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Subband Coding Systems
Incorporating Quantizer Models

Jelena Kovalevié, Member, IEEE

Abstract—A new method for dealing with the effects of quan-
tization in a subband system is proposed. It uses the “gain plus
additive noise” linear model for the Lloyd-Max quantizer. Based
on this, it is demonstrated how, by an appropriate choice of
synthesis filters, one can cancel all signal-dependent errors at
the output of the system. The only remaining error is random
in nature and not correlated with the input signal. We therefore
have a tradeoff between the error being only random or having
signal-dependent components as well (since the error variances in
both cases are comparable). As a result of having only a random
error, it is possible to reduce this error using, for example, a noise
removal technique. The result is then extended to the case where
the input is a multidimensional signal, and arbitrary sampling
lattices are used, as well as to the QMF (alias cancellation) case.
To demonstrate the validity of the proposed approach, two types
of experiments on images are carried out: In a toy example, it is
shown that using noise removal could be beneficial. For a more
realistic coding scheme, however, it is demonstrated that even
in the case when the model is no longer valid (when some of
the subbands are discarded), the output error is still much less
correlated with the input signal as opposed to the commonly used
subband system, while visually, the reconstructed images look
very similar.

1. INTRODUCTION

UBBAND coding systems have been used for signal
S compression for more than a decade and the corresponding
theory has progressed from initial, alias-cancellation QMF so-
lutions [1] to perfect reconstruction systems [2]—[5]. However,
all of these solutions were developed assuming that there is no
coding loss. In reality, the system will possess a quantizer in
the middle, and hence, information loss will occur. A typical
approach in designing a subband coding system has been to
find a perfect reconstruction (or an alias-cancellation) filter
bank and then design appropriate subband quantizers. The
problem of analyzing the system as a whole, although of
significant theoretical and practical importance, has not been
addressed by many authors.

Among the works on the subject are [6], where Kronander
proposes several criteria to be used when designing filters
to be used in a subband coding system with quantization.
A variety of analysis/synthesis systems have been explored
in [7], for use in speech and image coding. These include
DFT’s, QMF banks, as well as pseudo-QMF filter banks. In
[8], the authors use a statistical model for the optimal design
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of analysis/synthesis systems that include quantization. Based
on this, optimal (in the mean squared error (MSE) sense)
synthesis filters are designed given analysis ones (for particular
quantizers, such as fine quantization modeled by the additive
noise model).

In [9], however, the authors have incorporated a “gain plus
additive noise” model for the Lloyd-Max quantizer into a
QMEF system (which achieves alias cancellation only but not
perfect reconstruction). Using such a model, the error at the
output of the system can be broken down into different types of
errors, such as the aliasing, signal, random, and QMF errors.
This, in turn, allows one to investigate the nature and the
impact of these various types of errors on the output signal.

By using the same model for the Lloyd-Max quantizer, the
aim of this paper is to demonstrate how, by an appropriate
choice of synthesis filters, all signal-dependent errors at the
output of the system can be cancelled. In other words, the
difference between the input and the output is random in
nature and not correlated with the input. Note, however, that
what we will achieve is a tradeoff between different types of
errors. In other words, the total error in the first case will
be comparable in energy to the total, but only random, error
in the second case. The second case has the potential benefit
of having to deal only with a random, noise-like error at the
output, which can then be eliminated (or, at least reduced)
with an appropriate noise removal technique. Two sets of
experiments will be performed. The first experiment is a “toy-
example,” exaggerated so as to be able to investigate the
effects of the unconventional synthesis filters. We use the Haar
filters, which provide the most aliasing, and show that even
in that case, all signal-dependent parts are cancelled. In the
second experiment, we employ a more sophisticated, realistic
coding scheme, with a logarithmic frequency split. There,
we investigate the performance of the conventional versus
unconventional system. It is shown that in the case of practical
interest, where some of the subbands are discarded, even if in
theory the output has a signal-dependent component, it has
still a much smaller correlation coefficient than its unscaied
counterpart, while visually the images look very similar.

Note that this is a continuation of previous work [10]. Note
also that in the course of revising this paper, we have become
aware that similar theoretical results have been independently
derived in [11] and [12].

The outline of the paper is as follows: Section II reviews
perfect reconstruction filter banks and gives a short account
of the work in [9] with particular emphasis on the model
used for the Lloyd-Max quantizer. Section III presents original
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Fig. 1. Two-channel filter bank.

work and introduces the main new concept in the paper,
i.e., by careful choice of synthesis filters one can eliminate
all signal-dependent errors at the output. This results in the
output errors that are not correlated with the input signal.
Section IV extends this result to the multidimensional case
using arbitrary sampling lattices, as well as to the QMF (alias
cancellation) case. Finally, Section V presents experimental
results on images, whereupon the conclusions are drawn.

II. REVIEW MATERIAL

A. A Glimpse at Perfect Reconstruction Filter Banks

Here, we briefly recall some of the concepts from the theory
of perfect reconstruction filter banks that are going to be used
in the remainder of this paper. For a more extensive treatment
of the subject, refer to [3]-[5] and [14].

An analysis filter bank is a signal processing device that
splits the input signal into M channel signals by means of
filtering and downsampling by N (where N < M). In what
follows, we will assume that N = M, i.e., the filter bank
is critically sampled. The synthesis filter bank performs the
inverse task. Throughout the remainder of this paper, we will,
without any loss of generality, concentrate on the case N =
2 (see Fig. 1). The output of the system (in the absence of
quantization) is

X(2) = 5[Go(x)Ho(2) + Gi(2)H(2)] X(2)

+ —;—[Go(z)Ho(—z) + Gi(2)H (—2)] X(—2).(1)

The component X (—z) is the aliased version of the signal,
and systems designed to remove this part of the signal are
termed “alias cancellation.” A well-known solution cancelling
aliasing is a so-called quadrature mirror filter solution (QMF)
[1], with the following choice of filters:

Ho(z): G()(Z) = H(Z),
Hy(2) = =G1(2) = H(-2). (2)

It can be shown that once the filters are chosen as above, it is
not possible to obtain perfect reconstruction of the signal,’

Except for trivial, two-tap filters in the FIR case.
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ie, X(z) = X(z). Note, however, that by numerically
approximating perfect reconstruction, filters of extremely high
quality can be designed (see, for example, [15]).

To achieve both alias cancellation and perfect reconstruc-
tion, the filters have to satisfy the following:

Go(z)Ho(z) + Gi(2)Hi(z) =2 A3)
Go(z)Ho(—2z) + G1(2)H1(—2) =0. 4

Note that the choice of the filters as above would achieve
perfect reconstruction only in the absence of quantization.

B. Gain Plus Additive Noise Model

In the last section, the conditions for perfect reconstruction
were given, and it was stressed that they were valid only
in the absence of quantization and coding. However, all
real systems include a quantizer in the middle, resulting in
the loss of information. Consequently, perfect reconstruction
property of the system is lost. Although of vast theoretical and
practical importance, surprisingly few authors have addressed
the problem of joint design of filters and quantizers.

One of the few works on the topic is due to Westerink et al.
[9]. The authors use the optimal scalar quantizer to quantize
the subbands—Lloyd-Max. For that particular quantizer, it can
be shown that (see, for example, [16])

a': = oz - 0'3 5)
where 02,02,02 are the variances of the quantizer, its in-
put and its output, respectively. Consider now a so-called
“gain plus additive noise” linear model for this quantizer. Its
input/output relationship is given by

y =ax +r (6)
where x,y are the input/output of the quantizer,? r is the
additive noise term, and « is the gain factor (¢« < 1). The
main advantage of this model is that, by choosing
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the additive noise will not be correlated with the signal,
and (5) will hold. In other words, to fit the model to our
given quantizer, (7) must be satisfied. Note also that the
additive noise term is not correlated with the output signal.
Even when the input is not zero-mean unity-variance, (7) still
holds (although the derivation is slightly different—see the
Appendix).

The authors in [9] then incorporate this model into a QMF
system (where the filters are designed to cancel aliasing, as
given in (2)). Consequently, the error at the output of the
system can be written as

E(z) = Eq(z) + Es(z) + Ea(z) + Egr(z) (8)

2Bold values denote random variables.
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Fig. 2. Subband coding system with the “gain plus additive noise” linear
model for the Lloyd-Max quantizer.

where
Eq(2) = 3lH?(:) ~ H(~2) - 2] X(2) ©
Bs(z) = 3l(00 = H(2) ~ (a1 - DE*(=2)] X(2)
(10
Eu(z) = %(ag —) H(z) H(-2) X(-2) (1)
Er(2) = H(z)Ro(2*) — H(=z)Ri(2%). (12)

Note that here, 22 in R;(22) appears since the noise component
passes through the upsampler. Also note that in the above,
X(z) denotes the signal, while in (6), it would denote a
particular subband signal. This breakdown into different types
of errors allows one to investigate their influence and severity.
Here, Eg denotes the QMF (lack of perfect reconstruc-
tion) error, Fs is the signal error (term with X (2)), Ea
is the aliasing error (term with X(—z)), and Eg is the
random error. Note that only the random error Ef, is signal
independent.

III. CHANGING SYNTHESIS ACCORDING TO QUANTIZATION

As we pointed out earlier, once quantization is used in the
system, even if filters are designed properly, the system loses
its perfect reconstruction property. The question is then, why
use the synthesis part of the system as the exact inverse of the
analysis if we know in advance that the signal is not going to
be reconstructed perfectly.

Our aim now is to use a general subband system where
the synthesis bank is not the inverse of the analysis one,
incorporate the linear model for the Lloyd-Max quantizer
from Section II-B and see whether anything can be done to
eliminate certain types of errors (see Fig. 2). Note that here, no
assumptions are made about the filters, that is, filters (Hg, H 1)
and (Go, G1) do not constitute a perfect reconstruction pair.
Assume, however, that given a suitable analysis filter pair
(Ho, Hy), we find (Ty, T}) such that the system is perfect
reconstruction. Then, filters H; and T; satisfy the conditions

(3), (4). Let us now find the expression for the output of the
system

X(2) = %[agGo(z)Hg(z) b aGi(z)Hy ()] X(2)

+ %[aoGo(z)Ho(—z) + a1Gi(2)Hi(—2)] X(-=2)

+ Go(2)Ro(2?) + G1(2)R1(2%). (13)
The error is then
E(z)= X(2) - X(2)
= 3[00Go(2) Ho(2) + anGi(2) () - 2] X(2)
+ 5la0Go(2)Ho(~2) + ayGi(2)Hi(~2)] X(=3)
+ Go(2)Ro(2?) + G1(2)Ri(2?),
=Es(z) + Ea(z) + Eg(2) (14)

where the signal error Es(z) is the term with X (2)

1
Es(z) = FlaoGo(2)Ho(2) + a1Gi(2)Hi(2) — 2] X(2)
(15)
aliasing error E4(2) is the term with X (—z)

Ea(z) = %[aoGo(z)Ho(—z) + Gy (2)Hy(=2)] X(~2)
(16)
and random error Eg(z) is

Er(z) = Go(2)Ro(2®) + G1(2)Ri(z%). (7)

Now comes the crucial step. Since after designing quantizers
we know aq and a;, choose the synthesis filters (G, G;) as
follows:

1 1
Go(z) = —To(z), Gi(z) = —Ti(z). (18)
(e71] [e3]
Substituting this into (15)—(17) and taking into account (3) and
(4), one can see that the errors become

Fs(2) = 5[To(:)Ho(2) + Ti(:)Hi(2) - 2 X(2) = 0
(19)
Falz) = 3[To(2)Ho(-2) + Ty(2)Hi(=2)] X(~2) = 0
(20)

Er(z) = —To(2)Ra() + —Ti(:)Rs(=?) @
Qg aj
that is, by an appropriate choice of synthesis filters, all signal-
dependent errors have been cancelled, and the only remaining
error is the random error Eg(z), not correlated with the signal.
What we have done until now might seem a cumbersome
way to state an obvious fact: If in Fig. 2 we perform the
inverse of the scaling by «; (that is, 1/«;) before upsampling,
the effect of the model will propagate only through the noise
components r;. Although deceptively simple, this allows us to
preserve perfect reconstruction, except for the noise terms.
The advantage of this approach is that one has to deal with
only one type of an error (signal independent). Thus, one could
use any noise removal technique to try to eliminate Eg(z) (see
Section V). Note, however, that the random error in (21) has
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been boosted by dividing the terms by «; < 1. Note also that
the above approach introduces a new concept, that is, after
analysis section, use a synthesis filter tuned to a particular
quantizer.

Finally, let us discuss the two important border-line cases:
a = 0.0 and o = 1.0. When o = 1.0, it means that there are
no coding errors, that is, 03 = 0.0. In that case, the random
noise variance is zero as well (since it can be shown that
02 = a1 —a)a?). When a = 0.0, on the other hand, we code
the signal with its mean value (that is, in practice, we discard
that subband). In this case, o2 = 0.0 again. Suppose that a; =
0.0. Then, in (15) and (16), the terms with «; go to zero. This
further means that we will not be able to recover the part of
the signal going though that branch. However, experimental
results show that it is still beneficial to perform the scaling
on the subbands with o # 0 since the the output error in that
case will be still much less correlated with the input than in the
usual case (without scaling). For more details, see Section V.

IV. GENERALIZATIONS

A. Multidimensional Case

The approach presented earlier is completely general, and
can be easily extended to the case where the input is a
multidimensional signal. Choosing the synthesis filters as

1
—Ti(z),s = 0,..

&5

Gi(z) = LN -1 (22)
where N is the number of channels and z is the n-dimensional
z-transform vector, will cancel all signal-dependent errors. The

only remaining, random error will be

N-1

> STz Ri(aP)

i=0 ¢

Eg(z) = (23)

where D is the sampling matrix representing the sampling
lattice, and zP denotes multidimensional upsampling (for the
details of the notation, see [17]).

B. QMF Case

One can see that the above idea works in the perfect
reconstruction case. Now, we will show how it can be modified
s0 as to include the QMF case as well. In other words, suppose
we have the exact scheme used in [9] and see whether we can
eliminate certain errors there. The QMF choice of filters in [9]
is as given in (2). Suppose, however, that we apply the same
idea as before, that is

Golz) = aiOH(z), Giz) = -ailH(-z). 24)

The resulting system is then
5 1
X(2) = 5la0Go(2)Ho(2) + a1Gi(z)Hr(2)] X (2)

+ %[aoGo(z)Ho(—Z) + a1G1(2)H1(—2)] X(-2)
+ Go(2)Ro(2%) + Gi(z)Ri(2%) (25)
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o

Fig. 3. Scheme used to carry out experiments. NR stands for noise removal

and is optional.

or, after substituting H,(z) = H(—z) and (24)
X(:) = 5lH*z) ~ HY(=2) X(2)
+ S HE)H(=2) ~ H(-2)H(2)] X(~)

+aiOH(z)Ro(z2) - ailH(—z)Rl(zQ). (26)

This further means that the overall error is
B(z) = H(:) ~ H(~2) - 1] X(2)
+ -HR(?) - —H(—2)Ra(z), @)
[0 7)) o
= Eq(2) + Egr(2) (28)

i.e., it consists only of the QMF error (lack of perfect recon-
struction, term with X (2)) and the random error. According to
the conclusions from [9], the QMF error is almost negligible,
meaning that we could use the same technique as proposed
for the perfect reconstruction case (the output signal followed
by noise removal). This can also be seen as an extension of
the scheme in [9].

V. EXPERIMENTAL RESULTS

Our aim in this section is to evaluate the validity of
the proposed approach. To this end, experiments on images
were performed. The first experiment is a “toy-example,”
exaggerated so as to be able to investigate the effects of
the unconventional synthesis filters. We use the Haar filters,
which provide the most aliasing, and show that even in that
case, all signal-dependent parts are cancelled. In the second
experiment, we employ a more sophisticated coding scheme,
with a logarithmic frequency split. There, we investigate
the performance of the conventional versus unconventional
system. As a test image, “Lena” of size 256 x 256 was used.

A. Toy Example

We will use the simplest meaningful subband splitting
scheme, as given in Fig. 3. Each one of the four bands will
correspond to one possible combination lowpass/highpass in
the horizontal/vertical directions. Then, for example, subband
0 will contain the input signal lowpassed in both directions.
The sampling is separable by 2 in each direction.
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TABLE [
OPTIMAL QUANTIZER FOR THE ZERO-MEAN UNITY VARIANCE INPUT WITH ¢ = 0.5

Level I Probability | Code word

—0.548 0.5
0.548 0.5 1

The analysis filters Hy, - - -, H3 are obtained from the sim-
plest FIR perfect reconstruction filters—Haar, by applying
them separately in both directions, i.e.

1
Ho(zl,Z2) = 5(1 +Zl_l)(1 + Z2_1)7
1 _ _
Hy(z1,20) = 5(1 +2 1)(1 — 2 1)7

1 _ _
Hy(z1,22) = 5(1 -2 )1+ 21,

H(am)= 30 )(1- 5. @)
Their perfect reconstruction synthesis filters will be denoted
by TOa"'wT3-

For the quantizer design part, we will follow closely work in
[9]. Looking at subband histograms, the authors conclude that
using the generalized Gaussian probability density function
(pdf) will match subband data more closely than some other
commonly used distributions, such as the Laplacian pdf. The
generalized Gaussian pdf is given by

p(z) = ae b=l 30
where
_ be 1 [T(®)
Y C A vey D

and I'(.) is the Gamma function. The parameter c determines
the shape of the function (for example, for ¢ = 1.0, one obtains
the Laplacian pdf, while ¢ = 2.0, results in the Gaussian pdf).
For the subbands 1, 2, and 3, the value of ¢ = 0.5 yields a
good match to the subband data (see Fig. 4). For subband 0,
one could fit a Gaussian to the subband data, but it is not a
very close match. Therefore, in this example, to avoid having
artifacts due to the quantizer mismatch, we will not quantize
the low band (which is equivalent to a9 = 1.0, according to
(7). Also, to make the effects of quantization pronounced, we
will coarsely quantize the higher three subbands, using only
two representation levels. Such a quantizer was designed in
[18] and is given in Table I.

Once we have designed quantizers, we can compute the
gain factors a;.Using (7), the gain factors obtained for the test
image “Lena” are

a1 = 0.299398, a; = 0.300149, a3 = 0.296744. (32)
It should be noted that, even for other images we tried (with the
same splitting scheme), the gain factor for higher bands was
always around « = 0.3. In the next section, where a different
splitting scheme is used, one will see different gain factors.

3This means that the only artifacts will be due to the quantization of the
higher three bands.

0.3

40

©)

Fig. 4. Histogram fitting of the highest three subbands. The true histograms
are given by large dots, overlaying the corresponding generalized Gaussian
pdf with ¢ = 0.5.

1) Conventional System (CS): By conventional system we
will denote the system in which the synthesis bank is the exact
inverse (or alias cancellation pair) of the analysis bank. The
filters used in this case would be the same as given in (29),
except time-reversed.

2) Unconventional System (US): By unconventional sys-
tem we will denote the system in which the synthesis filters
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Fig. 5.

Results on the test image “Lena” with unquantized subband O and 1-bit quantization of subbands 1, 2, and 3: Upper left-hand corner: Original

image; lower left-hand corner: The output image obtained with the conventional system; lower right-hand corner: The output image obtained with with the
unconventional system; upper right-hand corner: The output image obtained with the unconventional system followed by noise removal.

have been scaled according to (18). Thus, one would use the
time-reversed versions of (29) and scale them using the gain
factors given in (32).

To observe the output of such a system, the previously
described filtering and quantization were applied. Fig. 5 shows
four images: original “Lena,” the output of the CS, the output
of the US, and an example for what could be done after the US,
that is US followed by noise removal (to be explained later).
Fig. 6 shows the same, except that difference images between
the original and the outputs are given. Let us concentrate
now on the output of the CS versus US. Note first, how in
Fig. 6, the difference between the original and the output of
the US is clearly random in nature (compare to the difference
between the original and the output of the CS). To quantify

this statement the correlation coefficients* between the input
and the outputs of the CS and US were computed

res = 0.16097660, rys = 0.00603774. (33)

As can be seen, the correlation coefficient for the unconven-
tional system is significantly lower (close to 0) than the one
for the conventional system. In the difference image, one can
still detect some correlation to the input image (as given by
a nonzero 7y s), which can be attributed to a slight quantizer
mismatch.

3) Example: Unconventional System Followed by Noise Re-
moval (US+NR): The main point we wanted to get across is
that by using an unconventional system, one obtains an error at
the output of the system not correlated with the input signal.
E{X—pa)¥=ry)}

4Correlation coefficient is by definition r = =
zTy

, Where
tz. ity are the mean values of x and y, respectively.
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Fig. 6. Difference images for the test image “Lena” with unquantized subband 0 and 1-bit quantization of subbands 1, 2, and 3. Upper left-hand
corner: Original image; lower left-hand corner: The difference between the input and the output of the conventional system; lower right-hand corner:
the difference between the input and the output of the unconventional system; upper right-hand corner: The difference between the input and the output

of the unconventional system followed by noise removal.

The advantage of such a system is that a random error is
more easily dealt with than an error highly correlated to the
input signal. As an example, a noise removal scheme will be
employed to try to reduce the random error (see Fig. 3).

The technique used was proposed by Chan and Lim [19].
They use a cascade of 1-D filters in suitable directions (e.g.,
horizontal, vertical, and two main diagonals), to perform
noise smoothing while preserving edges. The parameters one
can vary in the technique are the window size and noise
variance. Fig. 5(d) shows the output of the unconventional
system followed by noise removal, while Fig. 6(d) shows
the difference between that output and the original image.
The overall impression when one compares the outputs of
the CS versus US+NR is that the latter has the edges much
better preserved (observe the rim of the hat and the edge
of the cheek). This indicates that it is, indeed, possible to

exploit the fact that the output error is random. Note that
applying noise removal to CS does not result in any visible
improvement.

As an objective measure of quality, one can compute
MSE’s. Table II gives MSE’s between the original image and
the output of the CS, US, and unconventional system followed
by noise removal (US + NR), as given in Fig. 5. MSE’s were
computed using the following:

> (@i — ¥i5)?
|- 2552

(34)

where [ is the size of the image (2562 in this example), and
Z;j, Vi, are the values of the pixels of the input/output
images, respectively.
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TABLE 11
MEAN SQUARE ERRORS BETWEEN THE ORIGINAL IMAGE AND THE OUTPUT OF
THE CONVENTIONAL SYSTEM (CS), UNCONVENTIONAL SYSTEM (US), AND
UNCONVENTIONAL SYSTEM FOLLOWED BY NOISE REMOVAL (US + NR)

System I MSE
CS 0.432812
US 0.435017
US + NR | 0.425977
9 8
6 5
7
3 2
4
1 )

Fig. 7. Three-level logarithmic subband split.

B. Further Investigation of the Unconventional
Versus the Conventional System

We want to examine now a more realistic coding scheme and
compare the conventional versus the unconventional system.
Note that here, we will not be dealing with the noise removal
part anymore. That issue is left for future work. To that end, we
will perform a three-level logarithmic splitting (this is actually
a discrete wavelet transform) as given in Fig. 7. The filter used
was the Daubechies’ Dg filter [20] (it has 12 taps) since it was
shown in [21] that in wavelet-like schemes regularity of the
filter is important. The justification for choosing a 12-tap filter
is given later in this section. Note that this filter together with
its highpass and synthesis filters is an orthonormal solution,
which is beneficial for the bit allocation algorithm (see [21]).
Note also that the toy example shown previously could be seen
as a special case of this scheme where the lowest subband is
not decomposed further.

To efficiently allocate bits among subbands, we use the
optimal bit allocation algorithm developed in [22]. The al-
gorithm can be optimal for signal blocks that are dependent.
It uses operational R-D curves for each subband (in our case)
to yield an optimal choice of quantizers for a given budget
(bit rate). The algorithm exploits the monotonicity property of
the R-D curves. Due to this requirement we choose a set of
possible quantizers for each subband such that each of the R-
D curves is monotonic. The quantizers were designed in [18].
Therefore, we chose the following set of possible quantizers
for the subbands 1-9: 3, 5, 7, 8, 15, 16, 31, 64, 63, 128 (where
the numbers indicate the number of quantization levels of the
Lloyd-Max quantizers). All of the quantizers are for the shape
parameter ¢ = 0.5 as explained in Section V-A. For the lowest
band, however, we use ¢ = 0.75 as proposed in [9] and the
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TABLE III
QUANTIZER CHOICES FOR SUBBANDS 0-9 OBTAINED AS THE OUTPUT OF
THE OPTIMAL BIT ALLOCATION ALGORITHM FROM [22]. THEY ARE
GIVEN FOR TWO TARGET BIT RATES: 0.7 AND 1.5 bpp. THE
NUMBERS IN THE TABLE REPRESENT THE NUMBER OF QUANTIZATION
LEVELS OF THE LLOYD-MaX QUANTIZER FOR EACH SUBBAND

Subband | 0.7bpp | 1.5bpp

0 128 128
1 31 128
2 15 31
3 15 31
4 7 31
5 5 15
6 ] 7
7 3 7
8 1 3
9 1 3
TABLE IV

GAIN FACTORS OF THE MODEL FOR THE LLOoYD-Max
QUANTIZER FOR TWO TARGET BIT RATES: 0.7 AND 1.5 bpp

Subband | 0.7bpp | 1.5bpp

0 0.998198 | 0.998198
1 1.010118 | 1.000405
2 0.992122 | 1.022611
3 0.985918 | 1.022611
4 0.957444 | 0.996324
5 0.874389 | 0.991303
6 0.854066 | 0.994869
7 0.592204 | 0.934944
8 0.0 0.539889
9 0.0 0.542170

following set of quantizers: 31, 64, 63, 128. These sets will
ensure that the individual R-D curves are all monotonic as
required by the optimal bit allocation algorithm. The algorithm
was run for a range of target bit rates from 0—2 bpp. As an
example, Table I shows the quantizers for target bit rates
of 0.7 and 1.5 bpp (the actual bit rates are slightly different,
namely, 0.676367 and 1.48054 bpp).

Once the subband signals are quantized, we can compute
the gain factors according to (7). The scaling is performed
on the signals directly, immediately after quantization, rather
than incorporating them into the synthesis filters. Table IV
shows the gain factors obtained for the target bit rates of 0.7
and 1.5 bpp. Note that for 1.5 bpp, almost all gain factors
are around one, except for the last two (since the quantization
is sufficiently fine). For 0.7 bpp, the last two values are zero,
since these subbands are discarded (each one is quantized with
one quantization level—its mean value). Note also that some
gain factors exceed one. This can be attributed to numerical
errors, as well to a quantizer mismatch. To check how good a
quantizer fit we have, correlation coefficients were computed
between the input subband signals and the random signals
for those subbands that are encoded. The random signals
are obtained as the difference between the actual quantized
subband signal and the input subband signal multiplied by
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TABLE V
CORRELATION COEFFIECIENTS BETWEEN THE INPUT SUBBAND SIGNALS AND THE
RANDOM SIGNALS FOR THOSE SUBBANDS THAT ARE ENCODED. THE RANDOM
SIGNALS ARE OBTAINED AS THE DIFFERENCE BETWEEN THE ACTUAL
QUANTIZED SUBBAND SIGNAL AND THE INPUT SUBBAND SIGNAL MULTIPLIED BY
ITs GAIN FACTOR. THEY ARE GIVEN FOR Two TARGET BIT RATES: 0.7
AND 1.5 bpp. THE VALUES MISSING ARE FOR DISCARDED SUBBANDS

Subband | 0.7bpp | 1.5bpp
0 1.107216e — 02 1.107216e — 02
1 —1.002162¢ — 01 | —2.569426¢ — 02
2 —5.280836e — 02 | —1.652828¢ — 01
3 —3.785217¢ — 02 | —1.164535¢ — 01
4 ~8.521539e — 02 | —2.454910e — 02
5 —4.17653% — 02 | —5.3525647e — 02
6 1.551937¢ — 02 | —1.400486e — 01
7 1.321345e — 01 | —3.997022e — 02
8 1.421262¢ — 01
9 1.369439%¢ — 01

its gain factor. Table V lists correlation coefficients for each
subband for the previously mentioned bit rates. As can be seen
from the table, all correlation coefficients are close to zero,
indicating that the random signals are indeed uncorrelated to
their input signals.

Finally, to investigate the correlation between the input
signal and the output error signal, we ran the coder for bit
rates ranging from 0.1-2 bpp. Fig. 8 shows the correlation
coefficient as a function of bit rate for the conventional system
(dashed line) and the unconventional system (solid line). In
the range 1.4 bpp and up, the unconventional system has a
correlation coefficient that is at least one order of magnitude
lower than the one for the conventional system. Under 1.4 bpp,
the curve for the unconventional system starts approaching the
conventional one. However, there is still a notable difference
between them even at lower bit rates. The fact that the
transition happens at 1.4 bpp is because this is the last bit
rate at which all of the subbands are coded, meaning the last
bit rate where the model is still valid. As soon as one of the
subbands is discarded, which happens with subband 9 at target
rate of 1.2 bpp (actual rate 1.1594 bpp), the model is no longer
valid and we may expect correlated error at the output. This
bad news is softened by the fact that the experimental results
show that even when that happens, the output error for the
unconventional system is still much less correlated than the
output error for the conventional one (see Fig. 8).

We said at the beginning of this section that we would
offer the justification for using the Dg filter. We wanted to
investigate the effect of different filters on the two systems.
We have used the Daubechies family of regular filters of
lengths 4-20, that is filters Dy — D1y [20). The Haar filter
was also included in the investigations since it could be seen
as the filter D;. The reason for using Daubechies filters rather
then some other, more commonly used ones, is that the recent
study by Rioul [21] showed that the regularity of the filters
is indeed important in the discrete wavelet transform schemes
(logarithmic decompositions). In some sense, this conclusion
goes against the commonly used criterion for designing the

Correlation Coofficient

0 0.5 1 1.5 2
Bit Rate (bpp]

Fig. 8. Correlation coefficient as a function of bit rate for the conventional
system (dashed line) and the unconventional system (solid line).

TABLE VI
VARIANCE OF THE OQUTPUT ERROR SIGNAL AS A FUNCTION OF THE FILTER USED.
FOR THE UNCONVENTIONAL (US) AND CONVENTIONAL SYSTEMS (CS)

Filter l US: 0.7bpp | US: 1.5bpp | CS:1.5bpp

Haar | 76.73551 25.26492 20.69435
Dy 62.82273 | 23.39564 16.20846
Dy 49.52245 19.66615 13.91466
D¢ 50.11194 19.06851 13.79680
Dg 50.24772 18.78234 13.78546
Dyo 52.02554 17.69351 12.95259

subband filters, that is, sharp transition bands (frequency
selectivity), since regular filters are very smooth and not
very selective in frequency. Despite that, these regular filters
were shown to perform better than the nonregular ones, both
from the subjective and objective points of view [21]. We
compared these filters at two bit rates, for 0.7 and 1.5 bpp.
Table VI shows the variance of the output error signal as a
function of the filter used, for the unconventional system at
0.7 and 1.5 bpp, and for the conventional one at 1.5 bpp. As
can be seen from the table, the variance drops dramatically
from the Haar, to Dj, to D, filters, and then levels off.
The same behavior is observed for all three cases given in
the table. Based on this, we decided to use the Djg filter,
since it is still considerably shorter than, for example, the
D1 filter, but achieves almost the same performance (visually
as well). Another thing to observe is that the variance of
the conventional system for the same bit rate (1.5 bpp) is
consistently smaller than the one of the unconventional one.
However, visually, the images look almost the same (we
tried this for other bit rates as well). Fig. 9(a) and (b) show
these results graphically, where the variances are plotted as a
function of the number of filter taps (2, 4, 8, 12, 16, 20).

Note that all the experiments in this section were performed
on various images, we just chose “Lena” as an example. Also,
visually, reconstructed images in both the conventional and
the unconventional cases look almost the same. We did not
include an example since when reproduced the images would
look identical. The issue of whether it would be beneficial
to employ some kind of noise removal after synthesis (since
the unconventional system has a consistently less correlated
error), is left for future work.
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Fig. 9. Variance of the output error signal as a function of the filter used, for
the: (a) unconventional system at 0.7 bpp (solid line) and 1.5 bpp (dashed line),
and (b) unconventional system at 1.5 bpp (dashed line), and the conventional
system at 1.5 bpp (solid line).

VI. CONCLUSION

In this paper, a new method for dealing with the ef-
fects of quantization in a subband system, was proposed.
It uses the “gain plus additive noise” linear model for the
Lloyd-Max quantizer. Based on this, it was demonstrated how,
by appropriate scaling before synthesis, one can cancel all
signal-dependent errors at the output of the system. The only
remaining error is random in nature and not correlated with
the input signal. As a result, it is possible to alleviate this error
using an appropriate noise removal technique. The result was
then extended to the case where the input is a multidimensional
signal, and arbitrary sampling lattices are used, as well as to the
QMF (alias cancellation) case. Experimental results show that
the output error of the system is always less correlated with
the input signal for the unconventional system, even when the
model is no longer valid, that is, when some of the subbands
are discarded. It is also shown that for a particular scheme
employed (discrete wavelet transform with three octaves), a
filter of 12 taps is recommended (similarly to [9]). In the same
scheme, however, there was no considerable visual difference
in the output images. In an exaggerated toy example, it was
also shown that using noise removal after unconventional
synthesis could be beneficial. This, however, is left for future
work.
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The results obtained in this paper are the first step in
examining the joint effects of filtering and quantization in
a subband system. Future investigations will concentrate on
search for new quantizer models, as well as on more gen-
eral unconventional synthesis filters (in the absence of such
models). Two particular issues need to be addressed. First,
the fact that visually, the results look quite different in the
toy example versus the realistic coding scheme. At the same
time, in the realistic coding scheme, statistical results indicate
that it would be beneficial to use noise removal after the
unconventional synthesis, while the reconstructed images look
almost identical, contradicting this conclusion. Both of these
aspects merit additional work in the future.
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APPENDIX
DERIVATION OF THE GAIN FACTOR IN (7)

The following derivation follows the one in [9]. It is
included here for completeness. To find the expression for the
gain factor when the input is not a zero-mean, unity variance
random variable, first note that for the Lloyd-Max quantizer,
E(qy) = 0 [16]. Then, write

YyY=X-qg=ax +r 35)

and compute
E(y*) = E(y(x—q)) = E(yx)-E(yq) = E(yx). (36)

At the same time

E(yx) = E(x(x - q)),
= E(xz) - E(Xq),
= E(x*) - E(q(y +q)),
= E(x*) — E(qy) - E(q?),
= E(x*) - E(q%). 37
Then, using (36) and (37)
E(y*) = E(x*) - E(q?) (38)

E(qx) = E(a(y+q)) = E(qy)+E(q®) = E(q?) (39)

E(ax) = E((x-y)x) = E((x - ax —r)x)
= E(x?) - aE(x?) — E(rx). (40)
Equating (39) and (40), one obtains
E(q®) = (1-a)E(x?) — E(rx). (41)
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We can now write
E(rx)=~E(rE(x) = (1-a)E(x*) - B(q*) — E(r)E(x)
“42)

which, since E(q) =0, and E(r) = (1 — a) E(x), becomes
E(rx) — E(r)E(x) =

(1-a)ol ol 43)

It is obvious now that if we choose

2
o
a = 1——;
0’.’13

(44)

the input will not be correlated with the random noise part,
that is

E(rx) — E(r)E(x) = 0. 45)
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