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Local Cosine Bases in Two Dimensions Il. REVIEW OF LocAL COSINE BASES

By local cosine bases, or modulated lapped transforms, we will
denote a class of critically sampled perfect reconstruction filterbanks
[9], [18] that uses a single prototype filter—windowefn] of length
2N (where N is the number of channels and is even) to construct
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Abstract—We construct two-dimensional (2-D) local cosine bases in dis-

crete time. Solutions are offered both for rectangular and nonrectangular  @ll of the filtershg, - -+, hy -1 as follows:
lattices. In the case of nonrectangular lattices, the problem is solved by W .
> . X - w(n] 2k +1 .
mapping it into a one-dimensiona (1-D) equivalent problem. hin] = Vi o8 | — (2n—N+rm 1)

Index Terms—Filterbanks, local bases, wavelets. With k= 0,---,N—1,n =0,---,2N — 1, and where the prototype

lowpass filterw[n] is symmetric, and satisfies the following condition
|. INTRODUCTION [2], which, if we would arrange the firs¥ coefficients ofw[n] along

Discrete-time cosine modulated filterbahkeve been in use for the diagonal of the matri¥¥’, could be expressed as

some time [1]-[14]. Due to a few of their properties, they have W2+ JW?J = 2I. 2)
become quite popular; For example, all filters (basis functions) of

. ) - . : Here, J denotes the antidiagonal matrix. This last condition,
a filterbank are obtained by appropriate modulation of a single . : . .
) . . . Imposed on the window, ensures that the resulting local cosine basis
prototype filter. Then, fast algorithms exist, making them ven . .
. . . X s,orthogonal. The two symmetric halves of the window are called
attractive for implementation. Finally, they have been recently usetda ils.”
to achieve time-varying tilings of the time-frequency plane [5]. Their A convenient way of analyzing filterbanks in time domain uses

continuous-time counterpart, termithlvar’s waveletshas found use . .. . - 4 ) ; ) -
) . . . . o . infinite matrices, which describe the action of the filters on the input
in decomposing a signal into a linear combination of time-frequenc ) A .

gnal. For local cosine bases, such an infinite maftiis “doubly

atoms [6]. diagonal” with blocksAy, A;, where blocksAgy, A; are of sizes

Local cosine bases have been used extensively in audio cod . ) . .
o . N= N, and contain the impulse responses of the filters. For example,
[71-[9]. They have also found use in image coding, due to t . . oar . PR .
; ; . ejthrow of A; is (hj[2N —1—iN]---h;[N —iN]) fori =0, 1.
reduction of blocking effects [10] when compared to the discre . . .
: . . ~Note that the filter length is twice the number of channels. For an
cosine transform (DCT). Some video works contain local cosine ) .
. . . ... arthogonal, perfect reconstruction solution, the maffixhas to be
bases as well [11]. However, in all image and video applications, . T ; . .
. : . uhitary, which is equivalent to the following [19]:
one-dimensional (1-D) cosine bases are used separately. We develop - - - .
here true two-dimensional (2-D) nonseparable cosine bases, which AjAg+ATA =1, A A, =AJA =0.
offer more degrees Of_ freedom. We consider both rt_ectangular andl’he second set of conditions above are called the “orthogonality of
nonrectangular sampling structures, and offer solutions for bolg
|

Although i i y imil vsi d b ‘ ils” conditions [19]. One more fact will be of use later. CBI| the
ough in continuous time a similar analysis could be performed, .\ v windowing is used, o[n] = 1,n = 0,- -, 2N —1.

h_ere we _consnder the case of more m@erest fo_r appllcatlons_ that is, these blocks will just contain the cosines. Then
discrete time. Note that the general solution to this problem exists

(valid for any number of dimensions, arbitrary sampling lattices Ag=Bo-W, Ai=B-JWJ 3
and both for continuous and discrete time) and is given in [18}hqre w7 s a diagonal matrix with window coefficients on the

and [13]. However, since this work was performed before [12] arlﬂagonalw[()]. ..., w[N = 1]. Blocks B satisfy the following:
[13] and also because it explicitly states the conditions for the 2-D L

case (especially for separable sampling which is of most interest ByBy=1(I-J), BB/ =}(I+J).
in applications), these results should be of use to researchers and
practitioners. Ill. 2-D LocAL CosINE BASES

While revising the article, the reviewers pointed out some recentwe will now turn our attention to the 2-D case, with both

work on 2-D local cosine bases. For example, Chan in [14] consid@ggtangular and nonrectangular sampling lattices (see Fig. 1). For the
a similar problem for separable sampling by using separable modugrrent state of applications (such as image compression), rectangular

tions and allowing the window to be nonseparable and constrainiggmp“ng is of more interest: thus, we will examine it in detail and
the prototype filter to have various symmetries. Work in [15] offers @ystrate it with a design example.

general solution to the problem. Other works include [16] and [17].
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n, n, where we use the same scanning order as before. Note that since
l *4 ‘ | we have imposed on the window to be centrally symmetric (persym-
metric), D, and D3 have factorsJW,J and JWJ, respectively.
Blocks C; are given by

Co =Bo, © Bo,, Ci= Bo,® B,

2N,

N, ® ¢ @ ? o+

By e

SGEELEGER ollelle C: =B, ®Bo,. Cs =B, ® By,
N M boa ™ where blockB;, is theith block in dimensiory as in (3). To obtain
(a) (b) the conditions for perfect reconstruction, we have to make sure that
Fig. 1. Sampling lattices. The support of the filters is given by the shadgg overlapping tails give zero, and th& is unitary, that is
area. (a) Rectangular case. (b) Nonrectangular case. DgﬁDo + DfDl + Dng + Dng -1 (5)
DD, +DID, =0, (6)
withi =0,---,N; =1, =0,---,No— 1, andn; = 0,---,2N; — DD, + DI D, =0, (7)

1,ny =0,---,2N; — 1. This produces filters of size&V; x 2No. DD =0 ®)
Note that the window will be assumed to be persymmetric, that is ‘; 0=
W = JWJ. D; D; =0. 9)

Le.t us now try to find conditions for the filters to form a basis, conditions (6)—(9) can be easily verified while (5) will lead to the
that is, for them to be perfect reconstruction. The counterpart of 0pgngitions on the window, the first one being the 2-D counterpart

block-row of the matrixT is of (2)
T, =(Dy Di D> Ds3) Wit IWiT+ Wit Wi =1,
where each blocD; is of size Ny N> x Ny N». SinceT; represents ~WoI @ HYWo + JWoJ(I @ J)JWod

convolution, let us look at the shift-reversed version of one filter, L w (1o W\, — JW, J(I @ J)JWJ = 0,

hoo. For example, see the matrix at the bottom of the page, where B
dimensionn; goes from left to right and dimensiom; goes from WolWo - WiJW, =0,

bottom to top. We can arbitrarily choose a scanning order, which we ~Wo(J o D)Wo+ IWoJ(J I IWoJ
define to be from left to right, and bottom to top. This means that the WL (T D)Wy + JW I (J & DIW.J = 0.

action of the first filter will go intdl"; as the following row-vector:
- To summarize, in the 2-D case with rectangular sampling, we will
hoo[2N1 = 1,2N2 = 1] -+ hool0,2N — 1] have up to( N1 N>)/2 free variables. Compare that (&; + Nz)/2
hoo[2Ny —1,2N; —2] -+ heo[2N, — 1,0] free variables in the 2-D case with separable sampling.

}Loo [0, U] .
B. Nonrectangular Sampling

Then the first row ofDy, for example, will be The nonrectangular case is a more difficult one. We will describe a

hoo[2N1 — 12Ny — 1] -+ hoo[0, 2Ny — 1] solution that will use a particular mapping from one dimension into
' two dimensions. Note that this solution would mean that the filters
Expressingh;;[n1,n2] as in (4), we get thaD; are given by are obtained by shifting the prototype filter along a line, and that it
_ _ is very similar to what was done in [20]. It will hold for an even
Do =Co-Wo, D:=0C>-JWol, sampling densityV. First, we find the upper-triangular form of the
Dy =C-W,, D3=0Cs-JW.J. sampling matrix
Here,C; contain the modulating cosines, while diagonal matrices D= |:a b}
W, contain appropriately placed coefficients of the 2-D, window 0 ¢

function wln., n.] as with NV = det(D) and we assume thatandc do not have common

[0]0,0] factors [see Fig. 1(b)]. For the support of our filters, we will take two
W, = . unit cells, the ones located at points [0, 0] gnd0]. Then, define
) the filters as follows:

’ll)[ﬂﬁ — 1, AN’VQ — 1] ’LU[7L1, ”2]

fw[Ny, 0] el o) = L
Wi = B 2% +1
' 2(eny —bny) — N + 1 10
L ’LU[?]Vl -1, Ny — 1] cos AN (2(emy n2) +Dm (10)
hoo[2N1 — 1,0] hoo[N1, 0] hoo[N1 = 1,0] -+ hool0,0]
hoo[2N1 = 1,No —1] -+ hoo[Ni,No =1]  hoo[N1 =1, No —=1]  --- hoo[0, No — 1]

hoo[?.Wvl - ]_, _7\T2] et hoo[J\H, Arz] }Loo []\71 - ]., .ZVQ] st }Loo [(), .ZVQ]

hoo[?.Wvl - ]., 21VQ — 1] et hgo[]\rl, 2.LVQ — 1] hoo[]\/vl - ]., 2_'\72 - 1] et }Loo[(), 2_'\72 - 1]
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Fig. 2. Examples of the separable window (left column) versus the nonseparable window (right column) for the rectangular sampling by eight in both
horizontal and vertical dimensions. The first row gives contour plots of the two windows, while the second and the third rows give contour and log
plots of the magnitude of the frequency response.

with ¥ = 0,---,N — 1, and ny,n2 belonging to the unit cell as or equivalently
explained above. Now define the scanning order to be along the ) )
second axis first, that is W+ JW-J =21

[0,0] {E’ 1} e {" - 1(;, +1),¢— 1} [1,0] ---. since we have used the same scanning order as in (11) to put the win-
¢ ¢ dow coefficients intd¥. Note that this condition is exactly the same
(11) asinthe 1-D case given in (2). In the quincunx case, for example, this
nsicheme would lead to 1-D filters. However, if we replace — bn-

By doing this, we have mapped the problem into a 1-D proble With 1 + ns where[ns, na] € {[0,0], [1, 0], [1, 1], [2, 1]}, the whole

hat i . . . .
that Is problem is again mapped into a 1-D problem and thus easily solved.
11£]0,0] = hy[0] Note though, that the quincunx case is not of much interest, since it
b+1 has only two channels and filters have only four taps.
I 1| =he[1]

C. Design Example

To illustrate constructions we presented in the previous section,
I |:2a 1+ (c=1)(b+1) - 1} =hi[2N = 1]. we will choose rectangular subsampling and compare the separable
c to the nonseparable window. The sampling lattice is rectangular with
Thus, if we take blocksd; to be the formulation shown at the sampling by eight in each dimension, thus the filters are of size 16
top of the next page, then all the relations without windowing hold® (@s well as the window). The design procedure for the window can
and all the proofs are equivalent. We only need to take care of i found in [13]; the window was obtained by minimizing the energy

window. It has to be persymmetric and in the region outside di~n/2, 7 /2] x [—n /2, 7 /2]. The result of the
design procedure is given in Fig. 2. The left side shows rectangular

w’ny, na] + w’ [w Ya—1—-nc—1— ,,4 -9 sampling by eight in both horizontal and vertical directions with a
’ ' separable window, while the right side shows the same sampling with
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[ ho{?a—l—l—g(b—l—l),c—l} 11,0{2a—1+g(b+1)7c—2} cov hola, 0]
Ay = : :
c—1 c—2 ' '
hn_1|2a—1+ (b+1),¢c— 1:| hy_1 |:2a—1—|— (b+1),c—2:| -+ hn_1[a,0]
L = C
r - ‘ -2 ‘
ho{a—1+° 1(b+1),c—1} ho{a‘—l—i-c _(b—i—l),c—?} o Ro[0,0]
C C
A = : :
| c=2 ' '
hN_l|:a—1—|—T(b—|—1),c—1:| hN_l|:a—1—|—T(b—|—1),C—2:| cv hn-1[0,0]
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