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Arbitrary Tilings of the Time–Frequency
Plane Using Local Bases

Riccardo Bernardini and Jelena Kovačevíc, Senior Member, IEEE

Abstract—We show how to design filters given a prescribed
tiling of the time–frequency plane. Moreover, we impose on
these filters the structure of local orthogonal bases. These bases
were recently constructed as a generalization of the cosine-
modulated filter banks in discrete time and local trigonometric
bases in continuous time. They have been found to be of con-
siderable practical importance due to their simplicity (all filters
are obtained from a single prototype) and low computational
complexity. We show examples of design, in particular, that of
a critical-band system for use in audio coding.

I. INTRODUCTION

ONE OF THE main goals of signal analysis in recent
years has been to develop mixed signal representations

in terms of elementary blocks called time–frequency atoms
well localized in time and frequency [1]. Each of these blocks
resides mostly1 in a well-defined area (usually a rectangle) in
the time–frequency plane. An appropriate analogy is that of a
musical score; knowing that there exists a C within a first few
bars of a musical piece does not help us unless we know its
position in time and its duration. Thus, we can think of notes
as time–frequency atoms [1].

Currently, two classes of time–frequency atoms are in use,
corresponding to two types of analyzes that Ville proposed:
The first, wavelet packets [2], splits the signal first in frequency
and then in time, whereas the second, local cosine bases
[3]–[5], does the opposite, that is, it slices first in time and then
in frequency. Our approach in this work produces a mixture
of these two classes leading to filters corresponding to more
general tilings. Refer also to [6] and [7] for some interesting
works dealing with time–frequency tilings.

In discrete time, local cosine bases (which are also called
cosine-modulated filter banks, modulated lapped transforms,
or MDCT), have been in use for some time [8]–[11]. Due
to a few of their properties, they have become quite popular,
for example, all filters (basis functions) of a filter bank are
obtained by appropriate modulation of a single prototype filter.
Then, fast algorithms exist, making them very attractive for
implementation. Finally, they have been used to achieve time-
varying splittings of the time–frequency plane [12]. Their
continuous counterpart is termed “Malvar’s wavelets” [1].
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1By mostly, we mean that most of its energy lies within a prescribed region.
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Fig. 1. (a) Desired tiling of the time–frequency plane. There are eight basis
functions, denoted 1 through 8. The highest frequency value is�. (b) Impulse
responses of the eight basis functions, numbered 1 through 8, starting from
the upper left. (c) Magnitude frequency responses of the eight basis functions,
numbered 1 through 8, starting from the upper left. Horizontal axis is the
frequency axis, and the highest frequency is�. Values on the vertical axis
are plotted on the log scale.

Local cosine bases have been used extensively in audio
coding [13], [14]. They have also found use in image coding,
due to the reduction of blocking effects [15] when compared
with the DCT. Some video works contain local cosine bases
as well [16]. Recently, local cosine bases were generalized to
multiple dimensions as well as into local bases with noncosine
modulating functions. The resulting bases are called local
orthogonal bases [17], [18].

Here, we show how to construct time–frequency atoms
leading to filters corresponding to fairly arbitrary tilings of the
time–frequency plane using these local bases. Moreover, we
also obtain time-varying tilings since the transitions between
various tilings depend only on the windows used.2 As an
example of what we are trying to achieve, consider Fig. 1.
We want to build a basis of size 8, where the basis functions

are localized in time and frequency as in Fig. 1(a).
These basis functions can be thought of as time–frequency
atoms. As a result of techniques developed in this paper, eight
basis functions are obtained whose impulse and magnitude

2The only requirement for switching the tilings is that the tails of the
windows across the boundary be power complementary [17].
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frequency responses are given in Fig. 1(b) and (c), respectively
(note, however, that the basis in this figure is not orthogonal).

II. SUMMARY OF LOCAL ORTHOGONAL BASES

In this section, we give a brief summary of the work in
[17] that is necessary for the developments in the present
paper. In [17], we extend the theory of local cosine bases
(cosine-modulated filter banks) to a more general case. In a
cosine-modulated filter bank, all the filters are obtained by
modulating a prototype filter (also known as thewindow)
with suitable cosine functions. When the window satisfies
certain constraints (symmetry and power complementarity),
the resulting filter bank is orthogonal. In [17], we show that
orthogonality depends only on the symmetries of the cosines;
therefore, any other set of functions with the same symmetries
would produce a perfect reconstruction filter bank. Consider
the one-dimensional (1-D) case as an example. From [17], we
can deduce a recipe to obtain a critically sampled orthogonal
filter bank with filters of length .

• Take any orthonormal basis , and
consider vectors as signals having support

. We refer to this basis as thestarting
basisand represent it by a matrix .

• Extend every by symmetry and antisymmetry ac-
cording to (we assume that is even)

if
if
if

(1)

We refer to this process assymmetry extensionand
represent it by a matrix .

• Multiply every by the window in order to
obtain the final filters . We refer to this
process aswindowingand represent it by a matrix .

Signals are the impulse responses of the desired filter
bank. These steps are depicted in Fig. 4. Note that the above
procedure can also be expressed as

(2)

where

orthogonal matrix;
matrix representing symmetry extension;

diagonal matrix having the samples of the
window on the main diagonal.

The columns of matrix are the impulse responses of the
desired filters in a filter bank. A similar recipe can also be
used in more than one dimension as well as in continuous
time [17].

The aim of this paper is to exploit the new degrees of
freedom obtained by relaxing the constraints thatbe cosine
to construct a filter bank, given a tiling of the time–frequency
plane. Therefore, our goal isto search for such that the
impulse responses contained ingiven in (2) achieve a given
tiling of the time–frequency plane. In what follows, we assume

Fig. 2. Tiling of the time–frequency plane for critical-band audio coding.
Frequency axis is given in barks whereB = 13:0 arctan(0:76f=1000)
+3:5 arctan(f=7500)2, with B being bark frequency andf frequency in
Hertz.

that the window is given (see [18] for more details on
window design).

III. CONSTRUCTION OFARBITRARY TILINGS

Our goal is to find a matrix such that every
is well concentrated in its corresponding tile. Although the
multidimensional case is interesting in its own right (for use in
image processing applications, for example), its study does not
introduce anything new, except for a more complex notation.
Therefore, for the sake of simplicity, here, we consider the
1-D discrete time-case.

Suppose has to be well concentrated in the time interval
and frequency interval . In other words, let
be the tile corresponding to . As the measure of good

concentration we use the sum of the two stopband
errors3

(3)

where is the Fourier transform of [in (3), we used
to denote the complement of set]. Cost functions (3) can

be weighted with weight functions and . By using,
in (3), the definition of , we
can rewrite (3) as

(4)

with and two symmetric, positive semi-definite
matrices. Clearly, the sum of two errors (4) is still a quadratic
form with the matrix .

The same reasoning can be repeated for every vector.
To obtain a cost function for the whole basis, use the sum
of the cost functions of the single vectors. By exploiting the

3Note that we cannot usePT;iPF;i as a measure of good concentration
because it is easy to obtain a signalhi[n] having PT;i = 0 implying
PT;iPF;i = 0.
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(a) (b)

(c) (d)

(e) (f)

Fig. 3. Problems induced by the circular translation requirement. The filter in the figure corresponds to the eighth band. (a) Filter optimally designed with
the circular translation constraint (note the discontinuity at the point 1536) and (b) its translation of 256. (c) Filter optimally designedwithout the circular
translation requirement (that is, by optimizing only the first filter in each band) and (d) its translation of 256. Note that although the filter in (c) is smoother
than the one in (a), its translation (d) is far worse than (b). (e) Filter obtained by using the pseudo-translation and (f) its pseudo-translation of 256.

dependence between and given in the previous section,
the global cost function can be written as

(5)

where .

IV. SOLVING FOR THE BASIS

We now describe ways to minimize (5) with the constraint
that the vectors be orthogonal. A key observation is that if
vectors are orthogonal to one another and of unit norm,

they can be organized as columns of a unitary matrix

(6)

This is important because the matrix, even if not square,
can be written as a function of some free parameters. Thus,
we can parameterize this matrix and then extract the vectors

, which are now given as functions of free parameters. A
unitary matrix can be written either using Givens’ rotations

(7)

where are suitable rotation matrices, and is a diagonal
matrix having , or using Householder building blocks
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(see, for example, [19])

(8)

where is a diagonal matrix having , and each
matrix is defined as

(9)

where is a vector having the first components equal
to zero such that .

Note that matrices and have no effect on the
value of (5) because they simply correspond to a change of
sign for some of the vectors ; therefore, we assume that

.

A. Closed-Form Solution

Obtaining a closed-form solution is feasible only for small
vector spaces with the help of a program capable of doing
computation with polynomials.

The idea is to use the decomposition in (8). Write the entries
of matrices in (9) as polynomials of degree two in the
nonzero components of . Therefore, , being a product
of polynomial matrices, is a polynomial matrix as well, and
the cost function (5) can be expressed as a polynomial of the
free parameters. Our problem now becomes that of finding
the minimum value assumed by a given polynomial on a
multidimensional interval, and it can be solved by classical
analytical methods. Such a polynomial has free
variables, and its degree is . For example, if ,
we have a polynomial of degree 36 with 45 variables. The
gradient of such a polynomial is a vector having as components
45 polynomials of degree 35. Because of this, the closed-form
solution is feasible only for small values of. The fact that
we can look at as a polynomial matrix, however, can have
theoretical relevance since it gives us strong information about
the structure of (5).

If a closed-form solution is not feasible, use decomposi-
tions (7) and (8) to minimize (5) by using a program for
unconstrained optimization.

B. A Simpler Solution

A simpler, even if suboptimal, approach that works also for
bigger problems is to minimize each term of (5) separately,
which in turn is obtained by finding the maximum eigenvalue
of the matrix and its corresponding eigenvector.

The resulting set of vectors is not guaranteed to be an
orthonormal basis but can be orthogonalized. An interesting
way to do so is to write the vectors obtained from the
minimization of each term of (5) as the columns of a matrix
and decompose it, using the singular value decomposition, as

(10)

where and are orthogonal matrices, andis a diagonal
matrix. The columns of

(11)

(a)

(b)

(c)

Fig. 4. Path between the starting basis vector and the final filter according
to the procedure given in Section II. The basis vector in (a) is extended by
symmetry and antisymmetry around the pointst = 128 and t = 384. The
resulting signal (b) (solid line) is multiplied by the window (dashed line) to
obtain the filter in (c).

are orthogonal to one another and enjoy the property that they
are the orthonormal basis having the minimum distance from
the original set of vectors (the proof is given in Appendix A).

V. DESIGN EXAMPLES

To start this section, we first use the techniques described in
the previous section to obtain the tiling as given in Fig. 1(a).
Although this is a simple example, it shows the results the
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(a) (b)

(c) (d)

Fig. 5. Example of construction of an approximate translation of 32 steps for a signal of length 256. (a) Components, with respect to the cosine basis,
of the signal obtained by translating the first vector. (b) Tail of the signal shown in (a) displayed as a log-log plot. The slope of the line is�1, showing
that the decay is of order1=x. (c) Circular translation matrix with only the diagonal blocks. (d) Eigenvalues of a block of (c), shown with circles, and
the corresponding eighth roots of unity, shown with crosses.

technique gives. This is followed by an example in which we
design a critical-band filter bank for use in audio coding.

A. Toy Example

Consider a vector space of size 8 as well as the window
of size 8.4 We use the approach described in Section IV-B,
obtaining a result that, although not orthogonal, is close
to orthogonal. The corresponding basis functions are given
in Fig. 1(b), whereas their magnitude frequency responses
are depicted in Fig. 1(c). As can be seen from the figures,
the technique indeed achieves the desired time–frequency
localization. Consider, for example, the basis function. It
is mostly localized in the first half of the interval and is of
low frequency. On the other hand, basis functionis mostly
localized in the second half of the interval and is of the highest
frequency. Note how the frequency increases as we increase
the number of the basis function.

B. Design of a Critical-Band Basis for Audio Coding

The problem we attack now is more complex and is gov-
erned by the needs of an audio coder. In [20], Johnston lists a
few of the interactions between the human auditory system and

4Note that time-varying tilings can be obtained since they depend only on
the window. For example, we could switch from the tiling as in Fig. 1(a) to
a uniform frequency tiling.

filter banks that need to be addressed when designing a percep-
tual audio coder: Among them, we have time-domain effects
such as pre-echo and stereo imaging effects; frequency-domain
artifacts such as unmasked aliasing and large overcoding
requirements due to the filter bank bandwidth; and coding
gain problems, such as lack of sufficient coding gain as well
as loss of coding gain due to pre-echo or nonstationarity
issues. Many of these issues have been addressed in current
filter banks designs. Many, however, are still left open, and
we address a few of them, such as the need to “flexibly
change the time–frequency tiling of the filter banks” such that
“frequency portions of the signal that are highly varying may
require a time resolution matching that of the critical band”
[20]. Johnston further states that a filter bank that switches
between the critical band and the uniform filter banks has to
have a certain signal and frequency meaning. Thus, an allpass
filter bank would not do the job. Moreover, an orthonormal
filter bank is highly desirable. Finally, the resulting filter bank
has to be of sufficiently low complexity so that it can be
implemented.

Our technique lends itself well to the above requirements.
First, since our scheme is window based, it is easy to switch
from the uniform mode to a critical-band mode (since these
transitions depend only on the window). This further implies
that the transition filter bank keeps its frequency meaning. Due
to the fact that our approach is based on (2) and if we design
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so that it has a fast algorithm for implementation, the resulting
filter bank is not overly complex. In the rest of this section, we
describe how we design a critical-band filter bank (the uniform
filter bank is the local cosine basis filter bank or the MDCT).

1) Reducing Complexity by Using Translation:We wish to
design a critical-band filter bank that follows (or precedes) a
1024 uniform bank. This means that we might have a situation
where we have a 1024-channel cosine modulated filter bank,
and at some point, we want to switch to a nonuniform critical-
band 25-channel filter bank. Note, however, that this second
filter bank is time varying in that a different filter (basis
function) might be used in different time slots (which is not
the case in the first filter bank). Therefore, the size of our basis
is . This means that we have 1024 basis functions
tiling our given space in the time–frequency plane. Such a
problem is inherently big, and even the approximate method
would require too much computational time. Thus, we use the
eigenvalue approach described in the previous section.

Fig. 2 shows the time–frequency tiling used in this case.
We have 25 frequency bands.5 Intuitively, it is clear that each
filter in the same frequency band has to be some kind of
a translation of the first one. Thus, in order to reduce the
computational complexity, the filters in the same frequency
band are constrained to be circular translations of one another.

Let us first impose that these filters be linear transformations
of the first filter, that is, for band 8, for example

(12)

where is a linear transformation describing some kind of
a translation. This can be used in (5) to obtain a simpler form
of the cost function.

Indeed, by rewriting (5) for vectors (12), we get

(13)

Repeating this process for each, cost function (5) can be
rewritten as a function of the “primitive” vectors (25 in our
case), leading to a simpler problem

(14)

Care has to be exercised when imposing linear dependencies
(12). Consider, for example, what happens if we circularly
translate the filters. Fig. 3(a) shows the impulse response
obtained for the eighth filter in Fig. 2, with the constraint
of linear dependence. Note that at the point 1536, the impulse

5In the figure, the frequency axis is in barks, where one bark is the width
of one critical band. The conversion between barks and the linear frequency
scale is given byB = 13:0 arctan(0:76f=1000) + 3:5 arctan(f=7500)2,
whereB is bark frequency, andf is frequency in Hz.

(a)

(b)

Fig. 6. (a) Test signal for the approximate translation. (b) Effect of the real
circular translation (solid line) and of the approximate one (dashed line) on
the test signal in (a).

response is discontinuous.6 Such discontinuities are induced by
the circular translation constraint. To understand why, suppose
that the impulse response is as depicted in Fig. 3(c). Although
the filter in Fig. 3(c) is smoother, this property is lost when
the same filter is translated, as shown in Fig. 3(d).

Because of the requirement on frequency localization, the
cost function is high when the impulse response is smooth.
Since these filters belong to a local orthogonal bank given
by (2), the vectors obtained by the minimization of (5) are
extended by symmetry and modulated with a window as in
Fig. 4. At the right symmetry point, the function is extended by
anti-symmetry; the requirement that the function in Fig. 4(c)
be smooth implies that the original vector is almost zero in the
vicinity of such a point. However, if this is true, when the filter
is translated, it becomes discontinuous. By the same token,
if the circular translation is smooth, the first filter becomes
discontinuous. Therefore, the optimization procedure has to
accommodate two incompatible constraints, introducing the
discontinuities seen in Fig. 3(a).

A possible solution to this problem is to search for some
kind of “pseudo-translations” with the following requirements:

• They are approximate translations.
• They are periodic.
• They do not introduce discontinuities as we saw before.

6Using the term “discontinuity” in the discrete-time case is abuse of
language. It should be clear from the context that “discontinuity” refers to
the fact that we are introducing large differences between samples.
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(a) (b)

(c) (d)

Fig. 7. Effect of different weights for time and frequency errors. (a) Filter corresponding to the 19th band optimally designed with equal weights for
both time and frequency and (c) its magnitude frequency response. (b) Filter corresponding to the same band designed by imposing a weight 25 times
greater on the time error and (d) its magnitude frequency response.

2) Constructing Pseudo-TranslationsLet us see now how
to find such pseudo-translations. To this end, it is useful to
understand how an orthogonal basis is mapped into a filter
bank. We start in continuous time to get an idea of the spirit
of the reasoning. At a convenient point, we switch to discrete
time. Recall Fig. 4(a), and note that if it were a continuous-
time example, the continuity of the signal in Fig. 4(c) would
descend from the continuity of the signal in Fig. 4(a) as well
as from it being zero at .7

Therefore, we choose the basis vectors from the set of
functions that are continuous on and are zero at 1. As an
example, take the starting basisfrom the usual local cosine
basis. The set of vectors in satisfies these requirements as
does any of their finite linear combinations. Consider such
cosine vectors as a basis for . If we can express
a vector from as

(15)

then is continuous and zero at . Note that this is
a sufficient condition but not necessary. The decay is of
importance as well (if the values of coefficients decay fast,
we effectively have a finite number of nonzero values). On the

7Note that the time scale in Fig. 4 is discrete, and therefore, 0 and 1 would
correspond to 128 and 384 on the horizontal axis.

other hand, a circular translation ofby produces

(16)

that is, even if the expansion of is finite, the expansion of
is not. Expressing the operator in matrix form, it

is clear that for to have a finite expansion, the matrix
has to have a finite number of nonzero columns.

Let us now go back to discrete time since we can start
talking about finite matrices. An idea is to truncate the rows
in the matrix, keeping only the columns with higher values,
resulting in a diagonal block matrix (in continuous time this
would ensure that each row would have a finite number of
nonzero values). However, the drawback is that the obtained
operator may not be of period (that is, by applying it
times, we do not obtain an identity). To overcome this problem,
note that our operator has period if and only if all of its
eigenvalues are th roots of unity. Moreover, a diagonal block
operator has period if and only if each block has period .
This suggests the following algorithm.

Algorithm 1:

1) Express the operator in the chosen basis as a matrix.
2) Truncate the matrix by keeping only the blockson

the diagonal.
3) For each block , do the following.

3.1) Diagonalize it as .
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 8. (a) Vector ofG corresponding to the 12th band and (c), (e), (g) some translations of (a). (b), (d), (f), (h) Filters ofH =WKG corresponding to
the vectors in (a), (c), (e) and (g). Note how the “burst” in the vector generates pre- and post-echo in the resulting filter.

3.2) Approximate each diagonal element of by a
matrix whose eigenvalues are all th roots of
unity.

3.3) Reconstruct as .

As an example, suppose we have a signal of length 256 and
a circular translation of period 8. According to Algorithm 1,
express the matrix corresponding to such a circular translation
with respect to the cosine basis. The signal corresponding to
the first column is depicted in Fig. 5(a). The slow decay of
such a signal is more evident in Fig. 5(b), where it is displayed
in a log-log plot. The slope of the envelope being1 says
that the signal decays as .

Divide the matrix into blocks of size 16 16, and force
the blocks outside the main diagonal to zero. Fig. 5(c) shows
a contour plot of the new matrix. The eigenvalues of such a
matrix are not exactly eighth roots of unity, that is, the matrix
does not have period 8. Therefore, map each eigenvalue into
its closest root. In Fig. 5(d), the original eigenvalues of one
of the blocks are denoted by circles, while the eighth roots of
unity are denoted by crosses.

Finally, reconstruct the matrix to obtain the new translation.
Fig. 6(a) displays a test signal (a cosine), whereas Fig. 6(b)
demonstrates the effect of both the true translation (solid line)
and the approximate one (dashed line). As can be seen from
the figure, the approximate translation results in a continuous
signal while retaining the spirit of the true circular translation.

Going back to the example in Fig. 3, (e) shows a filter
obtained using an approximate translation. Note that the dis-
continuities present in Fig. 3(a) are smoothed in Fig. 3(e). This
is because the new operator maps continuous functions into
continuous functions.

By changing the block partition, we can obtain several types
of approximations. As a rule of thumb, small blocks give
rise to smoother filters but lose, in some sense, the idea of a
translation; on the other hand, big blocks give rise to operators
closer to the true translation, but the resulting filter is less
smooth.

3) Other Design ConsiderationsFor the highest frequency
filters, time localization is far more important than frequency
response. In order to achieve good time localization, we weight
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(e) (f)

Fig. 9. Example of pre-echo. (a) Vector corresponding to the 12th band, translated by 256. (b) Vector (a) extended by symmetry around the two end points.
(c) Windoww1. (d) Sharper windoww2. (e) Filter obtained by the product of (b) and (c). Note how the first (reflected) burst has been attenuated. However,
this is not enough, leading to the use of the sharper windoww2 resulting in (f). Here, the pre-echo is almost nonexistent.

the frequency and the time errors differently. Fig. 7(a) shows
the filter corresponding to the 19th band of Fig. 2 obtained
by weighting equally time and frequency errors, whereas
Fig. 7(b) shows the filter corresponding to the same band
but obtained by weighting the time error 25 times more
than the frequency one. Fig. 7(c) and (d) show respective
magnitude frequency responses. However, even though the
filter in Fig. 7(b) is better localized in time, it still suffers
from the following.

The first problem is the appearance of the pre-echo effects
due to the filter symmetry. Observe Fig. 8. In Fig. 8(a), the
vector from corresponding to the 12th band is shown,
whereas in Fig. 8(b), the corresponding filter is shown. Such a
vector looks like a burst because of its concentration in time.
In Fig. 8(c), (e) and (g), we can see some of the circular8

translations of the original vector, whereas the corresponding

8Note that for the highest frequency filters, circular translations do not pose
a problem since they are very short.

filters are displayed in Figs. 8(d), (f) and (h), respectively.
Note that when translating the original vector, filters obtain a
second burst that is a reflection of the original one. The second
burst is particularly annoying in audio coding as it gives rise
to pre-echo artifacts, that is, the listener perceives a copy of
the signal before its due time.

Unfortunately, the pre-echo artifact cannot be avoided by
modifying the basis because it depends on the symmetries
imposed on the filter (theoretically necessary in order to
achieve the orthogonality) and on the window shape. This is
easily seen from Fig. 9. In Fig. 9(a), we can see a translation
of the basis vector in Fig. 8(a). In Fig. 9(b), the same vector
has been extended by symmetry and antisymmetry. Note how
the burst that carries the vector energy reflects itself in the
left tail. When the signal in Fig. 9(b) is multiplied by the
window in Fig. 9(c), the reflected burst is attenuated but not
enough [see Fig. 9(e)]. However, when the signal in Fig. 9(b)
is multiplied by the sharper window in Fig. 9(d), the reflected
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

(p) (q) (r) (s) (t)

(u) (v) (w) (x) (y)

Fig. 10. Filters forming the critical-band filter banks (25 of them). The rest of the basis functions (1024–25) are obtained by pseudo-translations and circular
translations (in the case of higher frequency filters) of the 25 critical-band filters. To solve the problem of pre-echo, a very sharp window was used. The filters
were then orthogonalized and truncated to allow for the desired time localization. As a result, they lost their orthogonality.

burst is almost nonexistent [see Fig. 9(f)]. Therefore, to solve
the pre-echo problem, choose a sharper window.

The second problem is that the vectors obtained are not
necessarily orthogonal. To overcome this, the basis is orthog-
onalized via the singular value decomposition, resulting in
the orthonormal basis having a minimum distance from the
original one.

Finally, even if weighting the cost function allows us to
obtain filters better localized in time, such localization is
not enough for audio applications [21]. To improve time
localization, the resulting vectors are forced to be zero outside
the desired interval for the filter to have the desired support.
The result of such an operation can be seen in Fig. 10, where
all of the 25 filters are displayed in a 5 5 matrix. Observe
that they are exactly zero outside the desired intervals.

Unfortunately, because of the truncation procedure, the
filters in Fig. 10 are not orthogonal. To regain some orthog-
onality, the filters in Fig. 10 have been modified “by hand.”

The result for the filter in Fig. 10(d) is shown in Fig. 11. Note
that the filter has some artifacts at the beginning of its impulse
response due to the linear combinations taken with the higher
frequency filters in order to achieve the desired orthogonality.

APPENDIX

ORTHONORMAL BASIS CLOSEST TO

THE STARTING NONORTHOGONAL ONE

Property 1: Let be the singular value de-
composition of a nonsingular square matrix, with
diag .

Matrix is the orthogonal matrix having minimum
Frobenius distance from matrix , where the Frobenius dis-
tance between two matrices is defined as

Tr

(17)
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(a) (b)

Fig. 11. In order to regain some of the orthogonality lost in the previous figure, some of the filters were orthogonalized by hand. Since they are very
close to those in the same figure, we show a pair where the difference is the most striking. (a) Filter (d) from the previous figure. (b) The same
filter orthogonalized by hand.

Proof: Let be any orthogonal matrix of the same size
as . Write the distance between and as

Tr

Tr Tr Tr

(18)

The first two terms in (18) do not depend on; there-
fore, to minimize (18), we have to maximize the last term
Tr .

Since is orthogonal, is similar to
; therefore, the two matrices

have the same trace, that is

Tr Tr (19)

Moreover, the matrix inside square brackets in (19) is orthog-
onal as it is the product of orthogonal matrices. We want
to prove that if is an orthogonal matrix, then Tr is
maximum when . Since in (19) ,
implies , which is what we want to prove.

The trace of can be expressed as

Tr (20)

Since matrix is orthogonal, every column is of unit norm,
implying that . Since every in (20) is greater
than zero, then (20) is maximum when for each ,
yielding .
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[17] R. Bernardini and J. Kovǎcevíc, “Local orthogonal bases I: Construc-
tion,” Multidim. Syst. Signal Process., Special Issue onWavelets and
Multiresolution Signal Processing, vol. 7, pp. 331–370, July 1996.



2304 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 47, NO. 8, AUGUST 1999

Invited paper. Reprinted inMultidimensional Filter Banks and Wavelets,
S. Basu and B. Levy, Eds. Boston, MA: Kluwer, 1997.

[18] R. Bernardini and J. Kovaˇcević, “Local orthogonal bases II: Window
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