTER BANKS ARE OPTIMIZED 
AT THE SAME TIME 

3-Channel Bank OP3b 
~ 

- 1.531590 
-1.845041 

a4 - 1,213656 R4 - 1.682972 

f f l  2.353882 RI 
a2 0.152418 8 2  
a3 1.57162 6 3  3.2 12307 

a5 1.25 1406 Rs 2.375487 

TABLE VI 
CASE 5 :  COEFFICIENTS OF THE OFTIMIZED 3-CHANNEL FILTER BANK 

3-Channel Bank OP3c 

1.848559 PI -2.004359 
a2 0.580876 8 2  - 1.752920 
a3 1.199016 03 2.672730 
ff4 - 1.385383 84 - 1.574727 
a 5  3.005676 0 5  1.951543 
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Lowpasss filter in case 4 167' 

-50 

- 6 0 1  

-70  

Highpaas filter in case 1 

-10 1 
(a) 

Fig. 13. (a) Case 4: Magnitude response plots of the filters obtained when using just the 3-channel bank from [14]. Therefore, 
the high-pass filter is the same as in Case 1. (Confinued on next page . )  

H ,  and H I  denote the following: 

HOO HOI HI0 HI1 
HO = ( ), HI = ( ) (45) 

H02 H03 H 1 3  

where Hu are the four polyphase components of the first 
and second filters. We prove by induction that H is loss- 
less. The fact that all lossless polyphase matrices can be 
built using the following cascade structure [14] is going 
to be used (superscript (2) stands for polyphase decom- 
position with respect to 2): 

with 

H $ = c o (  -P ") 1 (47) 

where co is the appropriate normalization. 

ponents from (47) into matrix H yields 
Initial step: Substituting the values for polyphase com- 

for which it is trivial to check that it is lossless. 
Inductive step: Suppose now that the assumption holds 

for k and we want to prove it for (k + 1). Thus assume 
that the matrix H obtained from 
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Highpass filter in case 5 d?’ 

-I.f -70 

(b) 
(b) Case 5 :  Magnitude response plots of the filters obtained when optimizing directly 

is lossless. Then if one forms the next step in the cascade 
as in (46), after some manipulations it becomes obvious 
that the corresponding matrix H is lossless as well. 0 

APPENDIX B 
PROOFS OF PROPOSITIONS FROM SECTION 111 

1. Proof of Proposition 3.1 

i.e., H is positioned at 
Suppose the statement of the proposition is not true, 

H: [(; + .) 7r, (y + € )  7r] 
(50) 

the 3-channel bank 

After down/upsampling, aliased version H ( w  + 2ia/q) 
will move ffL to 

s + l  

4 

27r - (6 + € + ;) 
It suffices to show now that one of the frequencies be- 
longing to H i  will coincide with one in H .  Thus, let us 
check that the following is true: 

and symmetrically for negative frequencies. The closest 
replica of the negative part of the spectrum is at 

s + l  
H,: [Z. - (7 + 6 )  n, 277 - (; + e )  T]. (51) 

or 

q = s + i + l .  (54) 
But since s, i = 0,  * * , q - 1, there always exists i so 
that (54) is true, or, in other words, H i  will overlap with 

0 ff causing aliasing and disabling reconstruction. 
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2. Proof of Proposition 3.5 
We will show this for just one analyzing/synthesizing 

k even if p > 1 ,  followed by downsampling by q, upsam- 
pling by p and p synthesis filters Go, . * The 
first analysis filter Hk is positioned from 

part, that is, f o r p  analysis filters Hk, . , Hk + p  - 1 with 

, Gp - 

Hk: [ k  - a, - k + l a ]  
4 9 

in the spectrum, while Ci resides at 

i i + l  

P P  
Upsampled versions will then be at 

Hk(Zp): a, 
P4 P9 

-k + (2n - l )q  - k  - 1 + (2n - l ) q  

P4 
a, 

( 5 5 )  

(2m - 1)p (2m - l ) p  - 1 .] 
a, (56)  

with k = 0, 2 ,  . - , k I q - p ,  n = 0 ,  - * *  , p  - 1, 
m = 0 ,  , q - 1. Thus, the first filter from (26)  
Hk (zp)GO (z9) will live where the above two intersect. The 
solution is the solution of the following equation: 

P4 P9 

k + 2nq = 2mp. (57) 
Since k is even, and ( p ,  q )  are coprime, (57) has a solu- 
tion. Therefore, the right-hand side of the equivalent filter 
from (26)  He will be at 

k + 2nq 
a, HeR: ~ 

k + p + 2nq L P4 P4 
if 0 I k + p + 2nq I p q ,  or from 

a] (59) 
2pq - k - p - 2nq 2pq - k - 2nq 

P4 
H C R :  [ p q  a> 

ifpq I k + p + 2nq I 2pq. First, we have to show that 
the filter obtained is a correct 9th band filter as required 
by Proposition 3.1. Substituting (57) into both (58) and 
(59), one obtains 

H,R. . [fa, (2m + ” a ] ,  0 I k + p  + 2nq I p q  
4 

(60) 

4 

(61 )  

(29 - 2m - 1) [ a, 

p q  5 k + p + 2nq I 2pq 

that is, a correct 4th band filter 

Then, one has to show that this 9th band filter lives 
within one “half-image’’ of the input signal as explained 
in Section 111-C. For the first case (58) (for the second 
one similarly), substitute (57) into (17) where s = 2m, ,  
i.e., 

P 2mP (2m + 1) - - 1 I 1 I -. 

For k = 0 this obviously works, yielding I = 2n, while 
for k # 0, one gets k I q - p ,  which is satisfied by 
assumption, yielding I = 2n again. 

The only thing left to show is that the part extracted 
from the signal is indeed correct. In the first case, with I 
= 2n, the part extracted is 

9 9 

that is, the correct part of the input signal’s spectrum. The 
second case follows similarly. 0 
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