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Local Cosine Bases in Two Dimensions

Jelena Kovǎcevíc

Abstract—We construct two-dimensional (2-D) local cosine bases in dis-
crete time. Solutions are offered both for rectangular and nonrectangular
lattices. In the case of nonrectangular lattices, the problem is solved by
mapping it into a one-dimensiona (1-D) equivalent problem.

Index Terms—Filterbanks, local bases, wavelets.

I. INTRODUCTION

Discrete-time cosine modulated filterbanks1 have been in use for
some time [1]–[14]. Due to a few of their properties, they have
become quite popular; For example, all filters (basis functions) of
a filterbank are obtained by appropriate modulation of a single
prototype filter. Then, fast algorithms exist, making them very
attractive for implementation. Finally, they have been recently used
to achieve time-varying tilings of the time-frequency plane [5]. Their
continuous-time counterpart, termedMalvar’s wavelets, has found use
in decomposing a signal into a linear combination of time-frequency
atoms [6].

Local cosine bases have been used extensively in audio coding
[7]–[9]. They have also found use in image coding, due to the
reduction of blocking effects [10] when compared to the discrete
cosine transform (DCT). Some video works contain local cosine
bases as well [11]. However, in all image and video applications,
one-dimensional (1-D) cosine bases are used separately. We develop
here true two-dimensional (2-D) nonseparable cosine bases, which
offer more degrees of freedom. We consider both rectangular and
nonrectangular sampling structures, and offer solutions for both.
Although in continuous time a similar analysis could be performed,
here we consider the case of more interest for applications in
discrete time. Note that the general solution to this problem exists
(valid for any number of dimensions, arbitrary sampling lattices
and both for continuous and discrete time) and is given in [12]
and [13]. However, since this work was performed before [12] and
[13] and also because it explicitly states the conditions for the 2-D
case (especially for separable sampling which is of most interest
in applications), these results should be of use to researchers and
practitioners.

While revising the article, the reviewers pointed out some recent
work on 2-D local cosine bases. For example, Chan in [14] considers
a similar problem for separable sampling by using separable modula-
tions and allowing the window to be nonseparable and constraining
the prototype filter to have various symmetries. Work in [15] offers a
general solution to the problem. Other works include [16] and [17].
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1These are known under various names, such as modulated lapped trans-

forms, Princen–Bradley filterbanks, time domain aliasing cancelation filter-
banks (TDAC), modified DCT (MDCT) with 50% overlap.

II. REVIEW OF LOCAL COSINE BASES

By local cosine bases, or modulated lapped transforms, we will
denote a class of critically sampled perfect reconstruction filterbanks
[9], [18] that uses a single prototype filter—window—w[n] of length
2N (whereN is the number of channels and is even) to construct
all of the filtersh0; � � � ; hN�1 as follows:

hk[n] =
w[n]p
N

� cos 2k + 1

4N
(2n�N + 1)� (1)

with k = 0; � � � ; N �1; n = 0; � � � ; 2N �1; and where the prototype
lowpass filterw[n] is symmetric, and satisfies the following condition
[2], which, if we would arrange the firstN coefficients ofw[n] along
the diagonal of the matrixWWW; could be expressed as

WWW
2 + JJJWWW

2
JJJ = 2III: (2)

Here, JJJ denotes the antidiagonal matrix. This last condition,
imposed on the window, ensures that the resulting local cosine basis
is orthogonal. The two symmetric halves of the window are called
“tails.”

A convenient way of analyzing filterbanks in time domain uses
infinite matrices, which describe the action of the filters on the input
signal. For local cosine bases, such an infinite matrixTTT is “doubly
diagonal” with blocksAAA0; AAA1; where blocksAAA0; AAA1 are of sizes
N�N; and contain the impulse responses of the filters. For example,
the jth row ofAAAi is (hj [2N �1� iN ] � � �hj [N � iN ]) for i = 0; 1:
Note that the filter length is twice the number of channels. For an
orthogonal, perfect reconstruction solution, the matrixTTT has to be
unitary, which is equivalent to the following [19]:

AAA
T
0AAA0 +AAA

T
1AAA1 = III; AAA

T
1AAA0 = AAA

T
0AAA1 = 0:

The second set of conditions above are called the “orthogonality of
tails” conditions [19]. One more fact will be of use later. CallBBBi the
blocks when no windowing is used, orw0[n] = 1; n = 0; � � � ; 2N�1:
That is, these blocks will just contain the cosines. Then

AAA0 = BBB0 �WWW; AAA1 = BBB1 � JJJWWWJJJ (3)

where WWW is a diagonal matrix with window coefficients on the
diagonalw[0]; � � � ; w[N � 1]: BlocksBBBi satisfy the following:

BBB
T
0BBB0 = 1

2
(III � JJJ); BBB

T
1BBB1 = 1

2
(III + JJJ):

III. 2-D L OCAL COSINE BASES

We will now turn our attention to the 2-D case, with both
rectangular and nonrectangular sampling lattices (see Fig. 1). For the
current state of applications (such as image compression), rectangular
sampling is of more interest; thus, we will examine it in detail and
illustrate it with a design example.

A. Rectangular Sampling

We assume that we have rectangular sampling,N1 in horizontal
dimension, andN2 in the vertical one [see Fig. 1(a)]. We will
construct the filters as follows:

hij [n1; n2] =
w[n1; n2]
p
N1N2

� cos
2i+ 1

4N1

(2n1 �N1 + 1)�

� cos
2j + 1

4N2

(2n2 �N2 + 1)� (4)
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(a) (b)

Fig. 1. Sampling lattices. The support of the filters is given by the shaded
area. (a) Rectangular case. (b) Nonrectangular case.

with i = 0; � � � ; N1� 1; j = 0; � � � ; N2� 1; andn1 = 0; � � � ; 2N1�
1; n2 = 0; � � � ; 2N2 � 1: This produces filters of sizes2N1 � 2N2:

Note that the window will be assumed to be persymmetric, that is
WWW = JJJWWWJJJ:

Let us now try to find conditions for the filters to form a basis,
that is, for them to be perfect reconstruction. The counterpart of one
block-row of the matrixTTT is

TTT 1 = (DDD0 DDD1 DDD2 DDD3)

where each blockDDDi is of sizeN1N2 �N1N2: SinceTTT 1 represents
convolution, let us look at the shift-reversed version of one filter,
h00. For example, see the matrix at the bottom of the page, where
dimensionn1 goes from left to right and dimensionn2 goes from
bottom to top. We can arbitrarily choose a scanning order, which we
define to be from left to right, and bottom to top. This means that the
action of the first filter will go intoTTT 1 as the following row-vector:

h00[2N1 � 1; 2N2 � 1] � � � h00[0; 2N2 � 1]

h00[2N1 � 1; 2N2 � 2] � � � h00[2N1 � 1; 0]

� � � h00[0; 0]:

Then the first row ofDDD0; for example, will be

h00[2N1 � 1; 2N2 � 1] � � � h00[0; 2N2 � 1]

Expressinghij [n1; n2] as in (4), we get thatDDDi are given by

DDD0 =CCC0 �WWW 0; DDD2 = CCC2 � JJJWWW 0JJJ;

DDD1 =CCC1 �WWW 1; DDD3 = CCC3 � JJJWWW 1JJJ:

Here,CCCi contain the modulating cosines, while diagonal matrices
WWW i contain appropriately placed coefficients of the 2-D, window
function w[n1; n2] as

WWW 0 =

w[0; 0]

.. .
w[N1 � 1; N2 � 1]

;

WWW 1 =

w[N1; 0]
.. .

w[2N1 � 1; N2 � 1]

where we use the same scanning order as before. Note that since
we have imposed on the window to be centrally symmetric (persym-
metric),DDD2 andDDD3 have factors,JJJWWW 0JJJ andJJJWWW 1JJJ, respectively.
Blocks CCCi are given by

CCC0 =BBB0 
BBB0 ; CCC1 = BBB0 
BBB1

CCC2 =BBB1 
BBB0 ; CCC3 = BBB1 
BBB1

where blockBBBi is theith block in dimensionj as in (3). To obtain
the conditions for perfect reconstruction, we have to make sure that
all overlapping tails give zero, and thatTTT 1 is unitary, that is

DDD
T
0DDD0 +DDD

T
1DDD1 +DDD

T
2DDD2 +DDD

T
3DDD3 = III; (5)

DDD
T
1DDD0 +DDD

T
3DDD2 =0; (6)

DDD
T
3DDD1 +DDD

T
2DDD0 =0; (7)

DDD
T
3DDD0 =0; (8)

DDD
T
2DDD1 =0: (9)

Conditions (6)–(9) can be easily verified while (5) will lead to the
conditions on the window, the first one being the 2-D counterpart
of (2)

WWW
2

0 + JJJWWW
2

0JJJ +WWW
2

1 + JJJWWW
2

1JJJ = III;

�WWW 0(III 
 JJJ)WWW 0 + JJJWWW 0JJJ(III 
 JJJ)JJJWWW 0JJJ

+WWW 1(III 
 JJJ)WWW 1 � JJJWWW 1JJJ(III 
 JJJ)JJJWWW 1JJJ = 0;

WWW 0JJJWWW 0 �WWW 1JJJWWW 1 = 0;

�WWW 0(JJJ 
 III)WWW 0 + JJJWWW 0JJJ(JJJ 
 III)JJJWWW 0JJJ

�WWW 1(JJJ 
 III)WWW 1 + JJJWWW 1JJJ(JJJ 
 III)JJJWWW 1JJJ = 0:

To summarize, in the 2-D case with rectangular sampling, we will
have up to(N1N2)=2 free variables. Compare that to(N1 +N2)=2

free variables in the 2-D case with separable sampling.

B. Nonrectangular Sampling

The nonrectangular case is a more difficult one. We will describe a
solution that will use a particular mapping from one dimension into
two dimensions. Note that this solution would mean that the filters
are obtained by shifting the prototype filter along a line, and that it
is very similar to what was done in [20]. It will hold for an even
sampling densityN: First, we find the upper-triangular form of the
sampling matrix

DDD =
a b

0 c

with N = det(DDD) and we assume thatb andc do not have common
factors [see Fig. 1(b)]. For the support of our filters, we will take two
unit cells, the ones located at points [0, 0] and[a; 0]: Then, define
the filters as follows:

hk[n1; n2] =
w[n1; n2]
p
N

� cos
2k + 1

4N
(2(cn1 � bn2)�N + 1)� (10)

h00[2N1 � 1; 0] � � � h00[N1; 0] h00[N1 � 1; 0] � � � h00[0; 0]
...

...
...

...
...

...
h00[2N1 � 1; N2 � 1] � � � h00[N1; N2 � 1] h00[N1 � 1; N2 � 1] � � � h00[0; N2 � 1]

h00[2N1 � 1; N2] � � � h00[N1; N2] h00[N1 � 1; N2] � � � h00[0; N2]

...
...

...
...

...
...

h00[2N1 � 1; 2N2 � 1] � � � h00[N1; 2N2 � 1] h00[N1 � 1; 2N2 � 1] � � � h00[0; 2N2 � 1]
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Fig. 2. Examples of the separable window (left column) versus the nonseparable window (right column) for the rectangular sampling by eight in both
horizontal and vertical dimensions. The first row gives contour plots of the two windows, while the second and the third rows give contour and log
plots of the magnitude of the frequency response.

with k = 0; � � � ; N � 1; and n1; n2 belonging to the unit cell as
explained above. Now define the scanning order to be along the
second axis first, that is

[0; 0]
b+ 1

c
; 1 � � �

c� 1

c
(b+ 1); c� 1 [1; 0] � � � :

(11)

By doing this, we have mapped the problem into a 1-D problem,
that is

hk[0; 0] =hk[0]

hk
b+ 1

c
; 1 =hk[1]

...

hk 2a� 1 +
(c� 1)(b+ 1)

c
; c� 1 =hk[2N � 1]:

Thus, if we take blocksAAAi to be the formulation shown at the
top of the next page, then all the relations without windowing hold
and all the proofs are equivalent. We only need to take care of the
window. It has to be persymmetric and

w
2
[n1; n2] + w

2 (c� 1)(b+ 1)

c
+ a� 1� n; c� 1� n2 = 2

or equivalently

WWW
2
+ JJJWWW

2
JJJ = 2III

since we have used the same scanning order as in (11) to put the win-
dow coefficients intoWWW: Note that this condition is exactly the same
as in the 1-D case given in (2). In the quincunx case, for example, this
scheme would lead to 1-D filters. However, if we replacecn1 � bn2
with n1+n2 where[n1; n2] 2 f[0; 0]; [1; 0]; [1; 1]; [2; 1]g; the whole
problem is again mapped into a 1-D problem and thus easily solved.
Note though, that the quincunx case is not of much interest, since it
has only two channels and filters have only four taps.

C. Design Example

To illustrate constructions we presented in the previous section,
we will choose rectangular subsampling and compare the separable
to the nonseparable window. The sampling lattice is rectangular with
sampling by eight in each dimension, thus the filters are of size 16�

16 (as well as the window). The design procedure for the window can
be found in [13]; the window was obtained by minimizing the energy
in the region outside of[��=2; �=2]� [��=2; �=2]: The result of the
design procedure is given in Fig. 2. The left side shows rectangular
sampling by eight in both horizontal and vertical directions with a
separable window, while the right side shows the same sampling with
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AAA0 =

h0 2a� 1 +
c� 1

c
(b+ 1); c� 1 h0 2a� 1 +

c� 2

c
(b+ 1); c� 2 � � � h0[a; 0]

...
...

...
...

hN�1 2a� 1 +
c� 1

c
(b+ 1); c� 1 hN�1 2a� 1 +

c� 2

c
(b+ 1); c� 2 � � � hN�1[a; 0]

AAA1 =

h0 a� 1 +
c� 1

c
(b+ 1); c� 1 h0 a� 1 +

c� 2

c
(b+ 1); c� 2 � � � h0[0; 0]

...
...

...
...

hN�1 a� 1 +
c� 1

c
(b+ 1); c� 1 hN�1 a� 1 +

c� 2

c
(b+ 1); c� 2 � � � hN�1[0; 0]

the nonseparable window. The first row gives contour plots of the
two windows, while the second and the third rows give contour and
log plots of the magnitude of the frequency response. The separable
nature of the window in the left side is clearly seen in contour and
log plots. Note that the aim in this example was not necessarily to
show that one or the other filter has a superior frequency isolation.
Rather, this example demonstrates that, under the same constraints,
using a nonseparable window gives more freedom in design. It is clear
that the separable window, being a special case of the nonseparable
one, can at best equal the performance of the nonseparable window.
Moreover, note how the nonseparable window demonstrates less
“preference” for horizontal and vertical directions, that it is more
“isotropic” as expected from a nonseparable window.

IV. CONCLUSIONS

Two-dimensional local cosine bases were presented in discrete
time. We examined both rectangular and nonrectangular lattices.
Although solutions for the rectangular lattices are more important in
practice, those for the nonrectangular ones are a difficult challenge. In
that case, the problem is solved by mapping it into an equivalent 1-D
problem. As a result, solutions easily follow, however, the resulting
filters will be obtained by modulation along a single line. More
general modulation structures and a more general framework for local
bases can solve this problem. For details, see [12] and [13].
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