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Arbitrary Tilings of the Time—Frequency
Plane Using Local Bases

Riccardo Bernardini and Jelena K@exic, Senior Member, IEEE

Abstract—We show how to design filters given a prescribed
tiling of the time—frequency plane. Moreover, we impose on
these filters the structure of local orthogonal bases. These bases
were recently constructed as a generalization of the cosine-
modulated filter banks in discrete time and local trigonometric !
bases in continuous time. They have been found to be of con- time
siderable practical importance due to their simplicity (all filters ()
are obtained from a single prototype) and low computational
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complexity. We show examples of design, in particular, that of 05, 05 055 o 99 05 ¢ 9
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I. INTRODUCTION _o_g l T _o.g LI 70.3 T34 ko.g‘ :
NE OF THE main goals of signal analysis in recent (b)
years has been to develop mixed signal representations
in terms of elementary blocks called time—frequency atoms o 0 OW om
well localized in time and frequency [1]. Each of these blocks = - i s
resides mostlyin a well-defined area (usually a rectangle) in 0 0 0
the time—frequency plane. An appropriate analogy is that of a—zo/ —20/ —20Vm -20
40 -40 -40 —40

musical score; knowing that there exists a C within a first few ~
bars of a musical piece does not help us unless we know its ©

position in time and its duration. Thus, we can think of notedd. 1. (a) Desired tiling of the time—frequency plane. There are eight basis
as time—frequency atoms [1] functions, denoted 1 through 8. The highest frequency valwe {b) Impulse

] . responses of the eight basis functions, numbered 1 through 8, starting from
Currently, two classes of time—frequency atoms are in UsEs upper left. (c) Magnitude frequency responses of the eight basis functions,

corresponding to two types of analyzes that Ville propose@gmbered 1 through 8, starting from the upper left. Horizontal axis is the
The first, wavelet packets [2], splits the signal first in frequen eq%f&?gdaéf'tﬁgcfog'escha'l?eheSt frequencyrisvalues on the vertical axis
and then in time, whereas the second, local cosine bases
[3]-[5], does the opposite, that is, it slices first in time and then
in frequency. Our approach in this work produces a mixture Local cosine bases have been used extensively in audio
of these two classes leading to filters corresponding to md@ding [13], [14]. They have also found use in image coding,
general tilings. Refer also to [6] and [7] for some interestingue to the reduction of blocking effects [15] when compared
works dealing with time—frequency tilings. with the DCT. Some video works contain local cosine bases
In discrete time, local cosine bases (which are also call@@ Well [16]. Recently, local cosine bases were generalized to
cosine-modulated filter banks, modulated lapped transfornfRultiple dimensions as well as into local bases with noncosine
or MDCT), have been in use for some time [8]-[11]. pu&nodulating functions. The resulting bases are called local
to a few of their properties, they have become quite popul&fthogonal bases [17], [18].
for example, all filters (basis functions) of a filter bank are Here, we show how to construct time—frequency atoms
obtained by appropriate modulation of a single prototype filtdgading to filters corresponding to fairly arbitrary tilings of the
Then, fast algorithms exist, making them very attractive fdime—frequency plane using these local bases. Moreover, we
implementation. Finally, they have been used to achieve tinRiSO obtain time-varying tilings since the transitions between
varying splitings of the time—frequency plane [12]. Theirarious tilings depend only on the windows useds an

continuous counterpart is termed “Malvar's wavelets” [1]. €xample of what we are trying to achieve, consider Fig. 1.
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frequency responses are given in Fig. 1(b) and (c), respectivelyzs.oo-;
(note, however, that the basis in this figure is not orthogonal).

20.004

Il. SUMMARY OF LocAL ORTHOGONAL BASES

In this section, we give a brief summary of the work in
[17] that is necessary for the developments in the presegtisco|
paper. In [17], we extend the theory of local cosine bas&s
(cosine-modulated filter banks) to a more general case. In;i;a
cosine-modulated filter bank, all the filters are obtained hj 10004
modulating a prototype filtew[n] (also known as thevindow)
with suitable cosine functions. When the window satisfies
certain constraints (symmetry and power complementarity), >%7
the resulting filter bank is orthogonal. In [17], we show that
orthogonality depends only on the symmetries of the cosines;
therefore, any other set of functions with the same symmetries o ' 26 si2 768 1024
would produce a perfect reconstruction filter bank. Consider Time
the one-dimensional (1-D) case as an example. From [17], we 2. TiIing_of_the_ time_—frequency plane for critical-band aqdio coding.

. . L Frequency axis is given in barks whe®® = 13.0arctan(0.76f/1000)
can deduce a recipe to obtain a critically sampled orthogonal 5. cax(/7500)2, with B being bark frequency and frequency in
filter bank with A filters of length2A1. Hertz.

e Take any orthonormal basig;, ¢ = 1,2,..., M, and

consider vectorsg; as signalsg;[n] having support that the windoww
{0,1,...,M — 1}. We refer to this basis as thstarting window design).
basisand represent it by a matri&.

» Extend everyg;[n] by symmetry and antisymmetry ac-

cording to (we assume thatl is even)

[»] is given (see [18] for more details on

Ill. CONSTRUCTION OFARBITRARY TILINGS
Our goal is to find a matrixG such that everph; = WKg;

~ A

giln] = is well concentrated in its corresponding tile. Although the
gi[—1—mn], ifn=-M/2.. . -1 multidimensional case is interesting in its own right (for use in
gi[n], fn=0..M-1 image processing applications, for example), its study does not
—gi2M —1—n], fn=M, .. M+M/2-1 introduce anything new, except for a more complex notation.

(1) Therefore, for the sake of simplicity, here, we consider the
1-D discrete time-case.

Supposeh; has to be well concentrated in the time interval
Ar; and frequency intervalix;. In other words, letAr; x
Ar; be the tile corresponding th;. As the measure of good

obtain the final filterss;[n] = w[n]g;[n]. We refer to this 1 eniration we use the suRy; + Pr; of the two stopband
process asvindowingand represent it by a matriv. errors 7 7

Signals;[n] are the impulse responses of the desired filter
bank. These steps are depicted in Fig. 4. Note that the above Pr;= Z hi[n]Q, Pr; = / IHa,(w)IQ dw (3)
procedure can also be expressed as nEAL Ag.

H=WKG 2) whereH;(w) is the Fourier transform df;[»] [in (3), we used
where X¢ to denote the complement of s&{. Cost functions (3) can
be weighted with weight functionsr[n] andpr(w). By using,
in (3), the definition ofH (w) = 3, .; exp(—j27wn)h[n], we
san rewrite (3) as

We refer to this process asymmetry extensiomnd
represent it by a matri¥.
* Multiply every g;[n] by the window w[n] in order to

G M x M orthogonal matrix;

K 2M x M matrix representing symmetry extension;

W 2M x 2M diagonal matrix having the samples of th

window wn] or_1 the main d_|agonal. Pr; =hYCr;h;, Pp; =h’Cp;h; (4)
The columns of matrixH are the impulse responses of the
desired filters in a filter bank. A similar recipe can also beith Cr; and Cr; two symmetric, positive semi-definite
used in more than one dimension as well as in continuouwtrices. Clearly, the sum of two errors (4) is still a quadratic
time [17]. form with the matrixC; = Cr; + Cp;.

The aim of this paper is to exploit the new degrees of The same reasoning can be repeated for every végtor
freedom obtained by relaxing the constraints #Gabe cosine To obtain a cost function for the whole basis, use the sum
to construct a filter bank, given a tiling of the time—frequencgf the cost functions of the single vectors. By exploiting the
plane. Therefore, our goal ® search forG such that the i
. | tainedERgiven in (2) achieve a given Note that we cannot us€; P.,; as a measure of good concentration
Impu sé responses containe g g because it is easy to obtain a sigriai[n] having Pr; = 0 implying
tiling of the time—frequency planén what follows, we assume Pr; Pr; = 0.
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Fig. 3. Problems induced by the circular translation requirement. The filter in the figure corresponds to the eighth band. (a) Filter optimatiynibsigne
the circular translation constraint (note the discontinuity at the point 1536) and (b) its translation of 256. (c) Filter optimally de&lymédhe circular
translation requirement (that is, by optimizing only the first filter in each band) and (d) its translation of 256. Note that although the filter mgadhiers
than the one in (a), its translation (d) is far worse than (b). (e) Filter obtained by using the pseudo-translation and (f) its pseudo-transktion of 25

dependence betwedn andg; given in the previous section, they can be organized as columns of a unitary matrix
the global cost function can be written as N
U=[g g - gn| (6)

zg?Digi (5) This is important because the matfiX, even if not square,

¢ can be written as a function of some free parameters. Thus,
we can parameterize this matrix and then extract the vectors
gi, which are now given as functions of free parameters. A
unitary matrixU can be written either using Givens’ rotations

whereD, = KTW7TC,WK.

IV. SOLVING FOR THE BASIS
. N _ _ U=RiR2---RyDg (7)
We now describe ways to minimize (5) with the constraint

that the vectors be orthogonal. A key observation is that whereR; are suitable rotation matrices, afit}; is a diagonal
vectorsg; are orthogonal to one another and of unit nornmatrix havingd;; = +1, or using Householder building blocks
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(see, for example, [19]) 1

o0.8f

U= P1P2 Tt PN—1DH (8)

0.8k

04r

where Dy is a diagonal matrix having,;; = +1, and each
matrix P is defined as

02

Pk éI—2~uku£ (9) 0.2

whereuy, is a vector having the firgt — 1 components equal
to zero such thafju|| = 1.

Note that matricesDs and Py have no effect on the
value of (5) because they simply correspond to a change of °
sign for some of the vectorg;; therefore, we assume that
Do =Dy =L

512

extension | T truncation

— ~T

A. Closed-Form Solution

08

Obtaining a closed-form solution is feasible only for small oe}
vector spaces with the help of a program capable of doing oal
computation with polynomials.

The idea is to use the decomposition in (8). Write the entries
of matricesP; in (9) as polynomials of degree two in the
nonzero components af. Therefore,U, being a product
of polynomial matrices, is a polynomial matrix as well, and
the cost function (5) can be expressed as a polynomial of the

02+

free parameters. Our problem now becomes that of finding e ; : 5 . : :

the minimum value assumed by a given polynomial on a T S
multidimensional interval, and it can be solved by classical (b)

analytical methods. Such a polynomial W&~ — 1)/2 free

variables, and its degreed$ N — 1). For example, ifV = 10, windowing | T unwindowing
we have a polynomial of degree 36 with 45 variables. The ! ! T T i " T !
gradient of such a polynomial is a vector having as components osf

45 polynomials of degree 35. Because of this, the closed-form s

solution is feasible only for small values &f. The fact that oa}

we can look afU as a polynomial matrix, however, can have o2}

theoretical relevance since it gives us strong information about
the structure of (5).

If a closed-form solution is not feasible, use decomposi-
tions (7) and (8) to minimize (5) by using a program for
unconstrained optimization.

B. A Simpler Solution e

. . . c
A simpler, even if suboptimal, approach that works also for (©
; i inimi ig. 4. Path between the starting basis vector and the final filter according
blg.ger.problems IS t.o mmlml.ze.eaCh term .Of (5) s.eparatelg, the procedure given in Section Il. The basis vector in (a) is extended by
which in turn is obtained by finding the maximum eigenvalug/mmetry and antisymmetry around the points: 128 and¢ = 384. The
of the matrixC; and its corresponding eigenvector. resulting signal (b) (solid line) is multiplied by the window (dashed line) to
The resulting set of vectors is not guaranteed to be gpfain the filter in (c).

orthonormal basis but can be orthogonalized. An interesting

way to do so is to write the vectors obtained from thgre orthogonal to one another and enjoy the property that they
minimization of each term of () as the columns of a ma&ix are the orthonormal basis having the minimum distance from
and decompose it, using the singular value decomposition,tgg original set of vectors (the proof is given in Appendix A).

A =08Q (10)

where O and Q are orthogonal matrices, arilis a diagonal V. DESIGN EXAMPLES

matrix. The columns of To start this section, we first use the techniques described in
the previous section to obtain the tiling as given in Fig. 1(a).
0oQ (11) Although this is a simple example, it shows the results the
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Fig. 5. Example of construction of an approximate translation of 32 steps for a signal of length 256. (a) Components, with respect to the cosine basis,
of the signal obtained by translating the first vector. (b) Tail of the signal shown in (a) displayed as a log-log plot. The slope of the linshswing

that the decay is of ordet/z. (c) Circular translation matrix with only the diagonal blocks. (d) Eigenvalues of a block of (c), shown with circles, and

the corresponding eighth roots of unity, shown with crosses.

technique gives. This is followed by an example in which whlter banks that need to be addressed when designing a percep-

design a critical-band filter bank for use in audio coding. tual audio coder: Among them, we have time-domain effects
such as pre-echo and stereo imaging effects; frequency-domain

A. Toy Example artifacts such as unmasked aliasing and large overcoding

Consider a vector space of size 8 as well as the Windor\g:vqwrements due to the filter bank bandwidth; and coding

of size 8% We use the approach described in Section IV-Iég,"’lIn problems, .SUCh as lack of sufficient coding gain as W?”
s loss of coding gain due to pre-echo or nonstationarity

obtaining a result that, although not orthogonal, is clog® M £ th ) h b dd di i
to orthogonal. The corresponding basis functions are giv uez. kan()j/ o esi/l |ssuers] ave been at_”rlesffe n cur;en
in Fig. 1(b), whereas their magnitude frequency respons fer banks designs. Many, however, are still left open, an

are depicted in Fig. 1(c). As can be seen from the figured€ address a few of them, such as the need to “flexibly

the technique indeed achieves the desired time—frequer‘f&?nge the timg—frequency -tiling of the filte.r banks” S,UCh that
localization. Consider, for example, the basis function It reduency portions of the signal that are highly varying may

is mostly localized in the first half of the interval and is of€dUiré a time resolution matching that of the critical band”
low frequency. On the other hand, basis functignis mostly [20]. Johnston further states that a filter bank that switches
localized in the second half of the interval and is of the highe@gtween the critical band and the uniform filter banks has to

frequency. Note how the frequency increases as we incref§¥€ @ certain signal and frequency meaning. Thus, an allpass
the number of the basis function. filter bank would not do the job. Moreover, an orthonormal

filter bank is highly desirable. Finally, the resulting filter bank
has to be of sufficiently low complexity so that it can be
implemented.

The problem we attack now is more complex and is gov- oyr technique lends itself well to the above requirements.
erned by the needs of an audio coder. In [20], Johnston Iist&@st' since our scheme is window based, it is easy to switch
few of the interactions between the human auditory system &g the uniform mode to a critical-band mode (since these

i . ) . transitions depend only on the window). This further implies
4Note that time-varying tilings can be obtained since they depend only

the window. For example, we could switch from the tiling as in Fig. 1(a) tgHat the transition filter bank I_<eeps its frequency _meaning_. Due
a uniform frequency tiling. to the fact that our approach is based on (2) and if we deGign

B. Design of a Critical-Band Basis for Audio Coding
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so that it has a fast algorithm for implementation, the resulting
filter bank is not overly complex. In the rest of this section, we
describe how we design a critical-band filter bank (the uniform
filter bank is the local cosine basis filter bank or the MDCT).

1) Reducing Complexity by Using TranslatiokVe wish to
design a critical-band filter bank that follows (or precedes) a
1024 uniform bank. This means that we might have a situation
where we have a 1024-channel cosine modulated filter bank,
and at some point, we want to switch to a nonuniform critical-
band 25-channel filter bank. Note, however, that this second
filter bank is time varying in that a different filter (basis
function) might be used in different time slots (which is not
the case in the first filter bank). Therefore, the size of our basis
is N = 1024. This means that we have 1024 basis functions
tiling our given space in the time—frequency plane. Such a
problem is inherently big, and even the approximate method
would require too much computational time. Thus, we use the
eigenvalue approach described in the previous section.

Fig. 2 shows the time—frequency tiling used in this case.
We have 25 frequency bandlsntuitively, it is clear that each
filter in the same frequency band has to be some kind of
a translation of the first one. Thus, in order to reduce the
computational complexity, the filters in the same frequency
band are constrained to be circular translations of one another.

Let us firstimpose that these filters be linear transformations T e e A
of the first filter, that is, for band 8, for example P ; ” e - 756

(b)

gis = Lis gs (12) Fig. 6. (@) Test signal for the approximate translation. (b) Effect of the real
circular translation (solid line) and of the approximate one (dashed line) on
the test signal in (a).

whereL,, is a linear transformation describing some kind of

a translation. This can be used in (5) to obtain a simpler forfasponse is discontinuofiSuch discontinuities are induced by
of the cost function. the circular translation constraint. To understand why, suppose
Indeed, by rewriting (5) for vectors (12), we get that the impulse response is as depicted in Fig. 3(c). Although
the filter in Fig. 3(c) is smoother, this property is lost when
the same filter is translated, as shown in Fig. 3(d).
Zg}; Ci.gi, =88 <Z Lz; CigL@)gs. (13) Because of the requirement on frequency localization, the
i i cost function is high when the impulse response is smooth.
Since these filters belong to a local orthogonal bank given
Repeating this process for eagh, cost function (5) can be by (2), the vectors obtained by the minimization of (5) are
rewritten as a function of the “primitive” vectors (25 in ourextended by symmetry and modulated with a window as in
case), leading to a simpler problem Fig. 4. At the right symmetry point, the function is extended by
anti-symmetry; the requirement that the function in Fig. 4(c)
25 be smooth implies that the original vector is almost zero in the
Z g]r <Z LY Ci, Lij> g;. (14) yicinity of such_ a point. Howc_aver, if this is true, when the filter
= Pl is translated, it becomes discontinuous. By the same token,
if the circular translation is smooth, the first filter becomes

discontinuous. Therefore, the optimization procedure has to

Care has_ to be exercised when imposing Ime_ar depgnden tCommodate two incompatible constraints, introducing the
(12). Consider, for example, what happens if we C'rcmarléfiscontinuities seen in Fig. 3(a)

tran;late the f'“efs- F'g.‘ 3(a). shpws th? impulse résponse, possible solution to this problem is to search for some
obtained for the eighth filtegs in Fig. 2, with the constraint

. . : ind of “pseudo-translations” with the following requirements:
of linear dependence. Note that at the point 1536, the |mpuh°,e P , . gred
» They are approximate translations.

e They are periodic.
* They do not introduce discontinuities as we saw before.

5In the figure, the frequency axis is in barks, where one bark is the width
of one critical band. The conversion between barks and the linear frequenc§Using the term “discontinuity” in the discrete-time case is abuse of
scale is given byB = 13.0 arctan(0.76f/1000) + 3.5 arctan(f/7500)2, language. It should be clear from the context that “discontinuity” refers to
where B is bark frequency, and is frequency in Hz. the fact that we are introducing large differences between samples.
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Fig. 7. Effect of different weights for time and frequency errors. (a) Filter corresponding to the 19th band optimally designed with equal weights for
both time and frequency and (c) its magnitude frequency response. (b) Filter corresponding to the same band designed by imposing a weight 25 times
greater on the time error and (d) its magnitude frequency response.

2) Constructing Pseudo-Translatioriset us see now how other hand, a circular translation foy 1/N produces
to find such pseudo-translations. To this end, it is useful to -
understand how an orthogonal basis is mapped into a filter _
bank. We start in continuous time to get an idea of the spirit TNt = Z P B (16)
of the reasoning. At a convenient point, we switch to discrete
time. Recall Fig. 4(a), and note that if it were a continuoushat is, even if the expansion dfis finite, the expansion of
time example, the continuity of the signal in Fig. 4(c) would, ,xf is not. Expressing the operatoy, in matrix form, it
descend from the continuity of the signal in Fig. 4(a) as wel clear that forr,,nf to have a finite expansion, the matrix
as from it being zero at = 1.7 71/~ has to have a finite number of nonzero columns.
Therefore, we choose the basis vectors from the set ofLet us now go back to discrete time since we can start
functions that are continuous ¢@ 1] and are zero at 1. As antalking about finite matrices. An idea is to truncate the rows
example, take the starting bagisfrom the usual local cosine in the matrix, keeping only the columns with higher values,
basis. The set of vectors & satisfies these requirements agesulting in a diagonal block matrix (in continuous time this
does any of their finite linear combinations. Consider sualould ensure that each row would have a finite number of
cosine vectorg,, as a basis fo?([0, 1]). If we can express nonzero values). However, the drawback is that the obtained
a vectorf from L?([0,1]) as operator may not be of periofy (that is, by applying itV
times, we do not obtain an identity). To overcome this problem,
N note that our operator has peridd if and only if all of its
f= Z An8n (15) eigenvalues aré&'th roots of unity. Moreover, a diagonal block
n=0 operator has period’ if and only if each block has periof¥.
This suggests the following algorithm.
Algorithm 1:

1) Express the operator in the chosen basis as a matrix.
2) Truncate the matrix by keeping only the blocBson
the diagonal.

"Note that the time scale in Fig. 4 is discrete, and therefore, 0 and 1 Would3) For ea(_:h bIOCBB’ Fio the foIIowmg.
correspond to 128 and 384 on the horizontal axis. 3.1) Diagonalize it aB = A~!DA.

n,m=0

then f is continuous and zero a = 1. Note that this is
a sufficient condition but not necessary. The decay is of
importance as well (if the values of coefficients decay fast,

we effectively have a finite number of nonzero values). On the
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Fig. 8. (a) Vector ofG corresponding to the 12th band and (c), (e), (g) some translations of (a). (b), (d), (), (h) FillH's=oW KG corresponding to
the vectors in (a), (c), (e) and (g). Note how the “burst” in the vector generates pre- and post-echo in the resulting filter.

3.2) Approximate each diagonal element Df by a Finally, reconstruct the matrix to obtain the new translation.
matrix D whose eigenvalues are alith roots of Fig. 6(a) displays a test signal (a cosine), whereas Fig. 6(b)
unity. demonstrates the effect of both the true translation (solid line)

3.3) ReconstrucB asB 2 A—!DA. and the approximate one (dashed line). As can be seen from

As an example, suppose we have a signal of length 256 4Re figure, the approximate translation results in a continuous
a circular translation of period 8. According to Algorithm 1Signal while retaining the spirit of the true circular translation.
express the matrix corresponding to such a circular translatiorG0ing back to the example in Fig. 3, (e) shows a filter
with respect to the cosine basis. The signal correspondingd@tained using an approximate translation. Note that the dis-
the first column is depicted in Fig. 5(a). The slow decay @ontinuities presentin Fig. 3(a) are smoothed in Fig. 3(e). This
such a signal is more evident in Fig. 5(b), where it is displayd® because the new operator maps continuous functions into
in a log-log plot. The slope of the envelope beirg says continuous functions.
that the signal decays d¥x. By changing the block partition, we can obtain several types
Divide the matrix into blocks of size 16& 16, and force of approximations. As a rule of thumb, small blocks give
the blocks outside the main diagonal to zero. Fig. 5(c) showise to smoother filters but lose, in some sense, the idea of a
a contour plot of the new matrix. The eigenvalues of suchteanslation; on the other hand, big blocks give rise to operators
matrix are not exactly eighth roots of unity, that is, the matrigloser to the true translation, but the resulting filter is less
does not have period 8. Therefore, map each eigenvalue iatooth.
its closest root. In Fig. 5(d), the original eigenvalues of one 3) Other Design Consideration§or the highest frequency
of the blocks are denoted by circles, while the eighth roots blters, time localization is far more important than frequency
unity are denoted by crosses. response. In order to achieve good time localization, we weight
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(a)

(b)

(d)

L

@

(e) ®

Fig. 9. Example of pre-echo. (a) Vector corresponding to the 12th band, translated by 256. (b) Vector (a) extended by symmetry around the two end points
(c) Window w; . (d) Sharper windowws . (e) Filter obtained by the product of (b) and (c). Note how the first (reflected) burst has been attenuated. However,
this is not enough, leading to the use of the sharper windewresulting in (f). Here, the pre-echo is almost nonexistent.

the frequency and the time errors differently. Fig. 7(a) shoviitters are displayed in Figs. 8(d), (f) and (h), respectively.
the filter corresponding to the 19th band of Fig. 2 obtainedote that when translating the original vector, filters obtain a
by weighting equally time and frequency errors, whereagcond burst that is a reflection of the original one. The second
Fig. 7(b)_shows the .filte.r corresponding to the same bapdrst is particularly annoying in audio coding as it gives rise
but obtained by weighting the time error 25 times morg pre-echo artifacts, that is, the listener perceives a copy of
than the frequency one. Fig. 7(c) and (d) show respectiuge signal before its due time.
magnitude frequency responses. However, even though th@jnfortunately, the pre-echo artifact cannot be avoided by
from the following. imposed on the filter (theoretically necessary in order to
The first problem is the appearance of the pre-echo effegis,ieve the orthogonality) and on the window shape. This is
due to fthe filter symmetr;(/j._ Observhe Fig. r?bln ';'g_' 8(?])' theasily seen from Fig. 9. In Fig. 9(a), we can see a translation
vehctor rqmFG %olr)resrr:on Ing to td_e 1f2|t _anh IS sSownof the basis vector in Fig. 8(a). In Fig. 9(b), the same vector
whereas in F19. (b), the correspon ng Meris s own. SUCTLAS heen extended by symmetry and antisymmetry. Note how
vector looks like a burst because of its concentration in tlmﬁ{l. . ; .
. . e burst that carries the vector energy reflects itself in the
In Fig. 8(c), (e) and (g), we can see some of the cwéulalr . . - ; o
translations of the original vector, whereas the correspondirﬁaft tail. When the signal in Fig. 9(b) is multiplied by the
' Wgndow in Fig. 9(c), the reflected burst is attenuated but not

8Note that for the highest frequency filters, circular translations do not po_@QOUQh [§ee Fig. 9(e)]. Howeyer* When .the signal in Fig. 9(b)
a problem since they are very short. is multiplied by the sharper window in Fig. 9(d), the reflected
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(a) (b) (c) (d) (e)

® @) (h) @) 0

(k) 0] (m) (n) (0)

) (@ ® (s) ®

(u) (U] (W) ) v

Fig. 10. Filters forming the critical-band filter banks (25 of them). The rest of the basis functions (1024—25) are obtained by pseudo-trarssieiticuiaran
translations (in the case of higher frequency filters) of the 25 critical-band filters. To solve the problem of pre-echo, a very sharp window wasfilised. Th
were then orthogonalized and truncated to allow for the desired time localization. As a result, they lost their orthogonality.

burst is almost nonexistent [see Fig. 9(f)]. Therefore, to solée result for the filter in Fig. 10(d) is shown in Fig. 11. Note
the pre-echo problem, choose a sharper window. that the filter has some artifacts at the beginning of its impulse
The second problem is that the vectors obtained are @gponse due to the linear combinations taken with the higher
necessarily orthogonal. To overcome this, the basis is orthdgequency filters in order to achieve the desired orthogonality.
onalized via the singular value decomposition, resulting in
the orthonormal basis having a minimum distance from the

iqinal APPENDIX
orlg.lna" one. i iahi h ‘ . I ORTHONORMAL BASIS CLOSEST TO
Finally, even if weighting the cost function allows us to THE STARTING NONORTHOGONAL ONE

obtain filters better localized in time, such localization is P 1- Let A 0SO be the sinaul ue d
not enough for audio applications [21]. To improve time rope_r?y - Let . Q be the singular vajue de-
omposition of a nonsingular square matd, with S =

localization, the resulting vectors are forced to be zero outsi I%lg(sl 5 sx), 5 > 0
the desired interval for the filter to have the desired suppor 'Matrfx ’OQ’ is‘ t7he2 orth<.)gonal matrix having minimum
The resuit of ,SUCh an op-erat|on cgn be seen "n,' Fig. 10, Wh%rl%benius distance from matri&, where the Frobenius dis-
all of the 25 filters are displayed in a6 5 matrix. Observe ;qce petween two matricé%, Y is defined as
that they are exactly zero outside the desired intervals.

Unfortunately, because of the truncation procedure, trrrk _Y|p 2 Z X — Y2 =Tr(X - V)T (X - Y)).
filters in Fig. 10 are not orthogonal. To regain some orthog- i ’ ’
onality, the filters in Fig. 10 have been modified “by hand.” a7)
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0 * : ‘0‘24
(@)
Fig. 11.

filter orthogonalized by hand.

Proof: Let V be any orthogonal matrix of the same size

as A. Write the distance betweéw and A as o

|A = V||r = Tx((08SQ - V)"(0SQ - V)) 4

=Tr(QTso? — v (0SQ -V))

=Tr(QYs2Q) + Tr(I) — 2Tr(QTsOIV).
(18)

(3]
(4]

The first two terms in (18) do not depend ovi; there-
fore, to minimize (18), we have to maximize the last term
Tr(QTSOTV).

Since Q is orthogonal, QTSOTV is similar to
Q(QTSOTVYQT = s0TVQT; therefore, the two matrices [7]
have the same trace, that is

(6]

(8]

TH(QTSO"V) = Tr(S[0TVQ™]). (x9) [

Moreover, the matrix inside square brackets in (19) is orthoEL-O]
onal as it is the product of orthogonal matrices. We want

to prove that ifU is an orthogonal matrix, then {8U) is
maximum whenU = I. Since in (19)U = 0TvVQT, U =1

11
implies V = OQ, which is what we want to prove. -
The trace ofSU can be expressed as
[12]
Tr(SU) = Z SiU; ;. (20)
[13]

Since matrixU is orthogonal, every column is of unit norm,

implying that |U, ;| < 1. Since everyS; in (20) is greater [i4
than zero, then (20) is maximum whd#; ; = 1 for eachg,
yielding U = L [15]
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1
1024

(b)

In order to regain some of the orthogonality lost in the previous figure, some of the filters were orthogonalized by hand. Since they are very
close to those in the same figure, we show a pair where the difference is the most striking. (a) Filter (d) from the previous figure. (b) The same

REFERENCES

Y. Meyer, Wavelets: Algorithms and ApplicationsPhiladelphia, PA:
SIAM, Translated and revised by R. D. Ryan, 1993.

R. Coifman, Y. Meyer, S. Quake, and M. Wickerhauser, “Signal
processing and compression with wavelet packets,” Tech. Rep., Yale
Univ., New Haven, CT, 1991.

R. Coifman and Y. Meyer, “Remarques sur I'analyze de Fousger
fenétre,” C. R. Acad. Sci. Parjsvol. |, pp. 259-261, 1991.

P. Auscher, G. Weiss, and M. Wickerhauser, “Local sine and cosine
bases of Coifman and Meyer and the construction of smooth wavelets,”
in Wavelets: A Tutorial in Theory and Applicatign€. K. Chui, Ed.

San Diego, CA: Academic, 1992.

5] B. Jawerth and W. Sweldens, “Biorthogonal smooth local trigonometric

bases,"J. Fourier Anal. Appl. vol. 2, 1996.

S. Mallat and Z. Zhang, “Matching pursuits with time-frequency dictio-
naries,” |IEEE Trans. Signal Processingol. 41, pp. 3397-3415, Dec.
1993.

C. Thiele and L. F. Villemoes, “A fast algorithm for adapted time-
frequency tilings,” Yale Univ., New Haven, CT, preprint, 1994.

H. Malvar, Signal Processing with Lapped Transforndorwood, MA:
Artech House, 1992.

J. Princen, A. Johnson, and A. Bradley, “Subband transform coding
using filter bank designs based on time domain aliasing cancellation,”
in Proc. IEEE Int. Conf. Acoust., Speech, Signal Procesddaglas, TX,

Apr. 1987, pp. 2161-2164.

T. A. Ramstad and J. Tanem, “Cosine-modulated analysis-synthesis
filterbank with critical sampling and perfect reconstruction,”Rroc.
IEEE Int. Conf. Acoust., Speech, Signal Procebsronto, Ont., Canada,
May 1991, pp. 1789-1792.

R. D. Koilpillai and P. P. Vaidyanathan, “New results on cosine-
modulated FIR filter banks satisfying perfect reconstruction,Pioc.
IEEE Int. Conf. Acoust., Speech, Signal Procebsronto, Ont., Canada,
May 1991, pp. 1793-1796.

C. Herley, J. Kovéaevic, K. Ramchandran, and M. Vetterli, “Tilings of
the time-frequency plane: Construction of arbitrary orthogonal bases and
fast tiling algorithms,”IEEE Trans. Signal Processin@pecial Issue on
Wavelets and Signal Processing, vol. 41, pp. 3341-3359, Dec. 1993.
J. D. Johnston and A. J. Ferreira, “Sum-difference stereo transform
coding,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal Progesan
Francisco, CA, Mar. 1992, pp. 11:569-572.

C. Todd, G. Davidson, M. Davis, L. Fielder, B. Link, and S. Vernon,
“AC-3: Flexible preceptual coding for audio transmission and storage,”
in Proc. Conv. AESAmsterdam, The Netherlands, Feb. 1994.

J. Kovaevic, D. LeGall, and M. Vetterli, “Image coding with windowed
modulated filter banks,” ifProc. IEEE Int. Conf. Acoust., Speech, Signal
Process. Glasgow, U.K., May 1989, pp. 1949-1952.

16] A. Johnson, J. Princen, and M. Chan, “Frequency scalable video coding

using the MDCT,” inProc. IEEE Int. Conf. Acoust., Speech, Signal
Process. Adelaide, Australia, 1994.

R. Bernardini and J. Kov@vic, “Local orthogonal bases I: Construc-
tion,” Multidim. Syst. Signal ProcessSpecial Issue oWavelets and
Multiresolution Signal Processingvol. 7, pp. 331-370, July 1996.



2304 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 47, NO. 8, AUGUST 1999

Invited paper. Reprinted iNultidimensional Filter Banks and Wavelets Jelena Kovatevic (SM'96) was born in Yugoslavia
S. Basu and B. Levy, Eds. Boston, MA: Kluwer, 1997. e in 1962. She received the Dipl. Electr. Eng. degree

[18] R. Bernardini and J. Kox@Vi¢, “Local orthogonal bases II: Window from the Electrical Engineering Department, Uni-
design,” Multidim. Syst. Signal ProcessSpecial Issue orlWavelets versity of Belgrade, Belgrade, Yugoslavia, in 1986,
and Multiresolution Signal Processingol. 7, pp. 371-400, July 1996. and the M.S. and Ph.D. degrees from Columbia
Invited paper. Reprinted iNultidimensional Filter Banks and Wavelets University, New York, NY, in 1988 and 1991,
S. Basu and B. Levy, Eds. Boston, MA: Kluwer, 1997. respectively.

[19] M. Vetterli and J. Kovaévi¢, Wavelets and Subband CodingEngle- In November 1991, she joined AT&T Bell Labo-
wood Cliffs, NJ: Prentice-Hall, 1995. ratories, Murray Hill, NJ, as a Member of Technical

[20] J. D. Johnston, “Subband and wavelet transforms: designs and ap Staff. In the Fall of 1986, she was a Teaching
cations,” inFilterbank Interactions with Audio Coding Boston, MA: Assistant at the University of Belgrade. From 1987

Kluwer, 1995. ) o to 1991, she was a Graduate Research Assistant at Columbia University. In

[21] D. Sinha and J. Johnston, private communication, 1995. the summer of 1985, she worked for Gaz de France, Paris, France, during
the summer of 1987 for INTELSAT, Washington, D.C., and in the summer of
1988 for Pacific Bell, San Ramon, CA. Her research interests include multirate
signal processing, wavelets, image and video coding, and communications.

Dr. Kovatevic received the E. I. Jury Award from Columbia University

r outstanding achievement as a graduate student in the areas of systems,

ommunication, or signal processing. She is the co-author of the book (with

Riccardo Bernardini was born in Genova, ltaly, in 1964. He received the}0
“Laurea in Ingegneria Elettronica” degree from the University of Padov:a

Padova, ltaly, in 1990. M. Vetterli) Wavelets and Subband Codifgnglewood Cliffs, NJ: Prentice

Since then, he has been with the Dipartimento di Elettronica e Informatiqqa” 1995). She served as an Associate Editor of the IEEENFACTIONS
University of Padova, with a scholarship from the Consorzio Padova Ricerc S,|GNAL I5ROCESS|NGand as the Guest Co-Editor (with I. Daubechies) of

and from November 1992 to November 1995, he was a Ph.D. student. 1 Special Issue on Wavelets of thedeeebiNnGs oF THEIEEE. She is on

spent the last year of his Ph.D. studies at the former AT&T Bell Laboratorieﬁ,Te Editorial Boards of thdournal of Appli . :
h h h - - pplied and Computational Harmonic
Murray Hill, NJ. From April 1996 to April 1997, he was with the SWISSAnalysisand theJournal of Fourier Analysis and ApplicationShe is on the

Federal Technological Institute, Lausanne, as a Postdoctoral Fellow. Now,I SP Technical Committee of the IEEE Signal Processing Society and was

is working as “assegnista” with the Dipartimento di Elettronica e Informaticqh General Co-Chair (with J. Allebach) of the Ninth Workshop on Image and
University of Padova. His main interests are in the area of muItidimensioqa ltidimensional Signal Proéessing

signal processing, wavelets, and filter banks.



