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Abstract

This thesis presents a mathematical framework and an algorithm for the classifica-
tion of biomedical image data sets based on adaptive and redundant multiresolution
representations—frames. We illustrate the results on several different biomedical
applications.

Classification is a ubiquitous problem in image processing; many biomedical
tasks are in essence classification problems. Examples of such problems include de-
termining a specific protein from its subcellular location pattern, determining the
developmental stage of Drosophila embryos, recognizing tissue types in histological
images of stem-cell teratomas, as well as determining otitis media stages. Though
cumbersome, some of the above tasks, and many similar ones, are performed simply
by visual inspection. As our eyes are not trained to extract statistical measures or
time-frequency behavior of the signal across scales, these characteristics often pass
unnoticed, resulting in poorer performance. We hypothesize that classifying adap-
tively in multiresolution subspaces will increase classification accuracy. We develop
a new classifier, based on adaptive multiresolution ideas, by adding a multiresolu-
tion block in front of a generic classifier. The system is completed with a weighting
block at the end, which plays the role of an arbiter; it decides how to combine the
“subspace” decisions into a common one. The classifier achieves remarkable results,
with most of the applications having classification accuracy in the mid- to high 90s.

In all of the applications, redundant multiresolution transforms performed the
best. This led us to ask the following question: Why do frames perform better than
bases? This question is nontrivial in scope, to begin to answer it we propose a
classification scheme which uses finite frames and introduce a measure-theoretic
framework for the analysis of classification errors. We then use this framework
to examine those classes of signals for which a bases-based classification scheme is
sufficient, and those for which a frame-based scheme is superior. We also show the
proposed classification scheme performs well in the presence of noise.

Finally, as there are very few frame families available in the literature, we
embarked on developing our own. To that end, we introduce a new class of frames
we call lapped tight frame transforms, obtained by seeding from higher-dimensional
orthonormal bases. We prove several properties of such frames, such as tightness,
equal norm and maximal robustness.

xv
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tavo Rohde, Martin Vetterli and Stefan Zappe, for accepting to be part of this work,
for their support, invaluable advice and guidance, for their encouragements and for
having my best interest at heart.

I would like to express my gratitude to all the collaborators with whom I
have had the chance to work and from whom I learned so much. In particular,
I would like to thank Carlos Castro, Justin Crowley, Matthew Fickus, Alejandro
Hoberman, John Minden, Robert Murphy, John Ozolek and Markus Püschel. They
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Chapter 1

From
Biomedical Applications
to Frames and Back

Systems biology entails the study of the interactions between the components of a
biological system as well as how these interactions give rise to function and behavior
of that system. Thanks to the genome projects, we are witnessing an explosion in
the “omics” areas, such as genomics and proteomics. At the same time, advances in
biochemistry, probes, and microscopy gave the biologists the opportunity to observe
cells and cell processes at a level never seen before, which lead to the collection of
huge amounts of two-, three- and even higher-dimensional data. As a result, visual
inspection of these data sets, always error-prone, nonreproducible and subjective,
became impractical as well. A pressing need has therefore arisen for automatic
systems which can extract knowledge from collected date in an accurate and efficient
way.

In medicine, imaging techniques such as x-ray, ultrasound, tomography and
magnetic resonance imaging have existed for many years. In the recent years, the
field has undergone a shift in the methodologies and instrumentations used for
diagnosis and surgeries, relying more and more on computerized tools. New medical
instruments allow for the collection of large volumes of new data sets that are in
need of automated processing, accurate and fast interpretation. For instance, many
computer-aided and/or automated diagnosis tools have emerged in oncology and
are sometimes used for early detection of cancers. These can assist, complement
and help physicians in the decision making process.

Classification is a fundamental task in image processing. With regard to
biomedical applications, classification was identified as the underlying problem to
determine protein subcellular location patterns [13]. That was true for the project
of determination of developmental stages in fly embryos, as well as the develop-
ment of teratomas in stem cells, where multiple tissues are present and need to be
recognized, and in the identification of middle ear infection stages. An accurate
and efficient algorithm for classification would be of great use to biologists and
physicians, motivating the developments in this work.

In some of the above developments, excellent results were achieved with the
introduction of the simplest multiresolution (MR) tools, leading us to postulate that

3
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using more sophisticated ones would lead to more accurate classification. Nonre-
dundant MR tools—MR bases, in their adaptive incarnation, have been used with
great success in fingerprint recognition. In the same problem, the authors observed
that the translation variance of these bases might pose a problem and suggested
to consider redundant MR techniques—frames, leading to the overall goal of this
work:

To develop a mathematical framework and an accurate and efficient
classification algorithm for the classification of biomedical images,

based on adaptive and redundant multiresolution techniques.














Figure 1.1: The big picture: From biomedical applications to mathematical framework
to algorithms and back.

Given the considerations above, our work is focused on two main themes:
The first is the design of an adaptive multiresolution classification algorithm for
biomedical image data sets, while the second is a the development of a theoretical
framework for redundant multiresolution classification and the design of new frame
families. We now discuss each of these themes in more detail.

Algorithm: Multiresolution Classification for Biomedical Applications. Moti-
vated by several emerging problems of biomedical imaging, we design a new, accu-
rate and efficient classification algorithm. This algorithm takes advantage of the
adaptivity and localization properties of multiresolution techniques. The philoso-
phy behind using MR tools is to exploit the space-frequency information that lie in
the biomedical data sets and be able to extract a faithful representation of these
images. The extracted features would then provide discriminatory information that
helps the classifier distinguishing between the various classes. We derive different
instances of this MR classification algorithm drawing our inspiration from the spe-
cific biomedical applications of interest. In each case, the outstanding performance



5

of the classification algorithm when using redundant MR tools enable us to investi-
gate and question the foundations of frame classification. This leads to the second
main theme of this thesis:

Mathematical Framework: Theory of Frame Multiresolution Classification. In
all of our biomedical applications, redundant multiresolution transforms performed
the best in terms of classification accuracy. This led us to the following question:
Why do frames perform better than bases? The answer to this question enables a
better understanding of the role of redundancy and specific frame properties in the
classification context. It also allows to predict those classes of signals for which a
frame-based approach would be advantageous.

Given their success in this work, we also develop new redundant frame families. To
better serve applications, these need to be efficient transforms in which the amount
of redundancy is controllable. The design of such families enriches the frame toolbox
dedicated to applications, and thus, offers a larger choice on the menu for the frame
family that will best suit the application at hand.

Adaptive MR Classification Algorithm

Weighting
Algorithm

Feature
Extraction ClassificationMR Frames

This is 
bone

Figure 1.2: A diagram of the adaptive multiresolution classification algorithm developed
in this work.
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1.1 Thesis Contributions and Outline

Contributions.

1. Multiresolution Classification Algorithm. We revisit the classification
problem and develop an accurate and adaptive classification algorithm as well
as a toolbox made freely available online. The classification system adds mul-
tiresolution decomposition in front of a generic classifier: features are com-
puted in each multiresolution subspace, yielding local classification decisions,
which are then combined into a global decision using a weighting algorithm
(see Fig 1.2). This approach is new and differs from what is traditionally done
in multiresolution classification. In our work, we consider each multiresolution
subspace itself an image to be classified.

Given the very high accuracies we obtain with this algorithm for most of
the applications, we demonstrate that the space-frequency localized informa-
tion in the multiresolution subspaces significantly improves the discriminative
power of a classification system. Moreover, we show that a small number of
features is sufficient. Finally, we prove that frames are the class of multires-
olution techniques that performs the best in the context of these biomedical
applications.

2. Biomedical Applications. For all of the biomedical applications under
study, our algorithm proves very accurate on those applications on which we
have been working for a while. It gives promising results for the ones we just
started investigating. We improve the classification accuracy of subcellular
protein location pattern images to 95.4%. For the determination of ventral
furrow formation of Drosophila embryo stages, we achieve a high accuracy of
98%. We reach an accuracy of 87.72% in the recognition of tissue types in
histological stem-cell teratomas images. The diagnosis of otitis media infection
is an application we recently started working on and our initial efforts lead
us to an accuracy of 73.43%. Finally, we reach an accuracy of 99.5% for
recognition of fingerprint images.

3. Theory of Frame Classification. When using the adaptive MR classifica-
tion algorithm, MR frames always outperformed MR bases and afforded the
best classification results in all applications without exception. This prompted
us to ask two fundamental questions, the first one being: Why do MR frames
perform better than MR bases in a classification context? The second ques-
tion is the subject of our next item, namely: Can we design new frame families
custom-tailored to the problem of biomedical image classification? As our first
question is nontrivial in scope, we focus on the more tractable problem of es-
tablishing a rigorous mathematical framework for the analysis of frame-based
classification. In particular, we propose a classification scheme using finite
frames in RN . We consider a special case of classification, designing maps
from a space of signals to a space of class labels that determine whether or
not a given point in RN belongs to a given compact convex set. We also intro-
duce a measure-theoretic framework for the analysis of classification errors,
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and apply it to the study of our proposed classification scheme. In partic-
ular, we show that this scheme performs well in the presence of noise.This
mathematical framework allows to set the foundations for a theory of frame
classification and provides rigorous tools to permit the development of more
powerful classification algorithms. It also gives initial results for the charac-
terization of those classes of signals which may be accurately classified using
frames.

4. Lapped Tight Frame Transforms. As the success of the adaptive MR
algorithm lends insight into the important role of frames in classification tasks
of biological and medical image data sets, we sought to design new frame
families we term lapped tight frame transforms. These can be seen as a
redundant counterpart to bases known as lapped orthogonal transforms as
well as an infinite-dimensional counterpart to harmonic tight frames. In four
specific cases, we show that in addition to being tight, lapped tight frame
transforms possess many desirable properties, such as equal norm, maximal
robustness and efficient implementation. In the MR classification algorithm,
the frame representation that is the most accurate is also the most expensive in
terms of computational cost. This new family of frames has the advantage of
being simple to design and affords control over the amount of its redundancy.
This allows the user to customize the trade-off between efficiency and accuracy.
In addition to providing custom-tailored frame transforms, the design of this
new family enriches the frame toolbox and offers a larger choice in the pool
of redundant MR representations.

5. Broader Impact. While we do concentrate on a few specific applications,
we stress that the tools we develop serve multiple purposes: Classification is a
fundamental image processing task and seems to be ubiquitous in biological as
well as medical imaging. More broadly, these tools will be useful for automated
analysis and interpretation of generic biomedical image databases. In the long
term, this work will contribute towards the deployment and widespread use
of complex and integrated, biomedical imaging systems. Finally, the underly-
ing mathematical framework might allow us to look beyond the sole task of
classification and possibly benefit other applications.

Outline. We divided this manuscript into three main parts. The first part presents
some necessary background. In the second part, we detail our MR classification
algorithm and study its performance in the various applications we consider in
this work. The third and final part presents our work on the theory of frame
multiresolution classification. We detail the outline of this thesis as follows.

• Part II consists of Chapters 2, 3 and 4, and presents all the necessary back-
ground and fundamental concepts used in our work. We being in Chapter 2
by introducing the specific biomedical applications we shall consider in this
work. We present each application and motivate the need for an automated
and accurate classification algorithm. The first two applications are biological
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in essence, whereas the next two are biomedical. The last application is in
biometrics, and while the focus of this work is biomedical applications, we use
fingerprint recognition as a proof of concept of the universality of our work.
Chapter 3 is an overview of classification, and presents the two main compo-
nents of standard classification systems namely, feature extractors and classi-
fiers, along with well-established examples for each. The last chapter in this
part present multiresolution techniques. We first present nonredundant MR
techniques which are bases, look at them via filter banks, and study important
examples. We then motivate the need for redundancy through a fingerprint
recognition and present redundant MR techniques, which are frames. We look
at frames through filter banks, study their important properties and provide
examples of frame families that we later use in our classification system.

• Part III consists of Chapters 5 and 6. In Chapter 5, we detail our adaptive
multiresolution classification algorithm. Then, in Chapter 6, we experimen-
tally evaluate the performance of our algorithm in each of the biomedical
applications that were introduced in the previous part.

• Part IV of this manuscript presents our theoretical results in frame classifi-
cation. In Chapter 7, we introduce a new mathematical framework for the
study of frame-based classification, and provide results showing that for spe-
cific classes of signals, frames indeed outperform bases in a classification con-
text. Finally, in Chapter 8, we design new frame families we term lapped
tight frame transforms. We prove equal norm and maximal robustness of four
lapped frame families.

We conclude this thesis by summarizing our work and proposing new venues and
ideas for the future.

Over the course of this thesis, our philosophy has been to start from biomedical
applications, evaluate their underlying algorithmic needs and provide solid and so-
phisticated solutions supported by a mathematical framework. Hence, we go from
biomedical applications to redundant multiresolution tools and back, closing the
loop and bridging disciplines that inspire, challenge and enrich each other.
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Chapter 2

Biomedical Applications

Contents
2.1 Determination of Protein Subcellular Location
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nition . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

In this chapter, we show that, by looking into five different biomedical/biometric
applications, the underlying problem is classification and thus, an accurate and ef-
ficient algorithm would be of great use.

Systems biology entails the study of the interactions between the components
of a biological system and the mechanisms by which these interactions give rise to the
function and behavior of that system. It can be viewed as a “macro” approach that
encompasses mathematical and computational modeling based on quantitative data
collected within each component of the biological system. Thanks to the genome
projects, we are witnessing an explosion in the “omics” areas. These pertain to
the study of a data of a particular type, for instance proteins (proteomics), from a
specific biological system.

The Need for Automated Processing Advances in biochemistry, probes, and
microscopy gave the biologists the opportunity to observe cells and cell processes
at an accuracy never seen before, which led to the collection of huge amounts of
2D, 3D and even higher-dimensional data. By the same token, physicians have
had the chance to collect very large amounts of new data. Medical images have
typically been in use for much longer than biological ones through numerous imaging
modalities such as X-rays, hence the medical community has addressed the problem
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Figure 2.1: Typical images from the 2D HeLa collection. Top row, left to right: DNA,
giantin, lysosomal, nucleolar, endosomal (Tfr). Bottom row, left to right: endoplasmic
reticulum, gpp130, mitochondrial, actin, tubulin. (Images courtesy of Dr. R. F. Mur-
phy [87].)

of automation of the processing much more so than biologists. However, thanks to
the evolution of medical instrumentation and modernization of clinical tools and
protocols, the sheer volume of collected medical images and their novelty make
automation a crucial step in medical practice. As a result, visual inspection of these
data sets, always error-prone, nonreproducible and subjective, became impractical
as well. Hence the need for automated, accurate and efficient systems to extract
knowledge contained in the collected data.

Classification of Biomedical Images Such automated knowledge extraction re-
quires the expertise developed in signal processing, machine learning and math-
ematics. In the project of determination of protein subcellular location patterns
described in Section 2.1, Murphy et al. identified classification as the underlying
problem [13, 62]. Similarly, in the project of determination of developmental stages
in fly embryos described in Section 2.2 [65, 49], we realized that the problem is again
that of classification. Not surprisingly then, in several other projects, such as the
development of teratomas in stem cells, where multiple tissues are present and need
to be recognized (Section 2.3), the diagnosis of otitis media stages (Section 2.4)
as well as fingerprint recognition (Section 2.5), the need for classification emerged.
Thus, an accurate and efficient algorithm for classification would be of great use to
biologists and physicians, motivating the developments in this work.

2.1 Determination of Protein Subcellular Location Patterns

The field of proteomics entails the study of proteins and their role and function in
various cellular mechanisms. One of the critical characteristics of a protein is its
subcellular location, that is, its spatial distribution within the cell. Knowledge of
the location of all proteins will be essential to build accurate models that capture
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and simulate cell behavior, and eventually can be expected to be useful for early
diagnosis of disease and/or monitoring of therapeutic effectiveness.

Cancer cells are often used in studies of this nature. These are abnormal cells
showing temporally unrestricted growth preference over their normal counterparts.
Cancer cells are able to survive in crowded conditions and thrive in an anaerobic
environment [47]. These properties make the culturing of these cells easier than their
normal counterparts. Among the collections of cell cultures available are Chinese
Hamster Ovary (CHO) cells, Colon cancer (CoCa2) cells, 3T3 cells (developed from
a strain of Swiss mice) and HeLa cells (cervical cancer cell cultures prepared from
malignant cells donated by Henrietta Lacks in 1951). The HeLa collection, the data
set used in this work, is a well-established testbed for evaluating subcellular pattern
analysis approaches.

The most widely used method for determining protein subcellular location is
fluorescence microscopy, its success due in part to the advent of a range of new
fluorescent probes. The first step in the acquisition process of fluorescence micro-
scope images is the culture of cells. This involves transferring pre-harvested cells
onto a substratum that emulates their natural growth environment. The second
step is preparing the cells for imaging. The cells are stained with specific dyes.
While staining is convenient and fast, the stains are chemicals beset with the dis-
advantage of nonspecificity. A technique that addresses the issue of specificity is
tagging. Tags are special protein sequences or antibodies that are introduced into
the DNA sequence. They are transcripted along with the sequence coding a specific
protein [47]. Of particular interest is a recent fluorescent probe that is nontoxic,
called green fluorescent protein (GFP). The third step is imaging. This is done
using different microscopes, either the spinning disk or the confocal scanning laser
microscope. The spinning disk is faster but has lower resolution than the confocal
microscope. Both microscopes have excitation and emission filters that excite and
capture the fluorescent light emitted by the markers introduced in the cells. Finally,
the images produced are stored as a multidimensional data set.

The Need for Classification Given that mammalian cells are believed to express
tens of thousands of proteins, comprehensive analysis of protein location requires
acquisition of images whose numbers are beyond our ability to analyze visually.
Moreover, these data sets very often present a challenge in terms of recognition of
the type of proteins they depict. For example, the Golgi proteins giantin and gpp130
are indistinguishable by the human eye. Finally, as today’s microscopes allow for
imaging of high-dimensional data sets, both the enormous volume as well as the
high dimensionality of the data render human analysis time-consuming, prone to
error and ultimately, impractical, leading to the “holy grail” of protein subcellular
location image interpretation and analysis: a system for fast, automatic, and accu-
rate recognition of proteins based on their subcellular location. Murphy et al. have
pioneered the use of automated systems for protein identification based on their
subcellular location patterns [13, 62].
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2.2 Detection of Developmental Stages in Drosophila
Embryos

The genome projects have brought unprecedented opportunities to understand molec-
ular mechanisms of development and disease. Drosophila (small fruit fly) sequences
are of special interest because the fly serves as an important model organism for de-
velopmental and cellular processes common to higher eukaryotes, including humans.
Comparative genomics studies have revealed that D. melanogaster, for example, has
orthologs to 177 out of 289 examined human disease genes [105]. The genome seq-
uence of D. melanogaster was published in 2000 [2], followed by the sequence of
Drosophila pseudoobscura in 2005 [101].

While the Drosophila genome projects provide us with a wealth of data, the
determination of the functions of the genes that are inferred from these sequences
(approximately 13,600 genes for D. melanogaster) is an arduous task that requires
novel, highly efficient and high-throughput screening methods [19] and methods for
automated phenotype analysis [133].

RNA interference (RNAi) is one such method that can be used to silence a
specific gene in a cell or an organism [43], as RNAi pathways play a major role
in regulating development and genome maintenance. Analysis of a change in phe-
notype due to gene silencing indicates the function of the silenced gene. Silencing
a gene in an entire fly embryo through RNAi requires injection of embryos with
designed, double-stranded RNA (dsRNA) early in embryonic development, prior
to the formation of the syncytial blastoderm. A powerful MEMS-based system for
automated, high-throughput injection of Drosophila embryos has been recently pro-
posed [132]. Phenotype analysis after gene silencing is greatly facilitated through
genetic engineering of Drosophila embryos that express, for example, green fluores-
cent protein (GFP) in a tissue of interest [130].

In the project led by Minden at CMU, the formation of the ventral furrow
is observed in early embryonic development. Ventral furrow formation is a key
morphogenetic event during Drosophila gastrulation that leads to the internalization
of mesodermal precursors [49]. Once a gene is silenced using RNAi, the fly embryos
are tagged with GFP and imaged using a confocal laser fluorescence microscope.
This acquisition process allows for the collection of z-stack images of entire embryo
volumes in time [65, 49], that is four-dimensional data sets.

The Need for Classification Drosophila gastrulation involves four major mor-
phogenic events, the first one being ventral furrow formation, which can be divided
into three steps: (1) The initial stage is when the ventral furrow is yet to form.
(2) The beginning of Stage 2 consists of cells migrating basally as a result of their
nuclei losing their apical attachment. During this step, about half of the cells in
the central patch undergo shape changes over a 10- to 12-minute period. This is
sufficient for the entire ventral furrow to collapse inward, bringing a band into the
interior of the embryo over a period of several minutes (end of Stage 2). (3) Stage
3 consists of having a closed and formed ventral furrow. To study this process,
Minden at al. acquire 3D volumes of the formation of the ventral furrow in time.
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As manual processing of huge amounts of these 4D (space + time) data sets is im-
practical, cumbersome and error-prone, we believe that reliable, accurate, flexible,
and efficient algorithms for automated 4D image and phenotype analysis are crucial
to enable high-throughput functional genomics screens such as this one.

2.3 Identification of Histological Stem-Cell Teratomas

The study of stem cells is one of the most exciting and promising research areas in
the biomedical field. Embryonic stem cells (ES) and cells derived from them hold
great promise, both as therapeutic agents in clinical medicine, as well as biological
windows into the early stages of development. The range of therapeutic options
includes repair of damaged or injured tissue (tissue regeneration after stroke, heart
attack, cartilage renewal in arthritis), restoring defects in genetic, biochemical, and
metabolic pathways, as well as drug testing and discovery [77, 95, 119]. Studying
the sequence of genetic events within ES cells as they develop and differentiate
into tissue will have a significant impact on explaining and ultimately defining the
therapy for a wide range of developmental syndromes. ES cells possess certain
inherent characteristics that set them apart from any other cell type. They have
the ability to self-renew, perpetuate indefinitely, and produce all three germ layers
from which all tissue types are derived (pluripotency). Typically, in the laboratory,
ES cells are defined by their expression of specific proteins and their behavior in cell
culture. However, human and nonhuman primate cells isolated and cultured cannot
be considered ES cells until they show the ability to produce a teratoma tumor when
injected into immunocompromised mice. A teratoma is a tumor that is strictly
defined by histological evidence of tissue types contributed by each of the original
three germ layers. These include ectoderm (neuroepithelium, mature neuroglial
tissue, skin), mesoderm (smooth and skeletal muscle, connective tissue, bone, and
cartilage), and endoderm (lung and intestinal mucosa, pancreas, liver). While at
first glance, most teratomas derived from ES cells appear as disorganized tissue
masses with recognizable germ layer elements, little is known about the contribution
of each germ layer to the lesion, and this information may hold important clues to
normal and abnormal development.

In the project led by Castro and Ozolek at the University of Pittsburgh Med-
ical School, the aim is to answer some of these questions using high-field magnetic
resonance imaging (MRI) and histological staining methods. First, stem cells are
implanted in the testis of a rat that was genetically altered to have a deficient im-
mune system. Implanting the cells into the testis further ensures that the immune
system will not interfere with the division and growth of the cells into a tumor.
With no control over the differentiation process, the implanted stem cells develop
into various tissue types: muscle, epithelial, brain matter, cartilage and bone, to
name a few. This tissue-rich tumor is then surgically removed intact from the an-
imal, imaged using MRI, and subsequently stained with Hematoxylin and Eosin
(H&E) and then imaged.

MRI images are taken of the tumor in the coronal, sagittal, and axial planes.
The field is on the order of 10[T], allowing for cellular-level resolutions. While
MRI permits tracking of stem cells in vivo, its nature often leads to poorly defined
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contours, low contrast in the 3D volumes and prohibits resolutions which would
match histological images. Therefore, MRI is currently inadequate as a stand-alone
imaging procedure.

Histology studies tissues that have been thinly sliced, and is an important
diagnostic tool. First, the tissue is mechanically and biomechanically stabilized in a
fixative. It is then embedded and sectioned into very thin (2 to 8 µm) sections using
a microtome. The slices are then stained using one or more pigments to give contrast
to the tissues. The most common stains used are H&E. Hematoxylin gives a blue
color to the nuclei whereas Eosin gives a pink color to the cytoplasm (see Fig. 2.2).
The images obtained through this process have a great advantage of being highly
detailed and show distinctive features of the tissue at different resolutions. However,
in vivo imaging is not possible and the tissue sample is destroyed preventing the
biologists from observing the development of the tissue over time.

An important step towards understanding stem-cell division and differentia-
tion would be to coregister cellular class identifications from the histological images
to the difficult-to-read MRI data. One of the goals here is to enhance the diagnostic
capabilities of MRI using histology images as ground truth.

The Need for Classification While sophisticated image analysis and bioinformat-
ics are burgeoning fields within pathology, most of the imaging applications have
focused on the automation and digitization of the tissue processed for histological
examination. New techniques are in development that would allow the pathologist
to manipulate high-resolution images and sign out cases at the computer rather than
examine tissue under a microscope. Image analysis currently allows segmentation of
tissue areas defined by specific immunohistochemical stains to highlight the tissue
of interest. However, the ability to automate the recognition of specific and varied
tissue types from the routine H&E stained tissue sections (used almost exclusively
to make the vast majority of diagnoses) is not available. As this applies to ES cell
biology and teratoma analysis, advanced digital imaging applications would help
answer the following questions: How much of each specific tissue type is present?
How are these specific tissues arranged in space with respect to one another? How
are the present tissues affected in type and quantity when derived from ES cells that
have been manipulated genetically, biochemically, and environmentally (that is, by
drugs or toxins)? The ability to accurately detect and quantify specific tissue types
will allow detection of species-specific differences in developmental programming
and enable accurate three-dimensional reconstruction of teratomas and precise cor-
relation with high-resolution MRI. Since the teratoma contains many varied tissue
types, the first step in this direction is to actually recognize these specific tissues
types, a classification problem.

2.4 Classification of Otitis Media Stages

Otitis media is an inflammation of the middle ear. It occurs in the area between the
ear drum (the end of the outer ear) and the inner ear, including a duct known as the
Eustachian tube. It is one of the two categories of ear inflammation that can underlie
what is commonly called an earache, the other being otitis externa. Depending on



2.4. Classification of Otitis Media Stages 17

(a) (b) (c)

(d) (e) (f)

Figure 2.2: Sample H&E-stained images from each tissue class: (a) bone, (b) mesenchyme
(embryonic connective tissue), (c) myenteric plexus, (d) necrotic tissue, (e) skin, and (f)
striated muscle. (Images courtesy of Dr. J. A. Ozolek and Dr. C. A. Castro, University
of Pittsburgh Medical Center [92].)

(a) (b) (c)

Figure 2.3: Otitis media sample images: (a) Normal ear (no infection), (b) otitis media
with effusion (OME) and (c) acute otitis media (AOM). (Images courtesy of Dr. A.
Hoberman, University of Pittsburgh Medical Center [56].)

its severity, otitis media can be divided into two categories (see Fig. 2.3): acute otitis
media (AOM) and otitis media with effusion (OME). AOM, the most severe form of
otitis media, usually arises as a complication of a preceding viral upper respiratory
infection (URI) such as a cold or a sore throat. AOM is most often purely viral
and self-limited, as it usually accompanies viral URI. If the middle ear, which is
normally sterile, becomes contaminated with bacteria, fluid and pressure build up
in the middle, resulting in bacterial AOM. Viral AOM can sometimes quickly lead
to bacterial AOM ,especially in children. Symptoms of bacterial AOM include the
classic earache, severe and continuous pain, and fever. Complications of bacterial
cases can be severe, such as perforation of the ear drum, infection of the mastoid
space (mastoiditis) and, in very rare cases, meningitis [57].

OME, also called serous or secretory otitis media, is defined as the presence
of fluid in the middle ear without signs or symptoms of acute ear infection. This
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Figure 2.4: Example fingerprint images from an easy class (left) and a difficult class
(right). (Images courtesy of NIST [127].)

fluid builds up as a result of the negative pressure produced by altered Eustachian
tube function. The tube is blocked by the swelling of its lining or plugged with
mucus due to a cold (or some viral URI), and is unable to open to ventilate the
middle ear. This lack of ventilation is what causes the fluid to accumulate. If
the tube remains plugged, the fluid collects in the normally air-filled middle ear.
Continuous presence of middle-ear fluid from OME results in decreased mobility
of the tympanic membrane and becomes a barrier to sound conduction, leading to
hearing impairment. OME can precede and/or follow a bacterial AOM [103].

Distinguishing between AOM and OME is an important but difficult task.
Although OME is more common than AOM, it is often mistaken for AOM. When
this is the case, antibiotics are prescribed unnecessarily.

The Need for Classification Otitis media is very common, especially in children.
In the United States, 50% of children have an episode before their first birthday and
80% of children are affected by their third birthday. An estimated $5 billion is spent
each year on care of patients with AOM and related complications [57, 109]. Beyond
the cost, the prescription of antibiotics in otitis media cases has been a subject of
controversy. The initial diagnosis of otitis media is usually performed by a primary-
care physician and is based on otoscopy and symptomatology. Very often, AOM is
over-diagnosed, that is, most physicians prefer to be on the safe side and prescribe
an antibiotic treatment when they observe an infection of the ear, which in many
cases is in fact OME [57, 103]. The problem with that is the resistance developed
to such treatments, lessening the effect of the currently available medication. This
later leads to the necessity of combining multiple antibiotics to make for an effective
treatment. As a result, multi-drug-resistant bacterial pathogens spread, making
current drugs ineffective. Moreover, it is hard to diagnose accurately the stages of
otitis media (in particular in infants due to the language barrier), even for well-
trained physicians. The certainty of diagnosis of AOM is only 58-73% [109]. This
clearly calls for automated classification systems that are accurate and upon which
physicians can rely.

2.5 Application in Other Domains: Fingerprint Recognition

While fingerprint recognition is not a biomedical application and is traditionally
considered a security application, we use it in this work, as a proof of concept of the
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flexibility of our classification system. One could even argue that it is a biomedical
application since it concerns biometric characteristics of human beings. In our work,
we use it rather as a proof of concept for the universality of our classification system.

Personal identification has been a topic of interest for some time, with var-
ious solutions proposed. Accessing buildings or facilities, withdrawing money or
using a credit card, and gaining access to electronic information on a local com-
puter or over the Internet, are all examples of situations which require accurate
and reliable methods of personal identification, and solutions vary greatly. There
are hundreds of modalities for personal identification, from items one might keep in
one’s possession (for example, identification cards or keys) to combinations of num-
bers and information one might memorize (for example, Social Security numbers
and passwords). Using human biometric characteristics (fingerprints, irises, faces,
etc) has great advantages over other techniques: the information cannot be lost or
forgotten, and forgery requires greater skill. Most prominent amongst biometric
characteristics are fingerprints. Because of their uniqueness, consistency over time
and ease of acquisition, fingerprints have been the most widely used and researched
area of biometrics. Using fingerprints for recognition of individuals started in the
late 19th century. Sir Galton defined the characteristics from which fingerprints can
be identified—“Galton points”. Later, with the advent of computers, a subset of
these points, now termed minutiae, were used in automated fingerprint recognition
systems. In 1969, overwhelmed by its growing database and the manual processing
required, the Federal Bureau of Investigation led a major effort in the development
of new automated and accurate fingerprint recognition systems. Two decades later,
this lead to the famous Integrated Automated Fingerprint Identification System
(IAFIS)[88]. With this came the need to develop acquisition and sensing systems.
There are two main categories of sensing: off-line (ink based) and live-scan. The
second technique is the most widely used nowadays and almost all sensing tools
belong to one of the three following families: optical sensors, solid-state (or silicon)
sensors and ultrasound sensors [80].

The Need for Classification In a world where an ever increasing need for identifi-
cation is present and identity theft is a problem authorities and consumers face daily,
fingerprint recognition systems have become a necessity. A 2003 survey sponsored
by the US Federal Trade Commission estimates the annual total loss to businesses
due to identity theft approached $50 billion. MasterCard and Visa fraud losses re-
lated to identity theft in 2000 equaled $114 million, an increase of 43% from about
$80 million in 1996[31]. While identity theft is usually associated with the financial
industry, many other system access points require reliable recognition of the person
trying to access them. Examples are numerous: office buildings, secure access to
data, etc. In each case, the person trying to access the system needs to be either
confirmed or identified prior to being allowed access based on that persons biometric
characteristics.

Depending on the application context, a fingerprint-based biometric system
may be called either a verification system or a recognition (identification) system.
The former outputs a binary answer yes/no to the question “is this person X?”,
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whereas the latter answers the question “who is it?”. Both are a type of classifi-
cation problem in which one individual corresponds to one class. A crucial goal in
processing this biometric data is to do so automatically, accurately and quickly.
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Pattern recognition is a task that human beings perform a thousand times a
day without even thinking about it. Whether to recognize familiar faces, objects
and their function, words and their meaning or even the colors of the rainbow, we
are in fact very accurate classifiers!

Many applications, such as face recognition and tracking, are in need of ac-
curate recognition systems. As we have seen in the previous chapter, the need for
classification of new —biomedical— data sets is pervasive, and ever better solutions
are needed. In these biomedical applications, biologists and physicians often rely
mostly on their training and experience to perform recognition tasks. They do so
via manual and visual inspection of the images. Their years of experience, visual
observations of salient characteristics and previously acquired knowledge allow them
to decide which class label to assign to an image. This visual processing quickly
showed its limitations.

First, the complexity of biomedical images makes it difficult to visually rec-
ognize the salient characteristics representing a class (for example, a protein type).
Next, the sheer volume of these data sets, due to the emergence of high-throughput
systems, make any manual processing cumbersome. Finally, subjectivity makes the
decision process unreliable and nonreproducible. Therefore, building an artificial
recognition machinery is crucial. In this chapter we present an overview of various
classification methods. For more details on the theory of classification and pattern
recognition, we refer the reader to the excellent books by Duda, Hart and Stork [40]
and Bishop [10].

21
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Feature
Extraction Classification

This is bone

Figure 3.1: Generic classification system.

3.1 Overview of Classification Methods

Let us consider a popular pattern recognition problem, that of optical character
recognition. This technique is used by the United States Postal Service to route
mail by ZIP codes. It consists of recognizing handwritten numerical digits (0–9)
from images of these digits that are of size 28 × 28. The goal here is to build an
artificial “black box” that takes as input a vector representing one such image and
outputs the identity of the digit depicted in the image. The presence of noise as
well as the variability of handwriting make this task nontrivial. To aid in tackling
this problem, samples of input vectors can be provided, forming the training set.
This set can be associated with a target set. For each digit from the training set,
there is a target vector that represents the identity of the digit. Target sets are
constructed using prior information when the “classes” of the digits are known in
advance. Then this set is built through a (usually manual) pre-labeling of the
training samples. Using the training and target set, a learning algorithm can be
used to tune the parameters of an adaptive model of the classes. This is called
the training phase. In the testing phase, a new input test vector is fed into this
newly-clever “box”, then the output of the machine learning algorithm consists of
the class that seems the most probable based on the previously learned patterns or
characteristics of each class.

The input to machine learning algorithms does not always consist of the raw
data. In fact, in most cases, it is impractical to use the raw data. In the example
presented above, each raw vector would consist of 282 = 784 real numbers. Depend-
ing on the size of the training set and the number of classes (here 10), the problem
can rapidly become computationally infeasible. Indeed, in practical applications,
one very often deals with larger images, or even higher-dimensional data. Moreover,
the raw data may be too confusing in the sense that the algorithm only needs to
see discriminatory information that will help build an accurate model for the data
and will help distinguish between the different categories. For example, the digits
may not fill the entire image and so many pixels surrounding the digit have value
zero. It seems wasteful to use all of these pixels in the input vectors. Also, reducing
the unnecessary variability (such as scale and position of the digits) in the data can
only help the recognition process. Further, it is reasonable to assume that one only
need to extract the “essence” of the data or the classes. In fact in practice, the true
information content of the data is significantly less than its dimension would indi-
cate. By representing classes by their most salient characteristics, we achieve two
goals. First, only the important and helpful information is given to the algorithm
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and second, we considerably reduce the dimensionality of the problem. This type
of pre-recognition processing is called feature extraction. This is a sensitive step in
the recognition process because it usually is difficult to identify exactly which char-
acteristics are important (and how to compute them) without discarding crucial
information.

Two important families of pattern recognition tasks are classification and clus-
tering. Applications in which the training data comprises examples of the input vec-
tors along with their corresponding target vectors are known as supervised learning
problems. A subcategory of such problems is classification, where the aim is to as-
sign each -test- input vector to one of a finite number of discrete categories—classes.
In pattern recognition tasks where the data consists of a set of input vectors without
corresponding target values are called unsupervised learning problems. When the
goal is to find groups (clusters) of similar examples within the data, these tasks
are called clustering problems. We present examples of classifiers and a clustering
algorithm in Section 3.3

We now define more formally our classification problem.

3.1.1 Problem Statement

The problem we are addressing is that of classifying images from biomedical data
sets. Assume that the images are of size N×N and let R denote the set of intensities
covered by all the images in the given data set, compactly represented as an image
belonging to RN×N . Then, the problem can be formulated as designing a map
from the signal space of the examined images X ⊂ RN×N , to a response space
Y ⊆ {1, 2, ..., C} of class labels. Thus, decision dec is the map, dec : X %→ Y that
associates an input image with a class label [106]. To reduce the dimensionality of
the problem, one sets up a feature space F ⊂ Rf , f ≤ N2, between the input space
and the response space. The feature extractor θ is the map θ : X %→ F , and the
classifier ν is the map ν : F %→ Y. The goal is to find a (θ, ν) pair that maximizes
the classification accuracy.

3.2 Feature Extraction

As we mentioned earlier, feature extraction is an essential step in the classification
process. We want to find features that are useful and fast to compute and yet that
also preserve the useful discriminatory information in the data. Features are nu-
merical descriptors that characterize the input data, usually in a lower-dimensional
space. We focus here on the following feature sets:

3.2.1 Haralick Texture Features

Haralick texture features are calculated using four co-occurrence matrices [54, 53].
These matrices describe the way certain grey-levels occur in relation to other grey-
levels. For example, an element of such matrix contains the number of times a pixel
with grey-level i occurs at a certain distance from a pixel with grey-level j.

The four matrices are: 1) PH (horizontal nearest neighbors), 2) PV (vertical
nearest neighbors), 3) PLD (left diagonal nearest neighbors), and 4) PRD (right
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diagonal nearest neighbors). Haralick calculates 13 measures on each of these four
matrices. For example, the first two features on PH are:

fH,1 =

Ng
∑

i=1

Ng
∑

j=1

(
PH(i, j)

RH

)2

, fH,2 =

Ng−1
∑

k=0

k2
∑

|i−j|=k

PH(i, j)

RH
, (3.1)

where Ng is the number of gray levels in the image and RH is a normalizing constant
equal to the sum of all the elements in PH . Haralick features include entropy,
contrast (fH,2 in(3.1)) and angular second moment.

These other measures are computed in a similar fashion, giving us four sets
of 13 measures: f(H,1−13), f(V,1−13), f(LD,1−13) and f(RD,1−13). Haralick’s original
method reduces these to a single set of 13 features by calculating the mean of each
measure across the four sets (feature set T1):

f (T1)
i =

fH,i + fV,i + fLD,i + fRD,i

4
, (3.2)

for i = 1, . . . , 13. An alternative method [54, 53] is to use both the mean and
the range of the 13 measures, thus resulting in two sets of 13 features (26 features
overall, feature set T2).

3.2.2 Morphological Features

There are 16 of these features that visually describe distinctive aspects of images
as discerned by the human eye. The main categories of morphological features are
object, edge (boundary of the object), convex hull (a closed, convex contour of the
object) and skeleton (a detailed grid of the image) features [63].

3.2.3 Zernike Moment Features

Moment features are based on the relationship between pixels based around a central
point, usually the center of the image. They are computed by taking the inner
product of the original image with a moment feature polynomial described radially
outward around the central point [6]. A special type of moment feature, Zernike
moments, are described by

Zhk =
h + 1

π

∑

i,j

im(i, j)ν∗
hk(ρ, θ),

where ν∗
hk(ρ, θ) is the complex conjugate of a Zernike polynomial νhk and im(i, j)

is the original image bounded by the unit circle (i2 + j2 ≤ 1). Hence, each of the
Zernike moment features computed for an image is a similarity measure between the
corresponding Zernike polynomial and the image. Zernike polynomials are distribu-
tions defined over the unit circle. Their behavior around the unit circle is controlled
by two parameters, one that describes the number of times the polynomial rises and
falls as it goes from the center of the circle to the perimeter (angular dependence k)
and another that describes the fold of radial symmetry of the polynomial (degree
h) [67]. The number of Zernike moments depends on k and h. In this work, we
consider 49 moments. Zernike polynomials possess properties such as rotational
invariance and orthogonality.
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3.3 Clustering Algorithms and Classifiers

Most of our discussions focus on supervised learning. However, as our initial efforts
in developing a pattern recognition procedure used a well-known clustering method,
we briefly summarize it here.

3.3.1 K-means Clustering

K-means algorithm is the most popular and used clustering method. It is an it-
erative process that essentially tries to form clusters of —feature— vectors in a
multidimensional space. These vectors are judged similar or close enough, accord-
ing to some metric, to be grouped together. Namely, K-means operates over a fixed
number of clusters K, while attempting to satisfy two properties. The first is that
each cluster has a center which is the mean position of all the sample vectors in that
cluster. The second is that each sample vector is in the class whose center it is clos-
est to. More explicitly, suppose we have a data set {x1, . . . , xT } of N -dimensional
vectors in an Euclidean space. The goal is to partition this set into K clusters.
Assume {µk}K

k=1 is a set of vectors representing each cluster, these are in fact the
centers of the clusters. The goal is to assign each data point to a cluster such that
the sum of the distances of each point to its closest vector µk is minimized. That
is, the goal is to find{µk}K

k=1 and {rtk}K
k=1 that minimize the objective function

J =
T
∑

t=1

K
∑

k=1

rtk‖xt − µk‖2,

where rtk is such that rtk = 1 if xt is assigned to cluster k and rtk = 0 otherwise.
The resulting optimal µk for cluster k is the mean of all points xt assigned to cluster
k, hence the name K-means algorithm.

We now go back to the main theme of this chapter: Classifiers. In general,
classifiers can be divided into two categories: linear and nonlinear. Linear classifiers,
such as linear discriminant functions, use a linear boundary function to discriminate
between classes. This function is dependent on the training data and can thus
introduce inaccuracies due to unseen data. Nonlinear classifiers, on the other hand,
are more flexible, and are used when it is not possible to separate data into classes
using linear functions.

There are several types of classifiers [40] such as Bayesian decision classifiers,
linear discriminant functions, k-nearest neighbor classifiers, support vector machines
(SVMs), and neural networks (NNs). While they work under different principles,
their goal is the same. Bayesian decision theory is a probabilistic approach that
attempts to divide data according to the probability density function that governs
it. Linear discriminant functions use a linear function from a regression of training
data as the boundary function between classes. k-Nearest neighbor classifiers return
the most common class label among the k training examples nearest to x. SVMs
try to find a surface that splits the data into regions. NNs operate as highly parallel
simple processors that work under the principles of learning and adaptation. Below,
we look into how the performance of a classifier might be evaluated then give a quick
overview of some of well-established classifiers.
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3.3.2 Evaluation of Classification Systems

An aspect of great importance in classification is the evaluation of a classifier’s
performance. The test data set is usually used to determine how “accurate” a
classifier is. The classifier has never been exposed to the test data before, therefore,
its ability to distinguish between classes using the test data is a good indicator of its
functionality. The accuracy of an algorithm represents the conformity or closeness
of the outcome of this algorithm, namely the class labels, to the ground truth or
true values of the labels. Obviously, the goal in classification systems is to build
classifiers with the highest accuracy possible. Note that here we assume that we
have access to the ground truth or the gold standard.

There are two types of errors a classifier can make: The error of identifying
the wrong class (a positive outcome when the reality is false) or the error of not
identifying the true class (a negative outcome when in fact the reality is true). The
first one is referred to as false positive (F+) or Type-I error while the second is
called a false negative (F−) or Type-II error. Similarly, a classifier can be correct
by agreeing with the truth in a positive or negative way: Have a positive outcome
with the true class (T+) or have a negative outcome with the wrong class (T−) (see
Table 3.1).

Ground truth

True False

Algorithm Positive T+ F+

output Negative F− T−

Table 3.1: Outcome of a classification algorithm compared to the ground truth.

We define the accuracy of a classification algorithm as

Accuracy =
T + + T−

T + + F+ + T− + F− . (3.3)

In practical recognition settings, it occurs often that an algorithm has no
negative outcome, and only outputs a specific class label. In that case, T− and F−

do not exist.

3.3.3 Bayesian Decision Theory

Bayesian theory is a fundamental approach to the classification problem based on
the probability density functions governing the data being classified [40]. It makes
the assumption that all probabilistic values associated with the problem are known.
Given a problem with C classes, a classifier must decide which of these C classes
a particular feature vector (or data point) x belongs to. First, the probability of
observing x coming from the class Ck where k = 1, 2, . . . , C is

p(Ck, x) = P (Ck|x)p(x) = p(x|Ck)P (Ck).
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Rearranging the terms, we obtain

P (Ck|x) =
p(x|Ck)P (Ck)

p(x)
.

Now consider a two-class classification problem. For a given vector x and the
observation that P (C1|x) > P (C2|x), we would intuitively classify x as coming from
class C1, assigning the input to the class that is most likely (maximum likelihood
rule). Conversely, if P (C2|x) > P (C1|x), we choose class C2. Given this decision
scheme, the error associated with making a decision is defined as follows

P (error|x) =

{

P (C1|x) if we decide C2

P (C2|x) if we decide C1
,

and the average probability of error is defined as

P (error) =

∫

RN

P (error, x)dx =

∫

RN

P (error|x)p(x)dx

One can minimize this error by making P (error|x) as small as possible. This equates
to the following decision rule

Decide C1 if P (C1|x) > P (C2|x) , otherwise, decide C2.

By assigning costs to making each decision, one can minimize the error or cost
by choosing the decision that produces the smallest cost given x. The basic ideas
of Bayesian decision theory still apply when adding the concept of costs, but the
approach differs. For more details, refer to [40].

3.3.4 Principal Component Analysis

The principal component analysis (PCA), also known as Karhunen-Loève trans-
form, is a key element in a wide range of applications in signal processing and
communications. We focus here on its recognition capabilities.

The PCA aims to represent a set {xt}T
t=1 of N -dimensional vectors with a

—lower-dimensional— single vector x0. Namely, the goal is to find a vector x0 that
minimizes the sum of square distances between x0 and all sample points xt. This
can be represented by the following objective function

J(x0) =
T
∑

t=1

‖x0 − xt‖2

The basic PCA approach begins with computing the N -dimensional mean
vector µ and the N × N covariance matrix Σ for the entire data set. Then, the
eigenvectors ei and corresponding eigenvalues λi of Σ are computed. The K eigen-
vectors with the K largest eigenvalues are kept while the smaller ones are discarded.
This is done because larger eigenvalues correspond to eigenvectors whose direction
represents more of the variability of the original data than the other eigenvectors.
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Capturing the variability of the data is essential while the remaining eigenvectors
usually represent noise or less significant components of the data. The kept eigen-
vectors are arranged into the columns of a N × K matrix S. Finally, the data is
projected onto the K-dimensional subspace spanned by these eigenvectors using

X = Px = S$(x − µ).

Both the training and testing samples are projected onto this K-dimensional space.
Since the label of each training sample is known, it is then easy to assign a class
to a test sample by choosing the same label as the closest (in Euclidean distance)
training sample. Some variations of PCA are independent component analysis,
nonlinear component analysis, and kernel PCA.

3.3.5 Linear Discriminant Functions

Linear discriminant functions are classifiers that do not require prior knowledge of
the underlying probability distributions. The general form of a linear discriminant
function is

g(x) = w$x + w0

where x is the feature vector, w is the weight vector and w0 is the bias. Assuming
a two-class problem, we use the decision scheme of choosing class 1 if g(x) > 0
and class 2 if g(x) < 0. When g(x) is linear, this scheme defines a hyperplane H
that divides the feature space into two decision regions R1 and R2. If we have two
feature vectors x1 and x2 which are both on H, then

w$x1 + w0 = w$x2 + w0,

or equivalently
w$(x1 − x2) = 0.

This shows that w has to be normal to H. Since g(x) > 0 if x is in R1, then
w must point into R1. Therefore, a linear discriminant function divides a feature
space into decision regions with a hyperplane whose orientation and position are
determined by w and w0. However, sometimes the original training data cannot
be partitioned with a hyperplane. When this happens, we embed the data onto a
higher-dimensional space and find a hyperplane that divides the space into proper
regions. The mapping which takes the lower-dimensional feature vectors and maps
them to the higher-dimensional space depends on the nature of the data.

3.3.6 Support Vector Machines

Support vector machines (SVMs) are similar to linear discriminant machines but
use preprocessing to project data onto a higher-dimensional space using a nonlinear
mapping υ. Typically, this dimension is much higher than that of the original
feature space. Assuming a two-class problem and a set of T feature vectors {xt}T

t=1,
the goal is to make that data from these two classes separable by a hyperplane in
the higher-dimensional space. More specifically, find in the augmented space, the
optimal hyperplane with the maximal distance from the nearest training samples
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(the support vectors) of all classes. Given a feature vector xt, it is transformed to
yt using

yt = υ(xt).

Define a linear discriminant in the augmented space as

g(y) = a$y.

Next, we also define rt = ±1 according to whether the sample xt is in the first
or the second class. Then, the separating hyperplane ensures

rtg(yt) ≥ 1,

for all t = 1, . . . , T .

We observe that the solution to choosing a is a region of infinite size but
of known boundaries. But since the goal is to find the hyperplane with largest
margin, then we can introduce a positive parameter b that represents this margin.
In fact, the larger the margin b, the better generalization of the classifier. To find
the separating hyperplane, we need to find a unique a that maximizes b using the
following:

rtg(yt)

‖a‖ ≥ b, given b‖a‖ = 1,

for all t = 1, . . . , T . The support vectors are the transformed training samples for
which the equation above is an equality. They are the training samples that define
the hyperplane that we seek and are the hardest samples to classify.

SVMs are important classifiers because the complexity of the classifier is not
dependent on the dimensionality of the transformed space. Rather, it depends on
the number of support vectors. As a result, SVMs are less prone to problems of
over-fitting than other methods. Moreover, although the training involves nonlinear
optimization, the objective function is convex, hence making the solution relatively
straightforward.

3.3.7 Correlation Filters

The idea behind correlation filters is that by analyzing the frequency domain rep-
resentation of a signal, one can create filters that when correlated with signals,
give strong responses for the class they were trained to recognize and very weak
responses for all other classes. There are two possible ways of training such filters
that give rise to two distinct types of correlation filters. Given a set of training data
with multiple sample points for each class, one has two choices. The first is to train
the filters using one sample from each class. This type of training results in matched
spatial filters. The second is to train the filters using a synthesis of the samples
from each class. This type of training creates synthetic discriminant functions .
Each approach results in a set of filters that can be used for both recognition and
verification, but synthetic discriminant functions are of more interest because they
have the potential to accommodate for noise and variation in the data. Once the
filters are trained, one can create a simple and effective classifier.



30 Chapter 3. Classification

If the filters are designed properly, the correlation plane for a filter from a
given class will contain a -strong- peak when correlated with data from this same
class. Whereas, when correlated with other classes, it will result in a low-energy
correlation plane. Synthetic discriminant functions have given rise to many types
of correlation filters which attempt to minimize the effect of noise and variation in
the data, maximize the peak of the “true” class, and minimize the overall energy of
“impostor” classes. Examples of such correlation filters comprise minimum variance
synthetic discriminant functions, maximum average correlation height filters, mini-
mum average correlation energy filters. In Chapter 4, we will see how these filters
were used in combination with multiresolution tools for fingerprint recognition.

3.3.8 Neural Networks

In most of our work, we use NN classifiers as they act like highly parallel simple pro-
cessors that work under the principles of learning and adaptation. NNs are simple
to use as well as efficient, and above all, they have the ability to separate classes in
a nonlinear fashion. NNs are closely related to linear discriminant functions except
they are capable of generating arbitrary decision regions that provide more general
solutions. Similarly to linear discriminant functions, NNs use mapping functions to
map points in a lower-dimensional space into a higher-dimensional one. However
these mapping are nonlinear and can lead to arbitrary decision regions. NNs are
classifiers based on grouping the input vectors (features) into intersections of clus-
ters of one type while the union of all such intersections yields the entire feature
space.

A NN is composed of an input layer, one or more hidden layers and an output
layer. Figure 3.2 shows a simple NN with one of each layer type. Each layer contains
a basic unit called the perceptron, represented by a node and its associated edges.
The input layer has as many nodes as the dimension of the feature vector. The
outputs of the input layer can be weighted and/or biased depending on the chosen
design. These outputs are weighted, biased, and summed to become the input or
net activation of the hidden layers according to the following:

netj =
N
∑

n=1

xnwjn + wj0 = 〈wj , x〉,

where netj is the net activation at the hidden unit j, N is the number of input
units, wj are the weights at the hidden unit j and the input vector x has been
augmented by appending a feature value x0 = 1.

A layer is called hidden when its inputs are not the initial inputs to the NN
and its outputs are not the overall output of the NN. The outputs of a hidden layer
act as net activation to the subsequent layers. Each hidden unit emits an output
hnet that is a nonlinear function of the net activation of that unit, namely,

hnetj = f(netj).

This nonlinear function can be a simple threshold, a sign function or a tansigmöıd
function. The number of hidden layers and the number of nodes in each hidden
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Figure 3.2: A simple neural network with one hidden layer.

layer correspond to the number of arbitrary intersections and arbitrary unions of the
feature vectors, respectively. The output is obtained as another multi-dimensional
vector that corresponds to the class the input belongs to. A “crushing function”
(such as f) is usually applied at the output layer to map the output to a restricted
range of values [40]. This can be described as follows:

y = f(netk),

where y is the output and netk is defined as the net activation function of the output
layer (k indexes the units in the output layer) and can be written as

netk =
bh∑

j=1

hnetjwkj + wk0 = 〈hnet, wk〉,

with bh being the number of hidden units, and hnetj are the outputs of the hidden
units (see Fig. 3.2).

The primary difficulty in implementing NNs is that of determining the com-
plexity of the NN. Namely, determining how many hidden layers and nodes within
each layer should the NN contain is a complex task. It depends on the training data
at hand as well as the desired output. Many algorithms have been developed to
build and train NNs, the backpropagation algorithm being the most popular [108].
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In the context of the classification of biomedical images, the feasibility of
automated interpretation of subcellular patterns in fluorescence microscope im-
ages has been clearly demonstrated over the past ten years, initially by Murphy’s
group [11, 12, 13] and then by others [93, 35, 32]. Their work resulted in systems that
can classify protein subcellular location patterns with well-characterized reliability
and better sensitivity than human observers (for reviews, see [27, 48]). The heart of
such systems is a set of numerical features—Subcellular Location Features—to de-
scribe the spatial distribution of proteins in each cell image. These features include
Haralick texture features (T1 with 13 features or T2 with 26 features), morphological
features (16 features), and Zernike moments (49 features). Of particular relevance
to the work described here is the use of simple wavelet (30 features) and Gabor (60
features) features, as the addition of these simple MR features resulted in a sig-
nificant improvement in classification accuracy, with the highest reported accuracy
being 91.5% for the 2D HeLa data set [62].

As the introduction of the simplest MR features produced a statistically sig-
nificant jump in classification accuracy, our hypothesis is that more sophisticated
MR techniques would result in even more accurate classification. In particular, the
three crucial characteristics of MR [79, 125] we wish to explore are:

• Localization: Fluorescence microscope images have highly localized structures

33
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both in space and frequency. This leads us to MR tools, as they have been
found to be the most appropriate tools for computing and isolating such lo-
calized structures [78].

• Adaptivity: As we are designing a system to distinguish between classes of
proteins, it is clear that an ideal solution should be adaptive, a property
provided by MR techniques. The reasoning is that if there is a different MR
transform for each individual class, then the transform itself would help in
distinguishing that class.

• Fast and Efficient Computation: It is well known that MR techniques such as
wavelets have a computational cost of the order O(N) (where N is the input
size), as opposed to O(N log N) typical for other linear transforms including
the FFT. This is one of the major reasons for the phenomenal success of
MR techniques in real applications and one of the reasons to incorporate MR
features into our system.

We now give a brief overview of multiresolution (MR) techniques, which have
been extensively studied and used in signal and image processing over the past two
decades [125]. MR processing means analysis and processing of data at different
resolutions and/or scales. MR transforms decompose a signal into zooming spaces
(coarse spaces and many detail spaces called subbands) and are implemented by
filter banks (FBs), through filtering and sampling.

We first begin by presenting nonredundant MR transforms—bases, as they are
the most popular and common MR tools in use. Then, we look at bases implemented
by filter banks and review famous nonredundant transforms such as the discrete
wavelet transform. We then shift our focus towards redundant MR tools known as
frames. Due to their performance in our classification system (see Chapter 6), and
their subsequent importance in this work, we review frames in more detail and look
at their properties and at some frame families. We finally review the state of the
art of MR classification.

4.1 Nonredundant Multiresolution Techniques: Bases

Most of MR techniques in use are nonredundant—the underlying mathematical
structures are bases (MR bases).

Assume finite-dimensional spaces RM or CM . Given a basis for such a space,
Ψ = {ψi}M−1

i=0 , we associate to it a matrix (operator) which we will also call Ψ:

Ψ =






ψ0,0 . . . ψM−1,0
...

. . .
...

ψ0,M−1 . . . ψM−1,M−1




 .

Matrix Ψ has basis vectors as its columns, and ψi,j is the jth element of the ith
basis vector. Given a pair of biorthogonal bases (Ψ, Ψ̃) dual to each other, a signal
x belonging to RM or CM can be expressed as:

x = ΨX = ΨΨ̃∗x, (4.1)
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where X = Ψ̃∗x is the vector from RM or CM of so-called transform coefficients
(inner products of x with respect to {ψi}), and where Ψ̃∗ denotes the Hermitian
transpose of the dual basis Ψ̃.

If the expansion is into an orthonormal basis (ONB), then Ψ = Ψ̃ and the
above becomes ΨΨ∗ = I, which further implies that Ψ is a unitary matrix.

4.1.1 Filter-Bank View of Bases

The only infinite-dimensional class of MR decompositions we discuss here are those
implemented by FBs, as these are the bases most used in applications and our
only link to the real world. The vectors (signals) live in the infinite-dimensional
Hilbert space -2(Z). In fact, we can investigate finite-dimensional MR decomposi-
tions within the FB framework as well. In other words, all cases we consider, both
finite-dimensional and infinite-dimensional, we can look at as FBs. A filter bank
is the basic signal processing structure used to implement most MR transforms.
Fig. 4.4 depicts a FB with M channels and sampling by N . When M = N , we deal
with critically-sampled FBs implementing bases. A thorough analysis of FB bases
is given in [72].

A FB decomposition can be expressed as in (4.1) where x is now an infinite
sequence belonging to -2(Z), X is an infinite sequence of transform coefficients (inner
products), and Ψ is the basis expansion matrix given in a setting with finite impulse
response (FIR) filters. The matrix Ψ is used in the synthesis FB (the reconstruction
step) whereas its dual, Ψ̃ is used in the analysis FB (the decomposition step).

Assume that the nonzero support of the filter ψi, or, its length is L = kM (if
not, we can always pad with zeros), and write the basis operator as

Ψ =
















. . .
...

...
...

...
...

. . .
· · · Ψ0 0 · · · 0 0 · · ·
· · · Ψ1 Ψ0 · · · 0 0 · · ·

· · ·
...

...
...

...
... · · ·

· · · Ψk−1 Ψk−2 · · · Ψ0 0 · · ·
· · · 0 Ψk−1 · · · Ψ1 Ψ0 · · ·
. . .

...
...

...
...

...
. . .
















, (4.2)

where each block Ψr is of size M ×M :

Ψr =






ψ0,rM . . . ψM−1,rM
...

. . .
...

ψ0,rM+M−1 . . . ψM−1,rM+M−1




 . (4.3)

We can rephrase the basis decomposition in the z-domain as well using polyphase
analysis. A polyphase matrix Ψp(z) collects the subsequences modulo N . For bases,
Ψp(z) is of size M ×M and can be written as:

Ψp(z) =
k−1
∑

r=0

Ψrz
−r, (4.4)
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where Ψr are as defined in (4.3). A paraunitary polyphase matrix (representing an
ONB) satisfies

Ψp(z)Ψ∗
p(z) = cI, (4.5)

where c is a constant.

4.1.2 Block Transforms

When the filter length L is equal to the sampling factor M , we have a block trans-
form. Then, in (4.2), only Ψ0 is nonzero, making Ψ block-diagonal. In effect,
since there is no overlap between processed blocks, this can be analyzed as a finite-
dimensional case, where both the input and the output are M -dimensional vectors.
This discussion shows how finite-dimensional bases can be analyzed in the FB con-
text. Amongst the most famous block transforms used in signal processing are the
Discrete Fourier Transform (DFT) and the Discrete Cosine Transform (DCT).

The Discrete Fourier Transform The DFT is ubiquitous; however, it is not tra-
ditionally looked upon as a signal expansion or written in matrix form. The easiest
way to do that is to look at how the reconstruction is obtained:

xk =
1

N

N−1
∑

i=0

XiW
ik
N , k = 0, . . . , N − 1, (4.6)

where WN = e−j2π/N is an Nth root of unity. In matrix notation we could write it
as

x =
1

N








1 1 · · · 1
1 WN · · · WN−1

N
...

...
...

...
1 WN−1

N · · · WN








︸ ︷︷ ︸

Ψ= DFTN








X0

X1
...

XN−1








︸ ︷︷ ︸

X

.

Note that the DFT matrix defined as above is not normalized, that is (1/N)( DFTN )( DFTN )∗ =
I. If we normalized the above matrix by 1/

√
N , the DFT would exactly implement

an orthonormal basis.

The decomposition formula is given as

Xi =
N−1
∑

k=0

xkW−ik
N , i = 0, . . . , N − 1, (4.7)

and, in matrix notation:
X = DFT∗

Nx.

Note that in most signal processing texts, the decomposition would be given
as X = DFTNx and the reconstruction as x = DFT ∗

NX , instead of the above
formulas. Here, to fit our filter bank framework, we switch the roles of the usual
analysis and synthesis operators.
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Consider now the normalized version. In basis parlance, the basis would be
Ψ = {ψi}N−1

i=0 where the basis vectors are:

ψi =
1√
N

(

W 0
N , W i

N , . . . , W i(N−1)
N

)T
, i = 0, . . . , N − 1. (4.8)

Then, the expansion formula (4.7) can be seen as

Xi = 〈x, ψi〉, i = 0, . . . , N − 1,

and the reconstruction formula (4.6) for x = (x0, . . . , xN−1)T :

x =
N−1
∑

i=0

Xiψi =
N−1
∑

i=0

〈x, ψi〉ψi =
1√
N

DFTN

︸ ︷︷ ︸

Ψ

1√
N

DFT∗
N

︸ ︷︷ ︸

Ψ∗

x. (4.9)

4.1.3 Lapped Orthogonal Transforms

In practice, the use of block transforms can produce artifacts known as “blocking
effects” (since there is no overlap between the basis functions—processed blocks),
and thus solutions were sought with longer basis functions. One such solution is
the Lapped Orthogonal Transform (LOT). The LOTs can be seen as a class of M -
channel FBs implementing bases, originally developed for filters of length L = 2M
and later generalized to arbitrary integer multiples of M [82]. Compared to block
transforms, the LOT keeps the same number of filters but doubles their length,
which means that the basis functions of adjacent blocks overlap by half their size,
thus removing the blocking effects. However, LOTs are not solely determined by
their length, but by the specific form of their basis vectors as well.

In general, for a FB with filter length L = 2M , the time-domain matrix Ψ has
a double diagonal, that is, in (4.2), only Ψ0 and Ψ1 exist:

Ψ =











. . .
...

...
. . .

· · · Ψ0 0 · · ·
· · · Ψ1 Ψ0 · · ·
· · · 0 Ψ1 · · ·
. . .

...
...

. . .











. (4.10)

Thus, (4.4) reduces to
Ψp(z) = Ψ0 + z−1Ψ1, (4.11)

where Ψr, r = 0, 1, are M ×M matrices with (Ψr)j,i = ψi,j for i = 0, . . . , m− 1 and
j = Mr, . . .Mr + M − 1.

Since the LOT is a unitary transform, that is, ΨΨ∗ = Ψ∗Ψ = I the following
must be satisfied:

Ψ0Ψ
∗
0 + Ψ1Ψ

∗
1 = Ψ∗

0Ψ0 + Ψ∗
1Ψ1 = I, (4.12)

Ψ∗
0Ψ1 = Ψ∗

1Ψ0 = 0, Ψ0Ψ
∗
1 = Ψ1Ψ

∗
0 = 0. (4.13)

Two main classes of LOTs exist distinguished by whether they use cosines or
complex exponentials in their basis functions.
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Figure 4.1: Lapped orthogonal transform families with M = 8 filters. (a) Princen-
Johnson-Bradley, (b) Oddly modulated DCT, (c) Young-Kingsbury, (d) Malvar.

• Cosine Basis Functions

The Cassereau-Malvar LOT The LOT was introduced by Cassereau in [21].
The sole purpose of this transform at that time was image compression, so its
basis functions were designed to maximize the transform coding gain. There-
fore, the algorithm for the LOT was a recursive design algorithm solving the
following optimization problem: max(Ψ$RxxΨ) subject to (4.12) and (4.13),
where Rxx is the covariance of the input signal x and is chosen to correspond
to a first-order Markov model with ρ = 0.095. Note that in the optimization
algorithm symmetries were forced on the LOT functions. Later on, Malvar [81]
proposed a quasioptimal LOT to make the design more robust and allow the
existence of a fast algorithm (the design in [21] uses nonlinear optimization
steps), starting from the following matrix:

ΨDCT =
1

2

(

De −Do De −Do

J(De −Do) −J(De −Do)

)

,
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where J is the anti-diagonal matrix and De and Do are the M×M/2 matrices
containing the even and odd DCT functions of length M , respectively. Then,
to obtain Ψ, the author constructs a unitary matrix Z such that Ψ = ΨDCT Z.
In fact, the columns of Z are the eigenvectors of RDCT = Ψ$

DCT RxxΨDCT .

The Princen-Johnson-Bradley LOT The Princen-Johnson-Bradley (PJB)
LOT defined in [97] is an oddly-stacked time domain aliasing cancellation
FB. Its basis functions are given by:

ψi,k = 1√
M

cos(
π(2i + 1)(2k −M + 1)

4M
), (4.14)

for i = 0, . . . , M−1 and k = 0, . . . , 2M−1. Thanks to the particular structure
of the cosines:

Ψ0Ψ
∗
0 =

1

2
(I − J), Ψ1Ψ

∗
1 =

1

2
(I + J), (4.15)

where J is the anti-diagonal matrix. Fig 4.1 (a) shows the frequency response
of the PJB LOT filters for M = 8.

With this construction, we will have, similarly to the DFT, fixed basis func-
tions allowing no freedom in design. To allow for better designs, one can add
a window that multiplies each filter resulting in a modulated FB over the fre-
quency band. This modulated FB can be modeled as ∆Ψ, where the window
∆ = diag{δk}2M−1

k=0 is symmetric δk = δ2M−1−k, k = 0, . . . 2M − 1. Now, the
perfect reconstruction conditions in (4.12) become

∆Ψ0Ψ
∗
0∆ + J∆JΨ1Ψ

∗
1J∆J = I. (4.16)

Substituting (4.15) into (4.16), we obtain

1

2
(∆2 + J∆2J) = I, (4.17)

implying that the window has to satisfy δ2
k+δ2

M−1−k = 2, for k = 0, . . . , M−1.

The Oddly-Modulated Discrete Cosine Transform LOT The oddly-modulated
DCT basis functions are very similar to the PJB LOT ones and are defined
as:

ψi,k = 1√
M

cos (
π(2i + 1)(2k + 1 + M)

4M
), (4.18)

for i = 0, . . . , M − 1 and k = 0, . . . , 2M − 1. The frequency response of the
filters of this family is depicted on Fig 4.1(b) for M = 8.

• Complex Exponentials



40 Chapter 4. Multiresolution Tools

2

2

h

g

level j +

2

2

h

g

level 1 +
x

Figure 4.2: The synthesis part of the FB implementing the DWT with j levels. The
analysis part is analogous (dual).

Young-Kingsbury LOTs In [131], Young and Kingsbury introduce the com-
plex lapped transform for use in motion estimation applications, defined as:

ψi,k = 1√
M

cos( kπ
2M ) exp(−j(2i+1)kπ

2M ), (4.19)

for i = 0, . . . , M − 1 and k = −
(

M − 1
2

)

, . . . ,
(

M − 1
2

)

. The frequency re-
sponse of the filters of this family is depicted on Fig 4.1(c) for M = 8.

Malvar Complex LOTs This modulated complex LOT is based on the PJB-
LOT FB. Note that it is a complex basis but is redundant in the real space.
Its basis functions are defined by cosine and sine modulation of the synthesis
windows as follows [83]:

ψi,k =
1

2
(ψc

i,k + αψs
i,k), ψc

i,k = (
√

2)δkψ(OMDCT )
i,k , (4.20)

ψs
i,k =

√
2√
M

δk sin(π(2i+1)(2k+M+1)
4M ), (4.21)

where ψ(OMDCT )
i,k is as defined in (4.18), δk are the coefficients of the modu-

lating window, and i = 0, . . . , M − 1, k = 0, . . . , 2M − 1. Fig. 4.1(d) shows
eight frequency responses of the filters of this LOT family. The analysis filters
are defined analogously. In [83], the author demonstrates that this LOT is
well-suited for noise suppression and echo cancellation.

4.1.4 Discrete Wavelet Transform

The Discrete Wavelet Transform (DWT), a famous MR tool, is a basis expansion
and as such nonredundant (critically sampled). The dyadic DWT is built by iter-
ating a two-channel FB with sampling factor N = M = 2 on the lowpass channel
(Fig. 4.2 depicts the synthesis part). Assuming that the filter length L = 2, the
two analysis filters act on 2 samples at a time and then, due to downsampling by 2,
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the same filters act on the following 2 samples. In other words, there is no overlap.
Hence in this case, the DWT is a block transform and the most prominent example
is the Haar transform with synthesis filters

G(z) =
1√
2
(1 + z−1), H(z) =

1√
2
(1− z−1).

If we consider the two-level DWT, then using the so-called the Noble identities [121]
which allow us to exchange the order of filtering and sampling, we can collect all
the filters and samplers along a path into a branch with a single filter and a single
sampler. We can then write the filters of this equivalent filter bank as

ψ0(z) = H(z) =
1√
2
(1− z−1),

ψ1(z) = G(z)H(z2) =
1

2
(1 + z−1 − z−2 − z−3),

ψ2(z) = G(z)G(z2) =
1

2
(1 + z−1 + z−2 + z−3),

where the superscript here indicates the number of iterations.

A two-channel filter bank is orthonormal when the lowpass filter is orthogonal
satisfying

G(z)G(z−1) + G(−z)G(−z−1) = 2,

and the highpass filter is build using

H(z) = −z−L+1G(−z−1)

where the filter length L is even. The analysis filters are build from the synthesis
ones by time-reversal. When the DWT is constructed from an orthonormal filer
bank, it implements an orthonormal expansion with

x = ΨX =
∑

k∈Z

Xkψk

for x ∈ -2(Z) and Xk = 〈x, ψk〉. In this case, we can write Ψ in terms of the filters
g, h as

Ψ =















. . .
...

...
...

...
...

...
. . .

. . . g0 h0 0 0 0 0 . . .

. . . g1 h1 0 0 0 0 . . .

. . . g2 h2 g0 h0 0 0 . . .

. . . g3 h3 g1 h1 0 0 . . .

. . . g4 h4 g2 h2 g0 h0 . . .

. . .
...

...
...

...
...

...
. . .















where gn−2k and hn−2k are the impulse responses of the synthesis filters g and h
shifted by 2k. Since the columns of Ψ are the basis functions, we have

Ψ = {ψk}k∈Z = {ψ2k, ψ2k+1}k∈Z = {g·−2k, h·−2k}k∈Z,
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namely, the even-indexed basis functions are the impulse responses of the synthesis
lowpass filter and its even shifts, while the odd-indexed basis functions are the
impulse responses of the synthesis highpass filter and its even shifts.

When the length of the filters is larger than the sampling factor, then the
DWT is not a block transform anymore and a family of filters that is widely used
are the Daubechies filters [36].

4.1.5 Wavelet Packets

One can also build arbitrary trees by, at each level, iterating on any subset of the
branches of the FB. This is typically known as wavelet packets [28]. Depending on
the length of the filters used, these may, or may not be block transforms or not. To
analyze such tree-structured FBs, we typically compute the equivalent filter bank
using the Noble identities [121]. The DWT is a particular case of wavelet packets,
when only the lowpass branch is decomposed repeatedly to a certain level. For a
fixed depth J of trees, there are as many as 22J

possible wavelet packet trees. Many
of these trees do not correspond to real-life signals, but one can build efficient search
algorithms allowing a better match to signals at hand. Indeed, wavelet packets have
the great advantage of being flexible and adaptive to the signals under consideration.
This adaptivity property is enabled by the fact that these trees can be pruned
according to some measure or cost function given whether it is better (or “cheaper”)
to keep a branch or not. For example, Coifman and Wickerhauser [29] present an
efficient best basis search algorithm based on a divide-and-conquer strategy that
uses additive cost functions. These are termed information cost functions and they
measure the concentration or sparsity of the transform coefficients. An information
cost function should be large when the coefficients are roughly the same size and
small when all but a few coefficients are negligible. The best basis is the one that
minimizes the information cost function over all bases in a library. Some examples
of cost functions include the entropy, the logarithm of the energy and the norm in
-p for p < 2 [129]. The idea of the best-basis algorithm consists of growing the
full tree (up to a fixed depth), computing the information cost for all the nodes,
then compare the costs of the parents nodes and their children nodes. Whenever
a parent node has lower information cost than the children, it is kept, if not, the
children nodes are kept. For more details on this algorithm, refer to [129, 29].

4.2 Fingerprint Recognition: Use of Nonredundant MR
Bases

Due to the nature of fingerprint images, Hennings et al. [55] used an adaptive wavelet
packet approach in combination with correlation filters to solve the recognition
problem. The idea was to design a scheme that could adapt itself to the class
at hand across multiple scales and resolutions where localized features might be
found, clearly calling for the use of wavelet packets. Thus, instead of designing
a single correlation filter for a pattern class, a correlation filter was designed for
each leaf in the best wavelet packet tree found for that class. The design of the
correlation filter was done in the training stage, where the filter was obtained to
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Figure 4.3: Periodic translation invariance of match scores in a fingerprint recognition
system (from [55]).

match a few instances of a given class. Finally, if the image belongs to the pattern
class of the filter, the correlation plane output contains a sharp peak; if not, no
such peak exists. A measure of performance that measures the peak-to-correlation
energy, called match score, was designed to discriminate between true and impostor
classes. A significant improvement in all classes was achieved by using wavelet
packets compared to other classical methods that use correlation filters. Indeed, an
accuracy of 81.59% was achieved when using standard correlation filters classifiers
as opposed to 98.32% with wavelet packets.

4.3 The Need for Redundant Multiresolution Techniques

Although correlation filters are translation invariant in the image intensity domain,
they are not translation invariant in the wavelet domain, as the wavelet packets
involve downsampling. To examine this effect, the authors in [55] took images
from two classes (easy and difficult), translated them horizontally by t, where t
ranges from 1 to 50 in each direction. At each pixel translation, they applied
the wavelet correlation filters trained for one class in order to compute a peak-to-
correlation energy match score. The resulting match score varies periodically with
period 24 = 16, as expected. For the easy class, there is still complete separation
between authentic scores and the range of impostor scores, despite the translations.
When this separation is not as wide, the impostor scores overlap with the match
scores, thereby reducing the accuracy of the system (see Fig. 4.3). This clearly calls
for the use of translation-invariant transforms. That is, to make the recognition
system more robust under these distortions, redundant MR transforms are needed.

4.4 Redundant Multiresolution Techniques: Frames

We start with a brief account of redundant MR techniques called frames (MR
frames), first in finite dimensions and then follow up with how signals are repre-
sented using frames in infinite dimensions via FBs. An introductory account on
frames was written by us [72, 73].

We define frames as follows: A family Φ = {ϕi}i∈I in a Hilbert space H is
called a frame if there exist two constants 0 < A ≤ B < ∞, such that for all x in
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Figure 4.4: An FB implementation of a frame expansion: It is an M -channel FB with
sampling by N .

H,

A ‖x‖2 ≤
∑

i∈I

|〈x, ϕi〉|2 ≤ B ‖x‖2. (4.22)

A, B are called frame bounds. The frame bounds are intimately related to the
issues of stability. Tight frames (TF) are frames with equal frame bounds, that is,
A = B. Equal-norm frames are those frames where all the elements have the same
norm, ‖ϕi‖ = ‖ϕj‖, for i, j ∈ I. Unit-norm frames are those frames where all the
elements have norm 1, ‖ϕi‖ = 1, for i ∈ I. By combining this with the requirement
of tightness, we can have equal-norm tight frames, as well as unit-norm tight frames.
A-tight frames are tight frames with frame bound A. The special case of 1-tight
frames are usually called Parseval tight frames.

In a finite-dimensional space (RN or CN ), a frame is defined as a set Φ of M
frame vectors Φ = {ϕ0, . . . , ϕM−1} where M is larger than M . As for bases, we
associate to the frame a matrix, also called Φ, that has the frame vectors as its
columns:

Φ =






ϕ0,0 . . . ϕM−1,0
...

. . .
...

ϕ0,N−1 . . . ϕM−1,N−1




 .

Note that unlike for bases, Φ is now a rectangular matrix of size N ×M .

Similarly to bases, one can check that frames expand signals in RN with
x = ΦX = ΦΦ̃∗x, where Φ̃ represents the dual frame. Important operators in frame
theory are the frame operator defined as F = ΦΦ∗ and the Grammian defined
as G = Φ∗Φ. In matrix parlance, we have a tight frame when Φ = Φ̃, and the
expansion becomes ΦΦ∗ = cI (c is a constant).

4.4.1 Filter-Bank View of Frames

In an M -channel FB with sampling factor N , if M > N , then we deal with an
oversampled FB implementing a frame (see Fig. 4.4).

For a TF, ϕ̃i = ϕi. The FB frame decomposition can be expressed as in (4.1)
(substituting Φ for Ψ), where x is an infinite sequence belonging to -2(Z), X is
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an infinite sequence of transform coefficients (inner products), and Φ is the frame
expansion matrix.

Assuming again that the nonzero support of the filters (frame vectors) length
is L = kN , we can write the frame operator Φ as in (4.2), with matrices Φr, r =
0, . . . , k − 1, being rectangular of size N ×M .

We can rephrase the frame decomposition in the z-domain as well, where a
FB implements a TF decomposition in -2(Z) if and only if its polyphase matrix
Φp(z) is paraunitary [34]. For frames, the polyphase matrix Φp(z) is of size N ×M
and can be written as in (4.4) (substituting Φ for Ψ), where Φr are of size N ×M
as in (4.3).

4.4.2 Frame Properties

When designing a frame, particularly if we have a specific application in mind, it is
useful to list potential requirements we might impose on our frame [72, 73].

• Tightness: This is a very common requirement and is typically imposed when
we do need to reconstruct. Since tight frames (TFs) do not require inversion
of matrices, they seem a natural choice. TFs are self dual and they preserve
the norm.

• Equal norm: In the real world, the squared norm of a vector is usually associ-
ated with power. Thus, in situations where equal-power signals are desirable,
equal norm is a must.

• Maximum robustness: We call a frame maximally robust to erasures, if every
N × N submatrix of Φ is invertible. This requirement arose in using frames
for robust transmission [50].

• Equiangularity: This is a geometrically intuitive requirement. We ask for
angles between any two vectors to be the same. There are many more (tight)
frames than those which are equiangular, so this leads to a very particular
class of frames.

• Symmetry: Symmetries in a frame are typically connected to its geometric
configuration. Harmonic and equiangular frames are good examples. See the
work of Vale and Waldron [122] for details.

Table 4.1 summarizes all properties of the different classes of frames and writes
them in terms of the frame bounds.

4.4.3 Seeding

In an ever-continuing search for new frame families, an appealing option is the
process of obtaining TFs from ONBs in larger dimensions, known as the Naimark
Theorem [3], or, seeding [98]. We give below a finite-dimensional instantiation of
the theorem:
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Theorem 4.1 (Naimark [3], Han & Larson [52]). A set Φ = {ϕi}i∈I in a Hilbert
space H is a Parseval tight frame for H if and only if there is a larger Hilbert space
K, H ⊂ K, and an orthonormal basis {ψi}i∈I for K so that the orthogonal projection
P of K onto H satisfies: Pψi = ϕi, for all i ∈ I.

We will use the term seeding when a frame is obtained from a basis and define
it as follows:

Definition 4.1. We say that a frame Φ is obtained by seeding from a basis Ψ by
deleting a suitable set of columns of Ψ. We write Φ∗ = Ψ[J] where J is the index
set of the retained columns.

All tight frames can be obtained this way. One of the most famous frame families,
the Harmonic Tight Frames (HTFs) is the counterpart of the DFT, that is, HTFs
are obtained by seeding the DFT. We can now reinterpret the Parseval tight frame
identity ΦΦ∗ = I: It says that the columns of Φ∗ are orthonormal. In view of the
above theorem, this makes a lot of sense as that frame was obtained by deleting
columns from an ONB from a larger space.

In FB parlance, seeding is done on the polyphase matrix. Given Ψp(z), the
M ×M polyphase matrix associated with a basis of size M , then Ψp(z) = Ψ0, and

Φ∗
p(z) = Φ∗

0 = Ψp[J] (4.23)

is the transpose of the frame polyphase matrix.

4.4.4 Invariance of Frame Properties

Another way of creating frames is to use the invariance of frame properties. Instead
of starting from scratch, a reasonable way of trying to find new families is by
constructing new ones from old ones by transformations. However, to do that, we
must be sure that the transformation will preserve the properties our old family
possesses. It is the aim of this brief discussion to enumerate when this is possible.
The results for the nonpolynomial case are derived in [98]; here, we mimic those
exactly and thus proofs are omitted. Assume all the matrix products below are
compatible and Φp(z) is a frame. Then,

• Up(z)Φp(z)Vp(z) is a frame for any matrices Up(z), Vp(z) of full rank (on the
unit circle).

• If Φp(z) is tight (unit-norm tight), then aUp(z)Φp(z)Vp(z) (Up(z)Φp(z)Vp(z))
is tight (unit-norm tight) for any paraunitary matrices Up(z), Vp(z) and a /= 0.

• If Φp(z) is maximally robust, then Up(z)Φp(z)Dp(z) is maximally robust for
any full rank diagonal matrix Dp(z) and any full rank matrix Up(z).

• If Φp(z) is unit-norm tight maximally robust, then Up(z)Φp(z)Dp(z) is unit-
norm tight maximally robust for any paraunitary diagonal matrix Dp(z) and
any paraunitary matrix Up(z).
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4.4.5 Block Transforms

When L = N , that is, the length of the frame vectors equals the sampling factor,
we obtain a block transform. One example of block transform with frames is HTFs,
mentioned above, that we review briefly.

Harmonic Tight Frames HTFs are obtained by seeding from Ψ = DFTM given
in (4.7)-(4.9), by deleting the last (M −N) columns:

ϕi =

√

M

N
(W 0

M , W i
M , . . . , W i(N−1)

M ), (4.24)

for i = 0, . . . , M − 1. Since obtained as an instance of the Naimark Theorem, this
is thus a Parseval TF, that is, ΦΦ∗ = I. The simplest example of an HTF is the
Mercedes-Benz frame [74].

In [20], the authors define a more general version of the HTF, called general
harmonic frames as follows:

ϕk =
(

ck
1b1, c

k
2b2, . . . , c

k
NbN

)

,

for k = 0, . . . , M−1, with |c| = 1, |bi| = 1√
M

(1 ≤ i ≤ N), and {ci}N
i=1 being distinct

Mth roots of c. They also show that the HTFs are unique up to a permutation of the
orthonormal basis and that every general harmonic frame is unitarily equivalent to
a simple variation of an HTF. These frames have been generalized in an exhaustive
work by Vale and Waldron [122], where the authors look at frames with symmetries.
Some of these they term HTFs (their definition is more general than what is given
in (4.24)), and are the result of the operation of a unitary U on a finite Abelian
group G. When G is cyclic, the resulting frames are cyclic. In [20], the HTFs we
showed above are with U = I and generalized HTFs are with U = D diagonal.
These are cyclic in the parlance of [122]. An example of a cyclic frame are (N + 1)
vertices of a regular simplex in RN . There exist HTFs which are not cyclic.

4.4.6 Frame Families

As we said earlier, manipulating the parameters of a FB leads to different flavors of
MR transforms. We focus here on four classes of frame families as we will use the
first three in our classification system whereas the last one is closely related to the
novel family of frames we developed in this work (see Chapter 8).

Algorithm à Trous The algorithm à trous is a fast implementation of the dyadic
(continuous) wavelet transform. It was first introduced by Holschneider, Kronland-
Martinet, Morlet, and Tchamitchian in 1989 [58]. The transform is implemented
via a biorthogonal, nondownsampled FB, and is sometimes denoted as Stationary
Wavelet Transform (SWT). Its transform is completely redundant in contrast to a
completely nonredundant scheme such as the DWT. An example for j = 2 levels is
given in Fig. 4.5 (this is essentially the same as the 2-level DWT as in Fig. 4.2 with
samplers removed).
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ϕ2 = h

ϕ1 = g ∗ (↑ 2)h

ϕ0 = g ∗ (↑ 2)g

+
x

Figure 4.5: The synthesis part of the filter bank implementing the à trous algorithm.
The analysis part is analogous. This is equivalent to Fig. 4.2 with sampling removed.

Let ϕ0 and ϕ1 be the filters used in this two-channel FB. At level J we will
have equivalent upsampling by 2j, which means that the filter moved across the
upsampler will be upsampled by 2j, inserting (2j − 1) zeros between every two
samples and thus creating holes (“trou” means “hole” in French).

The bottom plot in Fig. 4.6 shows the sampling grid for the à trous algorithm.
It is clear from the figure, that this scheme is completely redundant, as all the
points exist. This is in contrast to a completely nonredundant scheme such as the
DWT, given in the top plot of the figure. In fact, while the redundancy per level of
this algorithm grows exponentially since A1 = 2, A2 = 4, . . . , Aj = 2j, . . ., the total

redundancy for j levels is linear, as A = Aj2−j +
∑j

i=1 Ai2−i = (j + 1). Note that
here we use a two-channel filter bank and that Aj is the frame bound when we use
j levels. This growing redundancy is the price we pay for shift invariance as well
as the simplicity of the algorithm. The 2D version of the algorithm is obtained by
extending the 1D version in a separable manner.

The Dual-Tree Complex Wavelet Transform This transform was first introduced
by Kingsbury in 1998 [69, 70, 71]. The basic idea behind it is to have two DWT
trees working in parallel representing the real and complex parts of a complex
transform. One tree represents the real part of the complex transform while the
second tree represents the imaginary part. That is, when the dual-tree complex
wavelet transform is applied to a real signal, the output of the first tree is the real
part of the complex transform whereas the output of the second tree is its imaginary
part. Each tree uses a different pair of lowpass and highpass filters designed to
satisfy the perfect reconstruction condition (4.1).

Because the two DWT trees used in the dual-tree complex wavelet transform
are fully downsampled, the redundancy of the transform is only 2 for the 1D case
(it is 2d for the d-dimensional case). Unlike the à trous algorithm, however, here
the redundancy is independent of the number of levels used in the transform.

In 2D (or MD), the dual-tree complex wavelet transform possesses directional



4.4. Redundant Multiresolution Techniques: Frames 49

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
1
2
3
4
4

k

le
ve

l

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
1
2
3
4
4

k

le
ve

l

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
1
2
3
4
4

k

le
ve

l

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
1
2
3
4
4

k

le
ve

l

Figure 4.6: Sampling grids corresponding to time-frequency tilings of (top to bottom):
DWT (nonredundant), double-density DWT, dual-tree complex wavelet transform, à trous
family (completely redundant). Black dots correspond to the nonredundant (DWT-like)
sampling grid. Crosses denote redundant points. Note that the last two ticks on the y-axis
represent level 4 for the highpass and lowpass channels, respectively.

selectivity allowing us to capture edge or curve information, a property clearly
absent from the usual separable DWT. In the real case, orientation selectivity is
simply achieved by using two real separable 2D DWTs in parallel. Two pairs of fil-
ters are used to implement each DWT. These two transforms produce six subbands,
three pairs of subbands from the same space-frequency region. By taking the sums
and differences of each pair, one obtains the oriented wavelet transform. The near
translation invariance and orientation selectivity properties of the dual-tree com-
plex wavelet transform open up a window into a wide range of applications, among
them denoising, motion estimation, image segmentation as well as building feature,
texture and object detectors for images [113].

Double-Density Discrete Wavelet Transform Selesnick in [111] introduces the
double-density DWT, which can approximately be implemented using a three-channel
FB with sampling by two. The filters in the analysis bank are time-reversed versions
of those in the synthesis bank. The redundancy of this FB tends towards 2 when
iterated on the first channel. Actually, we have that A1 = 3

2 , A2 = 7
4 , . . . A∞ = 2,
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where Aj is the redundancy at level J . Like the dual-tree complex wavelet trans-
form, the double-density DWT is nearly translation invariant when compared to
the à trous construction. In [112], Selesnick introduces the combination of the
double-density DWT and the dual-tree complex wavelet transform which he calls
double-density, dual-tree complex wavelet transform. This transform can be seen
as a dual-tree complex wavelet transform, with individual FBs being overcomplete
ones (three channels, downsampling factor of two).

Gabor and Cosine-Modulated Frames The idea behind this class of frames, con-
sisting of many families, dates back to Gabor [45] and the insight of constructing
bases by modulation of a single prototype function. Gabor originally used com-
plex modulation, and thus, all those families with complex modulation are termed
Gabor frames. Other types of modulation are possible, such as cosine modulation,
and again, all those families with cosine modulation are termed cosine-modulated
frames (also often called Wilson bases). Both of these classes can be seen as general
oversampled filter banks with m channels and sampling by n (see Fig. 4.4).

Gabor Frames. A Gabor frame is Φ = {ϕi}M−1
i=0 , with

ϕi,k = W−ik
M ϕ0,k, (4.25)

where index i = 0, . . . , M − 1 refers to the number of frame elements, k ∈ Z is the
discrete-time index, WM is the Mth root of unity and ϕ0 is the prototype frame
function. Comparing (4.25) with (4.24), we see that for filter length L = N and
ϕ0,k = 1, k = 0 and 0 otherwise, the Gabor system is equivalent to a HTF frame.
Thus, it is sometimes called the oversampled DFT frame.

For the critically-sampled case it is known that one cannot have Gabor bases
with good time and frequency localization at the same time (this is similar in
spirit to the Balian-Low theorem which holds for L2(R) [37]); this prompted the
development of oversampled (redundant) Gabor systems (frames). They are known
under various names: oversampled DFT FBs, complex-modulated FBs, short-time
Fourier FBs and Gabor FBs and have been studied in [33, 16, 15, 14, 42] (see
also [118] and references within).

Cosine-Modulated Frames. This kind of modulation was used with great
success within critically-sampled filter banks due to efficient implementation al-
gorithms. Its oversampled version was introduced in [15], where the authors define
the frame elements as:

ϕi,k =
√

2 cos

(
(i + 1/2)π

M
+ αi

)

ϕ0,k, (4.26)

where index i = 0, . . . , M − 1 refers to the number of frame elements, k ∈ Z is the
discrete-time index and ϕ0 is the template frame function. Equation (4.26) defines
the so-called odd-stacked cosine modulated FBs; even-stacked ones exist as well.

Cosine-modulated filter banks do not suffer from time-frequency localization
problems, given by a general result stating that the generating window of an orthog-
onal cosine modulated FB can be obtained by constructing a tight complex filter
bank with oversampling factor 2 while making sure the window function satisfies a
certain symmetry property (for more details, see [15]).
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4.5 Relevant Work on Multiresolution Classification

The idea of using multiresolution techniques for classification has been widely
adopted, specifically in the texture research community, where there exists exten-
sive literature on the subject. We mention below a few contributions. MR tools are
essentially used as powerful feature extractors. Most of the approaches for MR cla-
ssification may be divided in two categories: The first, which after representing the
signals in a chosen MR representation, either uses the transform coefficients them-
selves (or a subset of them) as features or computes some local energies or statistical
measures on these coefficients; The second chooses first which MR representation is
the best in terms of some discriminative power metric and then uses the transform
coefficients of this representation in the same fashion as the first approach.

Approach 1 We now give a few examples of the first approach. Lane and Fan [76]
used both the standard wavelet and the wavelet packet representations to compute
energy and entropy measures. These were used as texture features and input into
a neural network classifier. Unser [120] used a similar idea with wavelet frames
where he computed the energies of the subspaces of the discrete wavelet frame
transform and used them as features to classify Brodatz textures using a Bayes
classifier. Wavelet frames were also used in [124] for texture classification. Skret-
ting and Husøy [115] proposed a frame texture classification method based on a
deterministic texture model in which a small texture image block is modeled as
a sparse linear combination of frame elements. For each texture class, a set of
frame vectors are designed such that they give the sparsest representation of the
class. In the test phase, the frame giving the best (sparsest) representation yields
the class. In [100], the authors present a texture classification method based on
curve fitting of wavelet domain singular values and probabilistic neural networks.
Here, the feature vectors are based on singular values computed on local energies
of wavelet packet subspaces. Probabilistic neural networks are a network formula-
tion of probability density estimation and the classifier used in [100] is a weighted
probabilistic neural network. Other MR-based texture classification methods in-
clude [68, 4, 5, 1, 51, 123, 22, 126, 91], and a complete list of articles can be found
on [96].

Approach 2 For the second approach, the most noticeable contribution came from
Saito and Coifman. In [106], they extended the best basis method in [29] for use
in classification. They developed the so-called local discriminant basis algorithm
that selects out of a dictionary of orthonormal bases (wavelet packets or lapped
orthogonal transforms [82]) the “best” subspaces, namely the ones with the most
discriminative power amongst classes. This metric is determined by computing the
time-frequency energy distributions of each class. The subspaces are selected when
they well separate these distributions according to a distance such as the Kullback-
Leibler divergence [10]. Once the subspaces have been selected, to form the best
basis, the transform coefficients are fed into a linear discriminant analysis classifier
or a classification tree. In the testing phase, the corresponding coefficients are fed to
the classifier to predict the class of the test signals. Later on, Saito et. al proposed
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in [107] an improvement of their previous method by using estimates on empirical
probability densities in the subspaces instead of energy distribution. In [60], we find
a work of similar spirit, where the authors propose a best-basis type of algorithm
that takes into account the existing correlations between the subspaces and bases the
selection of these subspaces on a mutual information measure. Recently, the same
authors presented in [61] a theoretical framework for signal classification with sparse
representation (using frames) that achieves a sparse and robust representation of
corrupted signals for effective classification. This is done by introducing in the
objective function for sparse representation a fisher discrimination power term, a
sparsity term and a reconstruction error term.

Outside of the texture classification literature, MR tools have been used on
a wide range of classification tasks. In [110], the authors present a wavelet-based
framework called TEMPLAR for recovering a pattern from a collection of noisy
and misaligned observations. The method is iterative and combines the approxi-
mation capabilities of wavelets (a discrete wavelet transform) to minimum descrip-
tion length complexity-regularization to learn a low-dimensional template from the
training data. In a pattern classification context, this method can be applied to
produce a template of each class (pattern). Then, the resulting pattern models are
used for likelihood-based classification. In [102], Richardson applied wavelets to the
classification of mammograms and in [38], the authors look at a lung classification
problem and use wavelet frames combined with grey-level histogram features along
with a k-nearest neighbor classifier.

4.6 Towards Adaptive Multiresolution Classification

In the work we present in the next part of this thesis (Chapter 5), we do not follow
either of the above approaches; rather, we perform MR decomposition and then
classify within each subspace separately, and unlike the works above, we do not use
subspace coefficients as features.

Indeed, in our work, we investigate five different biomedical and biometric
applications (Chapter 2) that have classification as their underlying task. We
develop an adaptive supervised classification algorithm based on MR techniques,
aiming to extract discriminative features within space-frequency localized MR sub-
spaces. These are obtained by MR decomposition; that is, rather than add MR
features to existing features, we instead choose to compute these features in the
MR-decomposed subspaces themselves. Thus, our system has an upfront MR de-
composition block which is followed by feature computation and classification in
each of the MR subspaces, which, in turn, are then combined through an adaptive
weighting process. We present the details of this algorithm in the next chapter and
its performance on the applications we consider in this work in Chapter 6.
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Frame Constraints Properties

General {ϕi}i∈I A‖x‖2 ≤
P

i∈I |〈ϕi, x〉|2 ≤ B‖x‖2

is a Riesz basis for H AI ≤ F ≤ BI

tr(F ) =
PN

k=1 λk = tr(G) =
PM

i=1 ‖ϕi‖2

ENF ‖ϕi‖ = ‖ϕk‖ = a A‖x‖2 ≤
P

i∈I |〈ϕi, x〉|2 ≤ B‖x‖2

for all i and k AI ≤ F ≤ BI

tr(F ) =
PN

k=1 λk = tr(G) =
PM

i=1 ‖ϕi‖2 = Ma2

TF A = B
P

i∈I |〈ϕi, x〉|2 = A‖x‖2

F = AI

tr(F ) =
PN

k=1 λk = NA = tr(G) =
PM

i=1 ‖ϕi‖2

PTF A = B = 1
P

i∈I |〈ϕi, x〉|2 = ‖x‖2

F = I

tr(F ) =
PN

k=1 λk = N = tr(G) =
PM

i=1 ‖ϕi‖2

ENTF A = B
P

i∈I |〈ϕi, x〉|2 = A‖x‖2

‖ϕi‖ = ‖ϕk‖ = a F = AI

for all i and k tr(F ) =
PN

k=1 λk = NA = tr(G) =
PM

i=1 ‖ϕi‖2 = Ma2

A = (m/n)a2

UNTF A = B
P

i∈I |〈ϕi, x〉|2 = A‖x‖2

‖ϕi‖ = 1 F = AI

for all i tr(F ) =
PN

k=1 λk = NA = tr(G) =
PM

i=1 ‖ϕi‖2 = M

A = M/N

ENPTF A = B = 1
P

i∈I |〈ϕi, x〉|2 = ‖x‖2

‖ϕi‖ = ‖ϕk‖ = a F = I

for all i and k tr(F ) =
PN

j=1 λk = N = tr(G) =
PM

i=1 ‖ϕi‖2 = Ma2

a =
p

N/M

UNPTF A = B = 1
P

i∈I |〈ϕi, x〉|2 = ‖x‖2

⇔ ‖ϕi‖ = 1 F = I

ONB for all i tr(F ) =
PN

k=1 λk = N = tr(G) =
PM

i=1 ‖ϕi‖2 = M

N = M

Table 4.1: Summary of properties for various classes of frames. All trace identities are
given for H = R

N , CN . ENF = Equal-norm frame, TF = tight frame, PTF = Parseval
tight frame, ENTF = Equal-norm tight frame, UNTF = Unit-norm tight frame, ENPTF
= Equal-norm Parseval tight frame, UNPTF = Unit-norm Parseval tight frame, ONB =
Orthonormal basis
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In Chapter 2, we saw that the classification problem is ubiquitous in biomedical
imaging, and that MR techniques might make classification more accurate. The
results obtained in [55] seem to indicate that adaptive MR techniques, frames in
particular, might be needed.

Having motivated the use of adaptive MR in classification as well as the need
for redundant MR transforms, we now test that hypothesis. In this chapter, we
describe the adaptive MR classification algorithm we developed and detail each
step involved. In the next chapter, we proceed to present the performance of this
algorithm in the five application domains we consider.

We now describe the adaptive MR classification algorithm we developed, based
on our previous discussion in Chapter 4 on why MR is needed. While we have
developed the current algorithm by learning from each application as we went along,
we decided to first present all algorithmic accomplishments and then discuss results
in various application domains in Chapter 6. Our results using this algorithm in
various application fields are described in [116, 86, 84, 117, 23, 66, 24].

5.1 Main Idea

As argued in Chapter 4, we would like to extract discriminative features within
space-frequency localized subspaces. These are obtained by MR decomposition;
that is, instead of adding MR features as in [62], we compute features in the MR-
decomposed subspaces.

Our initial idea was to use wavelet packets since they adapt themselves to the
signal at hand, and just as in the fingerprint case, prove that adaptivity significantly
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MR Weighting
Algorithm

Generic Classification System

Feature
Extraction Classification

Figure 5.1: Our proposed adaptive MR classification system.
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Figure 5.2: Detailed view of our proposed adaptive MR classification system.

improves the recognition system. So, ideally, we would characterize each class by
the best wavelet packet tree that represents it. However, this is possible only if a
suitable cost function can be found. Given that we have no natural cost function
available, we decided to mimic a wavelet-packet like system by adding a weighting
procedure at the end of our system, allowing us to weigh the decisions of each
subband in a fully grown tree. This way, a very low weight emulates a pruned
branch in the tree. Thus, we propose a system with an MR decomposition block
in front (see Fig. 5.1), followed by feature computation and classification in each
of the subspaces, which are then combined through a weighting process, providing
adaptivity.

5.2 Multiresolution Block

In Sections 4.1,4.4, we have seen that MR transforms are many and the adaptivity
of MR transforms manifests itself in many guises, including a number of popular
transforms:

1. Growing a full tree to J levels with specific filters of the same length as the
downsampling factor yields the DFT of size 2J .
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2. Growing a full tree to J levels but allowing the filters to be longer, leads to
the short-time Fourier transform, or, the Gabor transform.

3. Growing the tree only on the lowpass branch to J levels leads to the J -level
DWT.

4. Growing an arbitrary tree leads to wavelet packets.

5. Splitting the signal into more than two channels, allowing filters in the above
transforms to be orthogonal and/or linear phase, allowing for true multidi-
mensional filters and/or samplers, etc., leads to even more degrees of freedom.

In our classification system, any MR transform can be used. In particular,
amongst the MR bases, we used the DWT, DFT, discrete cosine transform and
others, while amongst the MR frames, we used the double-density DWT, dual-tree
complex wavelet transform and the stationary wavelet transform (that implements
the algorithm à trous). (Note that here, we use all the subbands of the decom-
position tree, not only the leaves. Thus, it might be abuse of language to call a
transform a DWT.) For example, for 2 levels, we have a total of S = 21 subbands
(original image + 4 subbands at the first level + 16 subbands at the second level).

5.3 Feature Extraction and Classifier

We start with the feature sets used in [62]: Haralick texture features (Haralick set
T1, 13 features), morphological (16 features) and Zernike moments (49 features).
Unlike in [62], we do not use wavelet/Gabor features because the MR advantage
given by these will be achieved by our MR decomposition. Therefore, our total
number of features is 78, as opposed to 174 in [62].

Instead of combining all features into a single feature vector, we allow each
feature set its own feature vector per subband. For example, for two levels of
decomposition, this effectively brings the number of subbands to 3 · S = 63 when
using all three feature sets. Note that although we have decreased the number of
features significantly, we have also increased the number of classifiers, because we
now have one classifier per subband. Evaluating this computational trade-off is a
task for future work.

For the classifier block, we originally started by using a maximum likelihood
classifier. This classifier proved that MR subspaces do indeed contain discrimina-
tory information that improves the classification accuracy of the system. However,
this type of classifier uses strong assumptions on the data, namely, a probabilistic
modeling of the feature vectors. In practice, this model can be quite far from real-
ity and might be misleading. Therefore, we chose to use a different model for the
classifier based on learning and adaptivity: neural networks. All results presented
in Chapter 6 are based on the use of NN as the core classifier [40].

5.3.1 New Texture Feature Set

As we will show later on, the Haralick texture features seem to possess the most
discriminative power, so we looked more closely into these. We changed the way
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that Haralick combines the initial four sets of features defined in (3.2). We note
that PH and PV are fundamentally different from PLD and PHD because adjacent
neighboring pixels are spatially closer than diagonal neighboring pixels. Therefore,
instead of averaging the features from all four sets, we create our first set of 13
features by averaging f(H,i) and f(V,i), and a second set of 13 features by averag-
ing f(LD,i) and f(RD,i). Thus, we end up with two sets of 13 features, which are
concatenated into a new feature set, denoted T3, of 26 features:

f (T3)
i =

fH,i + fV,i

2
, f (T3)

i+13 =
fLD,i + fRD,i

2
, i = 1, · · · , 13.

5.3.2 K-means and Gaussian Modeling

In our initial efforts to design a classification system for the recognition of protein
subcellular location patterns presented in Section 2.1, we developed a maximum
likelihood type of classifier. This fits within our generic framework shown in Fig 5.1.
The hypothesis behind this classifier is that the feature vectors from each class
form clusters in the feature space. Note that there are S feature spaces, one for
each MR subspace. For each feature space, we model each cluster with a Gaussian
distribution. Then, we use a maximum likelihood rule to assign class labels. These
labels are “’local” to each of the feature spaces (or subbands) involved. Therefore,
to make a final or global decision, we add a weighting procedure that acts as a
mediator to make everyone agree on the final class label (see Section 5.4 for a
detailed description of this process). More specifically, after computing Haralick
texture features (feature set T1), we use K-means clustering algorithm in each of
the S feature spaces. This allows us to form at most K clusters for each class. We
then model each cluster by a multi-variate Gaussian distribution using the training
set. Note that the mean associated with each distribution is the mean or center
of each cluster. As a result, in each feature space, every feature vector of every
class is now represented by a single probability vector. The ith element of this
vector is the probability that the feature vector in question belongs to class i. This
probabilities are used to train the weighting procedure (we used the open procedure
described in Section 5.4) to output a final weight vector for this system. During
the testing phase, the Gaussian models obtained in the training phase are used to
compute the probability vectors of a test image. These vectors are then weighed
with the weighting vector (from the training phase). Finally, the class label with
the maximum likelihood is assigned to the image.

We used this system on the protein subcellular location data set presented
in Section 2.1, and demonstrated that, by adding an MR block in front, we were
able to raise the classification accuracy by roughly 10% (from 71.8% to 82.2%) as
compared to the system with no MR. We concluded that selecting features in MR
subspaces allows us to custom-build discriminative feature sets. However, although
the MR block substantially increased classification accuracy, the accuracy of the
overall system was still not high enough, and thus, in our subsequent work, we
reexamined the classification and weighting steps of the system. We present the
ensued work in the next two sections.
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5.3.3 Neural Networks

We decided to use a two-layer NN classifier. The first layer contains a node for
each of the input features, each node using the Tan-Sigmoid transfer function. The
second layer contains a node for each output and uses a linear transfer function
(no hidden layers are used). We then train the NN using a one-hot design, that is,
since each output from the second layer corresponds to a class, when training, each
training image will have an output of 1 for the class of which it is a member and a
0 for all other classes. To maximize the use of our data, our training process of the
NN block uses five-fold cross validation.

5.4 Weighting Procedure

Fig. 5.2 shows a detailed graphical representation of our MR classification system,
including the process of combining all of the subband decisions into one. We use
weights for each subband to adjust the importance that a particular subband has
on the overall decision made by the classification system. If the weights are chosen
such that the no-decomposition weight is equal to 1, and all other weights are 0, we
will achieve the same output vector as we would have without using the adaptive
MR system. Therefore, we know that there exists a weight combination that will
do at least as well as the generic classifier (when no MR is involved) in the training
phase. Our goal is to decide how to find the weight vector that achieves the highest
overall classification accuracy on a given data set. We developed three versions of
the weighting algorithm: open-form, per-dataset closed-form and per class closed-
form. The per-dataset algorithm assigns one weight vector for the entire data set,
whereas the per-class one assigns a weight vector for each class in the data set. The
latter goes back to our original idea of having a wavelet packet tree characterizing
each class, only in this case, we do not necessarily obtain a tree.

The difference between the open- and closed-form algorithms is that in the
open-form version (see Algorithms 1 and 2), we optimize classification accuracy on
the training set as opposed to the closed-form where we look for the least-squares
solution.

The NN block outputs a series of decision vectors for each subband of each

training image. Each decision vector d(r)
s contains C numbers (where C denotes

number of classes) that correspond to the “local” decisions made by the subband s
for a specific image r.

The classifier is evaluated using nested cross validations (we chose to use five-
fold cross validation in the NN block and ten-fold during the weighting process, but
one can use different numbers). One problem with this technique is that the initial
ordering of the images determines which images are grouped together for training
and testing in each fold of the cross validation. A different original ordering of the
images would result in different groupings, which would be equivalent to presenting
different data sets to the classifier, and would thus result in a different overall result.
We solve this problem by running multiple trials, each with a random initial ordering
of the images.
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5.4.1 Open-Form Algorithm

If using the open-form algorithm, we initialize all the weights (see Algorithm 1), and
a global decision vector is computed using a weighted sum of the local decisions.
An initial class label will be given to an image using this global decision vector. If
that class label is correct, we go to the next image. If it is incorrect, we look at the
local decisions of each subband and adjust the weights of each subband s as follows:

witer
s =

{

witer−1
s · (1 + ε) if subband s is correct,

witer−1
s · (1− ε) otherwise,

where iter is the iteration number and ε is a small positive constant. This can
be viewed as a reward/punishment method where the subbands taking the correct
decisions will have their weights increased, and those taking wrong decisions will
have their weights decreased. We continue cycling through the images until there
is no increase in classification accuracy on the training set for a given number of
iterations.

5.4.2 Per-Dataset Closed-Form Algorithm

The closed-form solution does not use an iterative algorithm; rather, it finds the
weight vector by solving a minimization problem in the least-square sense.

Assume we have R training images. For each training image r = 1, . . . , R, the

vector d(r)
s = (d(r)

s,c)T for c = 1, . . . , C, is the C × 1 decision vector at the output of

each subband classifier s, where d(r)
s,c indicates the confidence of subband s that the

training image r belongs to class c. For each training image r, the weighting block

takes as input the subband (local) decision vectors d(r)
s and combines them into a

single output decision vector as follows:

S
∑

s=1

wsd
(r)
s . (5.1)

We can rewrite the above by, for each training image r, forming a matrix D(r) of

size C×S, where each element D(r)
c,s is the value at position c of the decision vector

d(r)
s of subband classifier s. We can now compute:

D(r)w,

where w = (w1, . . . , wS)T is of size S × 1. Thus, we want to find a weight vector
w common to all training images r = 1, . . . , R. A possible solution for w is the one
that minimizes the error in the least-square sense:

wwin = argmin
w

R
∑

r=1

‖d(r) −D(r)w‖2, (5.2)

where d(r) is the desired target decision vector of size C×1, with a 1 in the position
of the true class, and 0 elsewhere.
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Algorithm 1 Classification Training Phase

Input: ds (local decision vector).
Output: w (weight vector).
TrainingPhase(ds)

initialize w1,s to classification accuracy of subband s
initialize w2,s to emphasize the decisions of the 0th subband
initialize w3,s to positive random entries
for all weight vectors, i = 1 to 3 do

normalize wi, initialize counter, cnt = 0
compute classification accuracy with wi and store in pi

while cnt < maxEpochs do
increment counter, cnt = cnt + 1
for all images, r = 1 to R do

set gdec = the image is classified correctly with wi

if gdec is false then
for all subbands, s = 0 to S − 1 do

set l(s)dec = subband classified correctly

if l(s)dec is true then
wi,s = wi,s · (1 + ε)

else
wi,s = wi,s · (1− ε)

end if
end for

end if
end for
compute classification accuracy with wi and store in pnew

i

if pnew
i > pi then

set pi = pnew
i , save wi as wbest

i , reset counter, cnt = 0
end if

end while
end for
set w to wbest

i with the greatest pi

return w

We need to rewrite the above in a direct error-minimization form. We thus
define a target output vector d of size CR × 1, as a vector which concatenates all
the target decision vectors d(r) as follows:

d =







d(1)
1 , d(1)

2 , . . . , d(1)
C

︸ ︷︷ ︸

training image 1

, . . . , d(R)
1 , . . . , d(R)

C
︸ ︷︷ ︸

training image R







T

,

and a CR × S matrix D consisting of the all the decision matrices D(r) of all the
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Algorithm 2 Testing Phase

Input: ds (local decision vector), w(weight vector).
Output: g (global decision vector), ACC (classification accuracy).
TestingPhase(ds, w)

set g =
∑S

s=1 ws · ds

set ACC equal to the classification accuracy of g
return g and ACC

training data stacked on top of each other:

D =


















D(1)
1,1 . . . D(1)

1,S
...

. . .
...

D(1)
C,1 . . . D(1)

C,S
...

. . .
...

D(R)
1,1 . . . D(R)

1,S
...

. . .
...

D(R)
C,1 . . . D(R)

C,S


















.

We can now rewrite (5.2) as:

wwin = argmin
w
‖d−Dw‖, (5.3)

which possesses a closed-form solution and can be computed efficiently.

Then, for a testing image t, we compute its decision vector δ(t) = (δ(t)
1 , δ(t)

2 , . . . , δ(t)
C )

as follows:

δ(t) =
S∑

s=1

wwin,sd
(t)
s ,

where d(t)
s are the local decision vectors for t. The classification decision is then

made as
cwin = argmax

c
δc,

that is, the winning class corresponds to the index of the highest coefficient in δ.

5.4.3 Per-Class Closed-Form Algorithm

To make the system truly adaptive, it is reasonable to assume that different classes
require different weight vectors. Thus, we propose a system where, instead of a
single weight vector w for the whole training data set, each class c has its own
weight vector wc. As opposed to (5.1), the entries in the output decision vector are
now computed as:

D(r)wc, c = 1, . . . , C. (5.4)



5.4. Weighting Procedure 65

Now, the weights can be grouped together to form an S×C matrix W so that each
column represents a class-specific weight vector. Equation (5.4) can be rewritten
as:

diag
(

D(r)W
)

. (5.5)

Recall that D(r) is of size C×S and thus d is of size C×C (compare this to (5.1)).
To learn these weights, we again use the training set and look for a solution that
minimizes the squared error:

Wwin = argmin
W

R
∑

r=1

‖d(r) − diag
(

D(r)W (r)
)

‖2. (5.6)

To obtain an expression analogous to (5.3) and be able to apply standard methods,
we have to define v as the vector concatenating all class-specific weight vectors:

v = (W1,1, W1,2 . . .W1,C , . . . , WS,1, . . . , WS,C)$ . (5.7)

We now define D as the following block matrix, where c(l)
k , is the vector

(D(r)
c,1 , D(r)

c,2 , . . . , D(r)
C,S)

D =

























d(1)
1 0 0 . . . 0

0 d(1)
2 0 . . . 0

0 0 d(1)
3 . . . 0

0 0 0 . . . 0

0 0 0 . . . d(1)
C

...
...

...
. . .

...

d(R)
1 0 0 . . . 0

0 d(R)
2 0 . . . 0

0 0 d(R)
3 . . . 0

0 0 0 . . . 0

0 0 0 . . . d(R)
C

























, (5.8)

for r = 1, . . . , R. We can now write a minimization problem equivalent to the one
in (5.6), and which we can solve using standard techniques:

vwin = arg min
v
‖d−Dv‖. (5.9)

5.4.4 Decomposition Tree Pruning

Our long-term goal in developing an adaptive MR classification system was to find
a wavelet packet-like decomposition, where each class would induce a different MR
subtree. While the authors have done just that in [55], we needed a cost function
which is specific to the data set used. Our goal is thus have a more generic system
and to achieve a wavelet packet-like system but without the need for a cost function.
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We come close to this goal here, where we identify the set of discriminative subbands
for each class (not necessarily a subtree).

Once the weight vectors are computed (using any version of the weighting
algorithm), we use the values of the weights to regulate the MR decomposition. In
particular, subbands which are given a low weight by the weighting procedure can
be pruned away as long as the remaining subbands are still sufficient to classify
the image correctly. This way, the pruned subbands and their associated features
need not be computed, resulting in computational savings. We propose to keep the
high-weight subbands, so that at least a certain ratio κ, defined as the fraction of
the sum of kept weights over the sum of all the weights, of subbands are kept.

This pruning can be done over a single weight vector and is thus suitable for
both the previous model with a weight vector per entire data set as well as for
the new model with a weight vector per-class (5.4). The process is formalized as
Algorithm 3.

Algorithm 3 Pruning the Decomposition Tree

Input: The vector of weights w, fraction of kept weights/subbands κ (0 < κ ≤ 1)
Output: Set of subbands S
S ← {}
while

(∑

i∈S |wi|
)

< κ
∑S

i=1 |wi| do
s← arg maxs(∈S ws

S ← S ∪ {s}
end while
return S
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In this chapter, we discuss the performance of our classification method and
use different instantiations of the MR classification algorithm depending on the data
set at hand. In each case, we will first describe the data set, then the particular
instantiation of the algorithm and finally present classification results.

6.1 Determination of Protein Subcellular Location Patterns

This is the application domain discussed in Section 2.1. The goal here is to recognize
proteins based on their subcellular location patterns.

The details of our results in this area can be found in [116, 86, 84, 117, 23].

6.1.1 Data Set

To evaluate our MR approach, we use the 2D HeLa set depicting protein subcellular
location described previously [13]. The proteins in the data set were labeled using
immunofluorescence, and thus, we know the ground truth, that is, which protein
was labeled in each cell and subsequently imaged. This is useful for algorithm
development as we can test the accuracy of classification schemes.

67
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(a)

(b)

Figure 6.1: (a) Intra-class variation: The three images show the spatial distribution
of tubulin within a cell. (b) Inter-class similarity: The first image shows the spatial
distribution of giantin and the second image shows the spatial distribution of gpp130.
Both are Golgi proteins. (Images courtesy of Dr. R. F. Murphy, CMU [87].)

The challenge in this data set is that images from the same class may look
different while those from different classes may look very similar (see Fig. 6.1).

This data set is publicly available [87] and contains approximately 90 single-
cell images of size 512×512, in each of C = 10 classes. The 10 classes of subcellular
location patterns were obtained by labeling an endoplasmic reticulum protein, two
Golgi proteins (giantin and gpp130), a lysosomal protein, a mitochondrial protein,
a nucleolar protein, two cytoskeletal proteins (actin and tubulin), an endosomal
protein, and DNA. The best previously described overall classification accuracy on
this data set is 91.5% [62].

6.1.2 Algorithm

To test our system, we used the following for each block: For the MR block, we
use the DWT for MR bases and the stationary wavelet transform that implements
the à trous algorithm for MR frames. The feature extraction block uses Haralick
texture feature sets T1, T2, T3, morphological features and Zernike moments. The
classifier is a neural networks (NN) classifier and for the weighting procedure, we
use both open form and per-dataset closed-form versions.

6.1.3 Results

The results are given in Table 6.1, while Fig. 6.2 depicts the following trends (note
that No MR denotes the version of the algorithm where no MR transform is used):

1. For all feature combinations, MR bases significantly outperforms no MR, thus
demonstrating that classifying in MR subspaces indeed improves classification
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System T Weight. Classification accuracy [%]

M T Z T, M M, Z T, Z All

NMR T1 NW 66.12 85.49 51.20 85.76 72.48 85.06 85.04
T2 NW 66.12 85.76 51.20 86.64 72.48 85.78 86.24
T3 NW 66.12 87.46 51.20 87.38 72.48 87.12 86.86

MRB T3 OF 81.62 91.82 65.42 92.04 83.38 91.66 92.36
T3 CF 81.48 92.32 65.84 92.62 83.58 92.34 92.54

MRF T3 OF 84.92 94.72 65.82 94.64 86.80 94.74 94.52
T3 CF 85.16 95.26 65.24 95.40 85.88 95.26 95.38

Table 6.1: Classification accuracy for 2D HeLa images depicting protein subcellular lo-
cation patterns. NMR = no MR, MRB = MR bases, MRF = MR frames, T = texture
features, M= morphological features, Z = Zernike moment features, T1, T2, T3 = Haralick
texture feature sets T1, T2, T3, NW = no weighting, OF = open-form weighting, CF =
per-dataset closed-form weighting.

accuracy.

2. MR frames outperforms MR bases (the only set showing no improvement is
the Zernike feature set alone) and gives the best classification accuracy of
95.40%.

3. While a slightly higher classification accuracy is obtained by using all three
feature sets as well as both Haralick texture and morphological sets, the larger
number of features and additional complexity of using morphological and
Zernike features do not justify the slight improvement in accuracy (Haral-
ick texture features T3 alone achieve 95.26% with MR frames). This “flat”
trend (see Fig. 6.2) is good news as we can use a significantly reduced feature
set and still obtain a fairly high classification accuracy.

4. For the two versions of the weighting algorithm, open and closed forms, the
closed-form algorithm slightly outperforms the open-form one for all feature
combinations except for the morphological feature set alone (fourth and fifth
rows of Table 6.1). In particular, for Haralick texture features T3, the accuracy
rose from 91.82% to 92.32% in the MR bases case, and from 94.72% to 95.26%
in the MR frames case.

6.2 Detection of Developmental Stages in Drosophila
Embryos

This is the application domain we discussed in Section 2.2. In this classification
problem, the aim is to distinguish between three developmental stages of the ventral
furrow in fruit fly embryos. The stages consist of the initial stage (no development
yet), open stage (during development) and closed or final (development is complete).
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Figure 6.2: Pictorial representation of classification accuracy for 2D HeLa images depict-
ing protein subcellular location patterns.

An automated classification algorithm for this data set can integrated in a high-
throughput system allowing for an efficient and accurate identification and screening
of large amounts of data.

The details of our results in this area can be found in [66].

6.2.1 Data Set

The data set consists of 60 time-lapse, fluorescence microscopy z-stacks (3D volumes
in time) of developmental stages of Drosophila embryos. The stacks are acquired
roughly every 10 minutes. The number of slices per stack varies; it is 5 slices
for normal sets and 7 slices for delayed/abnormal. The number of time points is
typically 15 for normal/abnormal and around 30 for delayed. All the slices have
been tagged by a human expert so we have reliable ground truth.

6.2.2 Algorithm

For this data set, our task can be divided into two parts: First determine the
developmental stage, then associate the time point to be able to tag the development
as normal, delayed or abnormal.

Classifier We use the following instantiation of the algorithm: For the MR Block
we use the DWT for MR bases, and stationary wavelet transform (à trous algo-
rithm) for MR frames. In the feature extraction phase, we use Haralick texture
feature sets T1, T3 as well as a combination of Haralick texture features T3 and
morphological features. The classifier is a neural networks (NN) classifier and the
weighting algorithm uses both the open form and the per-dataset closed-form.
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Figure 6.3: Representative examples of each stage. Top: Stage 1, no ventral furrow,
for normal (t=30min), delayed (t=60min) and abnormal (t=20min) embryos. Middle:
Stage 2, ventral furrow opening, for normal (t=60min), delayed (t=110min) and abnor-
mal (t=72min) embryos. Bottom: Stage 3, ventral furrow closed, for normal (t=75min),
delayed (t=140min) and abnormal (t=82min) embryos. (Images courtesy of J. S. Minden,
CMU [85].)

Tagging Chart

(1,2,3) (1,1,2) (1,2,2) (1,1,1) (1,3,3)

Tag Normal Delayed Delayed Abnormal Abnormal

Table 6.2: Tagging chart for the detection of developmental stages in Drosophila embryos.
All combinations starting with 2 or 3 will be assumed to be a classifier mistake. Those
combinations should be converted to (1,x,y) where x and y are the original stage deter-
mination. Any combination starting with 1 and not in the above chart is assumed to be
abnormal.

Screening For each time-lapse series, we consider slices at three time points; the
first is during the time when Stage 1 is expected to occur, the second is during the
time Stage 2 is expected to occur, and likewise for the third time point (these times
are known). We then determine normal/delayed/abnormal tags by comparing the
expected stages with what the classifier outputs for each set of time points. For
example, if the three time points are classified as (1,2,3) (numbers refer to stages),
then this is a normal image series. If the classifier labels the images as (1,1,2), then
this is a delayed image series. If the classification is (1,1,1), then this is abnormal
because it means development did not occur at all. For each combination, we assign
a normal/delayed/abnormal tag. Our current assignment is given in Table 6.2. Of
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Classification Accuracy [%]

2D Weight T1 T3 T3, M

NMR NW 82.94 88.39 78.33

MRB OF 88.11 91.06 89.89

CF 90.94 92.22 92.78

MRF OF 83.44 89.95 90.51

CF 84.83 91.06 93.17

3D Majority rule on 2D 98.35

Table 6.3: Classification accuracy for 2D slices of Drosophila embryos. We use these
in majority voting classification for 3D stacks yielding the accuracy of 98.35%. NMR =
no MR, MRB = MR bases, MRF = MR frames, M= morphological features, T1, T3 =
Haralick texture feature sets T1, T3, NW = no weighting, OF = open-form weighting, CF
= per-dataset closed-form weighting.

course, it is possible that the sequence (1,1,1) is the correct classification in the
first case and incorrect in the last two, leading to an incorrect tag. We will assume
that any combination starting with 2 or 3, that is, (2,x,y) or (3,x,y), is a classifier
mistake and will convert it into (1,x,y). The combinations starting with 1 not shown
in Table 6.2 are assumed to lead to abnormal tags.

6.2.3 Results

Table 6.3 shows the accuracies obtained for the Drosophila data set. We can say
the following:

1. In all cases, MR does significantly better than no MR.

2. MR frames is better than MR bases when using Haralick feature set T3 com-
bined with morphological features, with the best classification accuracy of
93.35%.

3. The closed-form version of the weighting process gives better results than the
open-form.

4. Access to 3D stacks allows to classify three slices out of each stack and then use
a majority rule to make a decision. The classification results for adjacent slices
were 92.38% and 91.64% using (T3, M) features and closed-form weighting.
Using the majority rule process, the classification accuracy reaches 98.35%.
(Note that this rule assumes independence of the slices in a 3D stack.)

We can use the same process in time as the one for volumes to improve the
screening, but since we do not have enough slices in time and need to acquire time-
lapse series with better time resolution, this is left for future work. Note that using
the majority rule assumes the slices in a 3D stack to be independent. We have not
verified this assumption and will leave it for future work.
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6.3 Classification of Histological Stem-Cell Teratomas

This is the application domain discussed in Section 2.3 and the details of our results
are presented in [26].

For this application, we use our MR classification algorithm to design a system
to recognize tissue types within teratomas derived from ES cells. For example, we
are given a histological image of an embryonic tissue and would like to recognize that
the image depicts skin or muscular tissue. We will show that MR classification again
outperforms the no MR one. We test various MR decomposition modules bases (MR
bases) frames (MR frames). The complex nature of the images in this work makes
it unlikely that the texture features alone could produce high accuracies (in mid to
upper 90s as in previous the biomedical application). Therefore, we develop a novel
feature set for specific use in recognizing tissues in H&E stained images.

6.3.1 Data Set

Human ES cells (H7 line) and putative nonhuman primate ES cells (derived as
outlined by Navara [89]) were introduced into the testes of immune deficient SCID
mice by modified efferent duct injection [90]. Cells were injected using an Eppendorf
Femtojet pressure injector into the interstitial space of the testis. Tumors typically
developed between two and four months after injection. Tumors were removed and
processed by routine histological methods. Multiple serial sections were examined
for evidence of tissue derived from the three germ layers.

To train our classifier, we need to populate this data set with a fair amount of
single-class images. We start with H&E images that depict multiple tissues (classes)
contained in the teratomas. These are hand segmented by an expert to separate
the classes. Then, the segmentation masks are used to generate single-class images.
Because the set of multi-class images available to us is small (only 23 images), we
decided to take advantage of their large size (1600 × 1200), and use a window to
extract single-class images of size 200 × 200. We thus obtain 45 images per class.
We use six classes for this experiment: mesenchyme (embryonic connective tissue),
skin, myenteric plexus, bone, necrotic (dying or dead tissue), and striated muscle.
The images have been taken at 100x magnification (see Fig. 2.2) and have been
labeled by a pathologist, thus we have access to ground truth. Note that the test
images were never seen by the system during the training phase.

6.3.2 Algorithm

The classification system described in the previous chapter works with gray-scale
intensity images. The images obtained through histological techniques have the
advantage of being highly detailed and showing distinctive features of the tissues
at different resolutions. One of these important features is color. Therefore, it
is important that the classification system takes advantage of all the information
available from the histological images and exploits a feature as important as color.
In particular, when using H&E staining, the nuclei turn a marked purplish/blue
color from hematoxylin while the cytoplasm becomes varying shades of red due to
exposure to eosin. As a result, we developed new texture features for this data set
based on the nuclei present in all images.
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Figure 6.4: Overview of the proposed H&E-stained tissue recognition system. The input is
an H&E-stained image of one of the six tissue classes given in Fig. 2.2. The multiresolution
(MR) nature of the system is accomplished through the MR decomposition block, after
which all the processing is done in MR subspaces. We use Haralick T3 features [23] and
propose new nuclear texture features (see Fig. 6.6). The classifier is a simple neural network
one. We use two versions of the weighting algorithm (open form and closed form). The
output is the tissue class label.

(a) (b) (c) (d)

Figure 6.5: Examples of tissue and nuclear-only images. (a) Skin, (b) corresponding
extracted image of skin nuclei, (c) striated muscle, (d) corresponding extracted image of
striated muscle nuclei. (Images (a) and (c) courtesy of Dr. J. A. Ozolek and Dr. C. A.
Castro, university of Pittsburgh medical center [92].)

New Nuclear Texture Feature Set (NT3) We observed that the cell nuclei have
a distinctive distribution and texture depending on the tissue type. For example,
nuclei in striated muscle image are mostly elongated and have the same orienta-
tion (Fig. 6.5(d)), whereas the nuclei in skin images are irregular with a jagged
pattern (Fig. 6.5(b)). This prompted us to extract nuclei images from the original
histological images and then compute texture features (NT3) on these, to incorpo-
rate them in our classification system. Nuclear features in conjunction with other
morphological features have also been used to classify breast cancer tumors in [94].

Fig. 6.6 depicts a block diagram of the nuclei extraction method; We first
convert the original images from RGB to the perceptually uniform L∗a∗b∗ color
space. The L∗ channel is the luminance channel and a∗ and b∗ are the chrominance
(color) channels that indicate where the color falls along the red-green and blue-
yellow axes, respectively. Given that the images depict mainly three colors: white,
blue and pink, we then use the K-means clustering algorithm on the a∗ and b∗
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Figure 6.6: Nuclear image extraction.

channels to derive three clusters corresponding to those three colors. We observe
experimentally that the centroid with the largest difference between its red and blue
channel pixel values corresponds to the blue cluster. Finally, since the nuclei take
on the dark shades of blue, we use an adaptive threshold on the luminance channel
to mask the lighter shades of blue from the blue cluster image, thus obtaining the
nuclei images [128].

Experimental Setup We use the following in our algorithm: The MR block uses
the DWT for MR bases and the stationary wavelet transform (à trous algorithm)
for MR frames. In the feature extraction step, we use the new nuclear texture
features, Haralick texture features T3 and a combination of both sets at the same
time. Neural networks is the classifier and open form and per-dataset closed-form
are used as weighting procedures.

Classification Accuracy [%]

Weight NT3 T3 T3, NT3

NMR NW 54.44 65.74 71.74

MRB OF 63.22 70.02 77.29

CF 64.10 71.38 78.20

MRF OF 71.51 82.37 86.56

CF 73.05 84.40 87.72

Table 6.4: Classification accuracy for tissue types in teratomas derived from ES cells.
Along each row, feature sets are arranged by increased accuracy (with (T3, NT3) being
the best). Along each column, MR blocks as well as weighting algorithms are arranged
by increased accuracy as well; the MR frames gives the best results. NMR = no MR,
MRB = MR bases, MRF = MR frames, T3 = Haralick texture features, NT3 = new
nuclear Haralick texture features, NW = no weighting, OF = open-form weighting, CF =
per-dataset closed-form weighting.

6.3.3 Results

The results are given in Table 6.4. We note the following trends (the first three are
consistent with the trends observed in all previous applications):

1. For all feature combinations, MR transforms (both MR bases and MR frames)
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significantly outperform no MR, thus showing that classifying in MR sub-
spaces indeed improves the classification accuracy.

2. MR frames considerably outperforms MR bases and give the best classification
accuracy of 87.72%.

3. The closed-form version of the algorithm outperforms the open-form one.

4. Incorporating nuclear texture features significantly improves the accuracy us-
ing any MR block and any weighting algorithm. In particular, classification
accuracy increases from 73.05% using nuclear texture features NT3 only, to
84.40% using Haralick T3 features only, and to 87.72% using the combined
feature set T3, NT3.

For tissue type identification, we hope to improve the performance of the
classification system by adding morphological features, as the shape of the cell and
nucleus, which as noted demonstrates distinctive variations across tissue types. We
will also incorporated 3D features as well as obtain more images for the training
set so the classifier can see a larger variation during training. Our larger goal is
to build an automated toolbox for extraction, recognition and quantification of the
varied tissue types present in teratomas derived from ES cells and other pathological
specimens using only routine hematoxylin and eosin stained tissue sections.

6.4 Classification of Otitis Media Stages

This is the application described in Section 2.4. It concerns infections of the middle
ear and our goal is to distinguish between three possible stages: normal when no
infection is present, OME when the infection is mild and AOM when the infection
is the most severe.

6.4.1 Data Set

The images in this data set were acquired with a spectroscopic otoscope. A standard
otoscope was connected to a spectrometer by an optical fiber wire. The otoscope
collects the light reflected from the eardrum and directs it to spectrometer. The
reflected light was then sampled and transferred to a computer [109]. The data set
used in this work was supplied by Dr. Hoberman at the University of Pittsburgh
Medical Center. The images were labeled by an expert, providing us with the
ground truth. Due to very high variability in the images within and across classes
dues to different lighting conditions and other elements of noise (see Fig. 2.3), we
decided to hand-segment the images so as to keep only relevant portions of the
images consisting of the tympanic membranes.

We use three classes for this experiment: normal, otitis media with effusion
(OME) and acute otitis media (AOM). Each class contains 50 images of size 640×
480 (see Fig. 2.3).
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Figure 6.7: MR Classification system for otitis media data set.

Otitis Media Stage

Finding Normal OME AOM

Color Grey, pink White, amber, grey, blue White, pale yellow,

marked redness

Position Neutral, retracted Neutral, retracted Distinct fullness, bulging

Translucency Translucent Opacified, semi-opaque Opacified

Table 6.5: Otoscopic findings associated with stages of otitis media. These were gathered
by the University of Pittsburgh Medical Center [114] and are some of the observations
used by physicians to diagnose otitis media.

6.4.2 Algorithm

Similarly to the previous application, this data set contains color images with spe-
cific characteristics. Here again, we need to take advantage of this additional in-
formation and create new features tailored to the otitis media images. As usual,
the goal is to obtain discriminative features that allow us to distinguish between
the three classes. As discussed in Section 2.4, this is an arduous task since even
experts very often misdiagnose infections in the middle ear. In particular, it is hard
to differentiate between OME and AOM.

Table 6.5 identifies important findings that physicians consider while exam-
ining and diagnosing middle ear effusion. We tried to inspire ourselves from these
features. Unfortunately, most of them, such as translucency, are very hard to trans-
late in terms of analytical formulas. Instead, we use these features indirectly. We
combined the experts’ observations on patients with our own observations of the
images and extract discriminative features, that we used in addition to Haralick tex-
ture features (T3). These novel features can be grouped into two main categories:
Capillary Haralick texture features (CT3) and morphological otitis media features
(M1).
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Figure 6.8: Example of otitis media and capillary-only images. (a) Original otitis media
image (from the AOM class, courtesy of Dr. Hoberman, university of Pittsburgh medical
center [56]), (b) hand-segmented image, (c) capillary orientation image, (d) capillary-only
image.
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Figure 6.9: Capillary image extraction.

New Capillary Texture Feature Set (CT3) Capillaries are small blood vessels that
are present in the tympanic membrane of the ear. When the ear is normal, none to
little capillaries are visible. However, when the ear becomes more and more infected
and starts to bulge, as observed in the OME and AOM conditions, the capillaries
of the tympanic membrane become more and more visible. Therefore, the textures
of capillary images were deemed important features to discriminate between the
classes. We extract the capillary images using a ridge detection algorithm inspired
by the work in [59] and developed by Kovesi [75]. The ridge detection algorithm
takes as its input the hand-segmented, grayscale version of the original RGB image
and first identifies ridge-like regions in the image. Then, the orientation of the
capillaries is determined by comparing each pixel to its surroundings in the gradient
images. Regions with reliable capillary orientation are found in areas that have a
significant gradient difference. Here, reliability is a value between 0 and 1 that
measures the orientation detected. The orientation measure is deemed good if the
reliability is above 0.5. Next, oriented filters are used to enhance the ridge pattern.
Finally, the image is converted to a black and white mask and the outer contour is
removed. This final step is performed because, although it appears as a ridge in the
image, the outer contour is in fact the edge of the tympanic membrane and does
not represent any capillaries. Fig 6.9 shows a block diagram for the ridge detection
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Figure 6.10: Positioning of the tympanic membrane (courtesy of [114]). (a) Neutral
position of the short process in the normal or OME case, (b) obscured short process when
bulging occurs (AOM).

algorithm. We compute Haralick texture features T3 on the binary capillary images
and obtain the new feature set CT3. Fig 6.8 shows an example of an AOM image,
its hand-segmented version, its capillary orientation image and the capillary-only
final black and white image.

New Morphological Feature Set (M1) The positioning of the tympanic mem-
brane (TM) distinguishes AOM from other otitis media classes and can be trans-
lated into a contour-type of feature. Middle ears afflicted with AOM exhibit a
distinctive bulging, fullness of the TM, whereas in OME and normal middle ears,
the TM positioning is either neutral or retracted. Bulging in otitis media images
is detected by an obscurity in the short, lateral process of the malleus depicted in
Fig. 6.10. Moreover, a greater level of obscurity of the short process produces an
increasingly elliptical shape of the TM [114]. Thus, we quantify the level of obscu-
rity in the short process by computing the convex hull area, the eccentricity, and
the ratio of the minor to major axes of the TM region. The convex hull area, the
area of the smallest convex polygon that contains the TM region, was computed
to extract the relative shape and size of this region. The eccentricity is computed
as the ratio of the distance between the foci, the center point of the ellipse and its
major axis length. The ratio of the minor to major axis of the TM is the scalar
quotient of the length in pixels of the minor to the major axes of the TM.

In addition to these features, we compute color based features. The images
were first preprocessed to remove the black pixels of the background in the hand-
segmented RGB images. After some investigative work, we found that the mean
of the red channel in the RGB images can be used as a discriminative feature.
Indeed, these mean values yielded the best separation amongst the three classes.
The images of the AOM class contained on average higher number of red valued
pixels. This was to be expected given the observation that AOM cases exhibit a
distinctive marked redness (see Table 6.5).

Experimental Setup We used the following instantiation of our algorithm: The
MR block has the DWT for MR bases and the stationary wavelet transform (à
trous algorithm) for MR frames. The feature extraction block uses capillary texture
features CT3, Haralick T3 and new morphological features, as well as a combination
of all these feature sets. The classifier has neural networks and the open-form
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weighting algorithm is used.

6.4.3 Results

Classification Accuracy [%]

Weight CT3 CT3, M1, T3 T3

NMR NW 44.40 54.67 55.67

MRB OF 44.40 64.73 65.93

MRF OF 45.73 71.93 73.13

Table 6.6: Classification accuracy for otitis media. MR frames gives the best results with
Haralick texture features T3. NMR = no MR, MRB = MR bases, MRF = MR frames,
T3 = Haralick texture features, CT3 = new capillary Haralick texture features, M1 = new
morphological features, NW = no weighting, OF = open-form weighting, CF = per-dataset
closed-form weighting.

The classification accuracies are reported in Table 6.6. We observe the follow-
ing:

1. MR substantially outperforms no MR in all cases.

2. MR frames is always better than MR bases, with the best classification accu-
racy of 73.13% achieved with Haralick texture features T3.

3. Surprisingly, adding capillary texture features CT3 and new morphological fea-
tures to Haralick T3 decreases slightly the classification accuracy from 73.13%
to 71.93%.

In this application, the MR classification system does not perform as in the
previous ones. Moreover, the addition of novel features unexpectedly leads to lower
accuracies than the simple use of Haralick texture features T3. We hypothesize that
this might be due to two aspects of the feature extraction step: The first is that the
ridge extraction algorithm did not perform well on this type of images. The second,
is that the set of new features along with T3 were in “competition” and instead of
helping the classifier make correct decisions, it confused it. If this is the case, a
feature selection procedure should solve the problem.

The confusion matrices for no MR, MR bases and MR frames are presented in
Table 6.7. We observe that in every case, more than 50% of the images were assigned
the correct class label. As expected, we note that AOM and OME classes have the
largest percentages of incorrect classifications. In addition, these two classes hold
most of the confusion where one class is mistaken to be the other and vice versa.
This result supports the fact that the features of AOM and OME are very similar
and can often be confused.
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Classification Accuracy [%]

Normal OME AOM

NMR

Normal 65.80 22.60 11.60

OME 28.60 42.60 28.60

AOM 15.00 29.40 55.60

MR bases

Normal 81.80 11.60 6.60

OME 17.20 52.40 30.40

AOM 12.00 28.00 60.00

MR frames

Normal 93.00 3.80 3.20

OME 6.80 59.80 33.40

AOM 6.00 31.00 63.00

Table 6.7: Confusion matrices for otitis media classification when using all features (new
capillary features CT3, new morphological features M1, Haralick texture features T3).
Note that in each case, the classification accuracy can be computed as the average of the
diagonal element of each matrix. NMR = no MR, MRB = MR bases, MRF = MR frames.

6.5 Application in Other Domains: Fingerprint Recognition

This is the application domain discussed in Section 2.5. Given an image of a fin-
gerprint, the goal here is to recognize the individual (class) to whom the fingerprint
belongs. The details of our results can be found in [24].

6.5.1 Data Set

To test our system we used images from a subset of the NIST 24 fingerprint
database [127]. The data set contains 10 classes with 50 512 × 512 images each
(45 images are used to train the system). The images were acquired while individu-
als were rolling their thumbs, inducing different plastic distortions making the data
set realistic and challenging (see Fig. 2.4).

6.5.2 Algorithm

To classify this data set, we use different MR transforms as well as various weighting
procedures. In the MR block, for MR bases we use the DWT of size 2 × 2, and
the following 4 × 4 transforms: the discrete Fourier transform, the discrete cosine
transform, the discrete Hartley transform [9]), the Walsh-Hadamard transform [64])
and the discrete triangle transform [99] which is nonseparable. We also use two
random unitary transforms, the first one has an all ones row, whereas the second
is completely random. For MR frames we use the double-density DWT, the dual-
tree complex wavelet transform (both of these were presented in Section 4.4.6) and
the stationary wavelet transform that implements the algorithm à trous. We use



82 Chapter 6. Biomedical Applications

Haralick texture feature set T3 and neural networks in the generic classification
system. For the weighting process, we use per-dataset closed-form and per-class
closed-form. When using the pruning procedure, we set the value for κ at 0.8 as
initial observations showed that this value achieved a good balance between pruning
away the decomposition tree while keeping the accuracy high.

6.5.3 Results

Pruned Not pruned

Per-Class CF Per-Class CF

nmr 96.22 96.22 96.22 96.22

MR bases

dwt 98.86 98.82 98.58 98.68
dft 98.26 98.18 98.42 98.46
dct 95.08 94.46 98.10 98.02
dht 95.48 95.06 98.00 97.78
wht 95.02 94.34 98.12 98.08
dtt 98.02 97.92 98.30 98.28
ru1 97.12 97.00 99.00 98.98
ru2 94.90 94.84 98.12 98.18

MR frames

dd-dwt 98.96 99.10 98.70 99.12
dt-cwt 99.06 98.52 99.14 98.80

swt 99.36 99.38 99.42 99.50

Table 6.8: Classification accuracies for fingerprint images obtained with different MR
transforms, Haralick texture features T3, using two weighting algorithms and a pruning
procedure. For MR bases, we have the following transforms: discrete Hartley transform
(DHT), Walsh-Hadamard transform (WHT), discrete triangle transform (DTT), random
unitary transforms RU1 and RU2. For MR frames, we used the double-density DWT
(DD-DWT), dual-tree complex wavelet transform (DT-CWT), Algorithm à trous (SWT).
CF = per-dataset weighting procedure.

All the results are shown in Table 6.8. By observing the results, we can draw
the following conclusions:

1. MR does better than no MR.

2. The redundant transforms (MR frames) do better than the unitary ones (MR
bases) and the SWT achieves the best classification accuracy of 99.50%.

3. The choice of the transform amongst MR bases does not seem to be crucial.
One might as well use a random unitary transform and still achieve similar
performances.

4. As expected, pruning does not improve the accuracy of the system, but it
does make it more efficient.
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5. In general, the class-adaptive method seems to do better than the data set
adaptive one.

6. Considering the two main MR decompositions DWT and SWT, using κ =
0.8 in the pruning procedure removed almost half of the subbands, enabling
significant computational savings in computation with a small impact on the
classification accuracy.

For future work, we intend to use a much smaller training set of images to
train our system, use a much larger data set as well as optimize κ for each transform.

6.6 Towards a Theory of Frame Multiresolution
Classification

We investigated in this work five different biomedical and biometrics applications
that had classification as their underlying task. We have developed an accurate and
efficient adaptive supervised classification algorithm based on multiresolution (MR)
techniques, aiming to extract discriminative features within space-frequency local-
ized MR subspaces. These are obtained by MR decomposition; that is, rather than
add MR features to existing features, we instead chose to compute these features in
the MR-decomposed subspaces themselves. Thus, our system has an upfront MR
decomposition block which is followed by feature computation and classification in
each of the MR subspaces, which, in turn, are then combined through an adaptive
weighting process.

In the table below, we summarize the classification accuracies obtained for
each application:

Project Accuracy [%] Reference

Recognizing proteins using subcellular location patterns 95.4 [23]

Determination of developmental stages in Drosophila embryos 93.17 (2D) [66]

98.35 (3D)

Tissue recognition in stem cell teratomas 87.72 [26]

Diagnosis of otitis media 73.13 Initial work

Fingerprint recognition 99.5 [24]

In all the applications we examined, and despite the variation in the nature of
the data sets (cellular, tissue nature, various imaging modalities, etc), we observed
two persistent trends:

• Using the MR block in front of the generic classifier is always better and
produces a higher accuracy than not having an MR transform.

• MR frames always outperform MR bases and lead to the best classification
results.

The first trend was expected as it does subscribe to our philosophy: “MR
subspaces contain useful information for classification”. However, the second trend
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was not a result we had anticipated. This directed us to ask the following two
fundamental questions:

1. Why do MR frames perform better than MR bases in a classification context?

2. Can we design new frame families that are application-specific?

Our answers to the above questions are the topic of the next part of this
thesis. In the next chapter, we simplify the first question to a more tractable set up
and provide a rigorous and formal approach to explaining why frames outperform
bases in classification. Specifically, we consider only one class of signals which is
generalized to be a convex set. In addition, we suppress the feature extraction step
and consider the transform coefficients of a signal as features themselves. Finally, we
simplify the classifier to a classification scheme akin to a majority voting. This basic
but fundamental setting helps us understand the role of frames and redundancy in
classification and is a general mathematical framework that allows rigorous analysis
of frame-based classification. In Chapter 8, we design new frame families that
generalize lapped orthogonal transforms to frames. As we will see, these new families
are flexible, tight and efficient by construction and have other desirable properties
as well.
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As the five biomedical and biometrics applications we investigated in this
thesis have very different images and are often obtained through different imaging
modalities, it came as a surprise that all five shared the same trend: The system
using MR frames invariably had a higher accuracy than the one using MR bases.
This led us to ask the following fundamental question: Why do frames always
perform better than bases when it comes to classification?

In this chapter, we detail our first steps towards answering this question. Our
approach involves a frame theory-based scheme for the classification of convex sets,
and a measure-theoretic framework for evaluating its performance. We look at a
single-class classification problem (sometimes also called recognition problem) in RN

where the class C to be recognized is a compact convex subset of RN . We assume
we have the complete knowledge of the class C; we do not address the process by
which we may reach this level of knowledge by learning the support and distribution
of the points inside of C from a finite number of training samples. Rather, we focus
on the problem of how best to determine whether a given point x ∈ RN lies in C
when one only knows the point’s transform coefficients {〈x, ϕ̃∗

m〉}M
m=1 with respect

to some frame {ϕm}M
m=1 for RN . We also examine this problem in the presence of

noise.

This chapter is organized as follows: In Section 7.1, we first prove that for a
compact convex class C, the set of points Ep(C) at which classification errors due to

noise will occur, may be approximated by Ep(Ĉ), provided the approximating set Ĉ is

87
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sufficiently close to C. We thus rephrase our problem as the search for “convenient”
approximating sets, Ĉ. As C is convex, convex polytopes are natural candidates for
the approximating set Ĉ. In Section 7.2, we show how convex polytopes are a special
case of sets that naturally arise in the context of frame theory, and term these sets
frame sets. In Section 7.3, we show how frame sets may be used to classify elements
of C, and study the errors associated with such a classification scheme. We then
conclude in Section 7.4 by deriving upper bounds on the size of the set of points at
which these errors are most likely to occur.

7.1 Classification of Convex Sets in the Presence of Noise

Let C ⊂ RN be a compact convex set that represents our class of signals; in the
absence of noise, the ideal classifier function χC perfectly determines whether a
given point is in C or not. However, even an ideal classifier may be affected by the
presence of noise, resulting in classification errors. In this work, we shall consider
a probabilistic, radially symmetric noise model. Specifically, let P be a probability
measure on RN which is absolutely continuous with respect to Lebesgue measure,
and take p ∈ L1(RN ) to be its density function, that is,

P (S) :=

∫

RN

χS(η)p(η) dη,

for any Lebesgue measurable set S ⊆ RN , where p(η) ≥ 0 for all η ∈ RN and
P (RN ) = 1. For a given point x ∈ RN , the quantity:

P (x + η ∈ S) :=

∫

RN

χS(x + η)p(η) dη (7.1)

represents the probability that the additive noise η perturbs x into being an element
of S.

As we have seen in Section 3.3.2, there are two types of classification errors:
Type-I errors (false positives) in which a point is not an element of C but is classified
as one, and Type-II errors (false negatives) in which a point is an element of C but
is classified as not. Though either type of error may occur at any point, here we
are especially concerned with those points x for which the addition of the noise η
results in x being misclassified more than half of the time. To be precise, the set of
points for which Type-I errors occur more frequently than not is:

EI = {x /∈ C : P (x + η ∈ C) > 1
2}, (7.2)

while the corresponding set for Type-II errors is:

EII = {x ∈ C : P (x + η /∈ C) > 1
2}. (7.3)

For a given class C and noise distribution p, we define the corresponding total
classification error Er(C, p) to be the sum of the Lebesgue measures of EI and EII;
these sets are indeed measurable as (7.1) is a continuous function of x.
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7.1.1 Classification Error of Convex Sets
in the Presence of Additive Radially Symmetric Noise

We now show that EI is empty whenever C is convex and p is radially symmetric,
that is, when p(Uη) = p(η) for all orthogonal matrices U . Before stating this result,
we note that radial symmetry implies p(−η) = p(η) and so:

P (x + η ∈ C) =

∫

RN

χC(x + η)p(η) dη =

∫

RN

χC(x− η)p(η) dη = (χC ∗ p)(x),

where χC ∗p is the convolution of χC and p. Since (χC ∗p)(x) ∈ [0, 1] for all x ∈ RN ,
we may write:

{x ∈ R
N : P (x + η /∈ C) > 1

2} = {x ∈ R
N : P (x + η ∈ C) ≤ 1

2}
= (χC ∗ p)−1[0, 1

2 ],

that is, the preimage of [0, 1
2 ] under the convolution χC ∗ p, while

{x ∈ RN : P (x + η ∈ C) > 1
2} = (χC ∗ p)−1(1

2 , 1].

Thus, EI may be written as Cc∩ (χC ∗ p)−1(1
2 , 1] and EII may be written as C ∩ (χC ∗

p)−1[0, 1
2 ].

Lemma 7.1. If C is convex and p is a radially symmetric probability density function
over RN , then for any x /∈ C,

P (x + η ∈ C) =

∫

RN

χC(x + η)p(η) dη = (χC ∗ p)(x) ≤ 1
2 .

Equivalently, (χC ∗ p)−1(1
2 , 1] ⊆ C.

Proof. Since C is convex and x /∈ C, there exists y ∈ RN such that 〈z − x, y〉 > 0
for all z ∈ C [8], that is, such that C lies in a half-space whose boundary contains
x. Thus,

P (x + η ∈ C)

=

∫

RN

χC(x + η)p(η) dη

=

∫

{η:〈η,y〉>0}
χC(x + η)p(η) dη +

∫

{η:〈η,y〉≤0}
χC(x + η)p(η) dη.

If 〈η, y〉 ≤ 0, then 〈(x + η)− x, y〉 ≤ 0 and so x + η /∈ C, that is, χC(x + η) = 0.
Thus,

P (x + η ∈ C) =

∫

{η:〈η,y〉>0}
χC(x + η)p(η) dη ≤

∫

{η:〈η,y〉>0}
p(η) dη. (7.4)
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(a) (b)

Figure 7.1: Type-I and Type-II errors in a convex and a nonconvex class for a Gaussian
noise model p of mean zero and standard deviation σ = 0.25. The classes are indicated in
medium gray, Type-I errors in dark gray, and Type-II errors in black. (a) Error set Ep(C)
is a ring inscribed in C when C is the disk centered at (0, 0), of radius 1. Here, only Type-II
errors exist (black). (b) Nonconvex class S , and the associated Type-I (dark gray) and
Type-II (black) errors.

However, as {η : 〈η, y〉 = 0} has measure zero and the radial symmetry of p implies
p(−η) = p(η) for all η ∈ RN , then:

1 =

∫

RN

p(η) dη

=

∫

{η:〈η,y〉>0}
p(η) dη +

∫

{η:〈η,y〉<0}
p(η) dη

= 2

∫

{η:〈η,y〉>0}
p(η) dη,

which, when combined with (7.4), yields the result. Note that when C is convex

and p is radially symmetric, Lemma 7.1 implies that EI is empty. That is, in this
case, Type-I errors, though still possible, do not occur more than half of the time
at any point x. Therefore, in this case, we define the error set of a compact convex
set C with respect to a radially symmetric noise model p as just the set of points at
which Type-II will occur more often than not:

Ep(C) := {x ∈ C : P (x + η /∈ C) > 1
2}. (7.5)

Here, the total classification error is simply Er(C, p) = m(Ep(C)), where m is the
Lebesgue measure.

Example 7.1. To visualize the error set of a convex versus a nonconvex set C, we
consider the class C to be the disk in R2 centered at (0, 0) and of radius 1 (convex
set, Fig. 7.1(a)). In Fig. 7.1(b) a nonconvex example is given. The figure illustrates
Type-I and Type-II errors for a Gaussian noise model p of mean zero and standard
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deviation σ = 0.25. For the convex set C, there are only Type-II errors (black),
whereas for the nonconvex set both types of errors exist (Type-I is in dark gray).

7.1.2 Classification of Convex Sets via Approximating Sets

For a given convex class C, a useful, explicit expression of its error set (7.5) may be
difficult to obtain. In the sections below, we show that this problem becomes easier
when the class in question is a convex polytope, dubbed a frame set. The question
therefore arises: if the actual class C is well approximated by some geometrically
nice approximating set Ĉ, is it true that the error set of C is well approximated by
the error set of Ĉ?

We now show this is indeed true, provided the distance between C and Ĉ is
taken to be:

d(C, Ĉ) := m(C ∩ Ĉc) + m(Ĉ ∩ Cc), (7.6)

and provided that C is sufficiently regular. We say that a compact convex set C is
regular with respect to p if:

0 = m{x ∈ R
N : P (x + η) = 1

2}

= m
{

x ∈ R
N :

∫

RN

χC(x + η)p(η) dη = 1
2

}

. (7.7)

We note that for typical p and C, the set being measured in (7.7) is a level surface of
the convolution χC∗p, which one usually expects to have measure zero. Nevertheless,
the explicit need for this additional assumption on p and C will become apparent
in the proof of the following result; the study of sufficient conditions on p and C so
as to guarantee regularity is left as future work.

Theorem 7.2. For any fixed radially symmetric noise model p, and any compact
convex set C which is regular as in (7.7) with respect to p, we have:

lim
Ĉ→C

d((χĈ ∗ p)−1[0, 1
2 ], (χC ∗ p)−1[0, 1

2 ]) = 0, (7.8)

where Ĉ may be any compact convex set. As a consequence, we also have that the
error set function Ep(C) is continuous, that is, lim

Ĉ→C
Ep(Ĉ) = Ep(C).

Proof. We first prove (7.8), that is, taking any regular compact convex set C and
any ε > 0, we shall show there exists δ > 0 such that

d((χĈ ∗ p)−1[0, 1
2 ], (χC ∗ p)−1[0, 1

2 ]) (7.9)

= m((χĈ ∗ p)−1[0, 1
2 ] ∩ (χC ∗ p)−1(1

2 , 1]) (7.10)

+ m((χC ∗ p)−1[0, 1
2 ] ∩ (χĈ ∗ p)−1(1

2 , 1]) (7.11)

< ε,
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whenever Ĉ is any compact convex set such that d(Ĉ, C) < δ. To estimate the size
of (7.10), note that since |p(η)| ≤ 1 for all η ∈ RN ,

|(χĈ ∗ p)(x)− (χC ∗ p)(x)| =
∣
∣
∣

∫

RN

[

χĈ(x + η)− χC(x + η)
]

p(η) dη
∣
∣
∣

≤
∫

RN

∣
∣χĈ(x + η)− χC(x + η)

∣
∣ dη

=

∫

RN

χ(Ĉ∩Cc)∪(C∩Ĉc)(x + η) dη

= m((Ĉ ∩ Cc) ∪ (C ∩ Ĉc))

= d(Ĉ, C),

and thus, for any fixed positive integer k, any compact convex set Ĉ such that
d(Ĉ, C) < 1

k , and any x ∈ (χĈ ∗ p)−1[0, 1
2 ] ∩ (χC ∗ p)−1(1

2 , 1],

1
2 < (χC ∗ p)(x)

≤ |(χC ∗ p)(x) − (χĈ ∗ p)(x)| + |(χĈ ∗ p)(x)|
< 1

k + 1
2 .

Thus, for any such k and Ĉ, we have:

(χĈ ∗ p)−1[0, 1
2 ] ∩ (χC ∗ p)−1(1

2 , 1] ⊆ (χC ∗ p)−1(1
2 , 1

2 + 1
k ). (7.12)

Applying a similar reasoning to the set in (7.11), we note that if x ∈ (χC∗p)−1[0, 1
2 ]∩

(χĈ ∗ p)−1(1
2 , 1], then

1
2 ≥ (χC ∗ p)(x)

≥ (χĈ ∗ p)(x) − |(χĈ ∗ p)(x)− (χC ∗ p)(x)|
> 1

2 −
1
k ,

and so for any such k and Ĉ, we also have:

(χC ∗ p)−1[0, 1
2 ] ∩ (χĈ ∗ p)−1(1

2 , 1] ⊆ (χC ∗ p)−1(1
2 −

1
k , 1

2 ]. (7.13)

Summing the measures of (7.12) and (7.13), we therefore obtain an upper bound
on the left hand side of (7.10):

d((χĈ ∗ p)−1[0, 1
2 ], (χC ∗ p)−1[0, 1

2 ])

≤ m((χC ∗ p)−1(1
2 , 1

2 + 1
k )) + m((χC ∗ p)−1(1

2 −
1
k , 1

2 ])

= m((χC ∗ p)−1(1
2 −

1
k , 1

2 + 1
k )). (7.14)

We now claim that (7.14) converges to zero as k grows large. This fact will follow
from the continuity of the Lebesgue measure [104], provided we first show that the
sets in (7.14) are of finite measure for sufficiently large k. In particular, for k = 3,
since p ∈ L1(RN ), then

1 =

∫

RN

p(η) dη = lim
r→∞

∫

B(0,r)
p(η) dη,
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where B(0, r) = {η ∈ RN : ‖η‖ < r}. Thus, there exists r0 such that
∫

B(0,r0)
p(η) dη ≥ 5

6 .

Next, note that for any x ∈ RN such that infy∈C ‖y − x‖ ≥ r0, any η ∈ B(0, r0) has
the property that x + η /∈ C, since otherwise, we have

r0 ≤ inf
y∈C
‖y − x‖ ≤ ‖(x + η)− x‖ = ‖η‖ < r0,

a contradiction. Thus, if x satisfies infy∈C ‖y − x‖ ≥ r0, then χC(x + η) = 0 for all
η ∈ B(0, r0) and so:

(χC ∗ p)(x) =

∫

RN

χC(x + η)p(η) dη

=

∫

B(0,r0)c
χC(x + η)p(η) dη

≤
∫

B(0,r0)c
p(η) dη

= 1−
∫

B(0,r0)
p(η) dη

≤ 1− 5
6

= 1
6 .

In particular, if x ∈ (χC ∗ p)−1(1
2 −

1
3 , 1

2 + 1
3 ), then (χC ∗ p)(x) > 1

2 −
1
3 = 1

6 , and so
such an x does not satisfy infy∈C ‖y − x‖ ≥ r0. In other words:

(χC ∗ p)−1(1
2 −

1
3 , 1

2 + 1
3 ) ⊆ {x ∈ R

N : ∃ y ∈ C s.t. ‖y − x‖ < r0}. (7.15)

As C is compact, then the sets in (7.15) are bounded, implying

m((χC ∗ p)−1(1
2 −

1
k , 1

2 + 1
k )) <∞

for k = 3. Next, noting that the sets in (7.14) are nested, that is

(χC ∗ p)−1(1
2 −

1
k+1 , 1

2 + 1
k+1 ) ⊆ (χC ∗ p)−1(1

2 −
1
k , 1

2 + 1
k ),

the continuity of the Lebesgue measure [104] then gives:

lim
k→∞

m((χC ∗ p)−1(1
2 −

1
k , 1

2 + 1
k )) = m

( ∞
⋂

k=3

(χC ∗ p)−1(1
2 −

1
k , 1

2 + 1
k )
)

= m
(

(χC ∗ p)−1
∞⋂

k=3

(1
2 −

1
k , 1

2 + 1
k )
)

= m((χC ∗ p)−1{ 1
2})

= 0, (7.16)
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where the final conclusion follows from the assumption that C is regular. In par-
ticular, (7.14) and (7.16) together imply that we may pick δ = 1

k small enough so
that:

d((χĈ ∗ p)−1[0, 1
2 ], (χC ∗ p)−1[0, 1

2 ]) ≤ m((χC ∗ p)−1(1
2 −

1
k , 1

2 + 1
k )) < ε,

for every compact convex set Ĉ such that d(Ĉ, C) < δ, thus proving our first con-
clusion (7.8).

For the second conclusion, namely that lim
Ĉ→C

Ep(Ĉ) = Ep(C), note that

d(Ep(Ĉ), Ep(C)) = m(Ep(Ĉ) ∩ Ep(C)c) + m(Ep(C) ∩ Ep(Ĉ)c). (7.17)

Since
Ep(C) = {x ∈ C : P (x + η /∈ C) > 1

2} = C ∩ (χC ∗ p)−1[0, 1
2 ],

the first term of (7.17) may be rewritten as:

m(Ep(Ĉ) ∩ Ep(C)c)

= m(Ĉ ∩ (χĈ ∗ p)−1[0, 1
2 ] ∩ (C ∩ (χC ∗ p)−1[0, 1

2 ])c)

= m(Ĉ ∩ (χĈ ∗ p)−1[0, 1
2 ] ∩ (Cc ∪ (χC ∗ p)−1[0, 1

2 ]c))

≤ m(Ĉ ∩ (χĈ ∗ p)−1[0, 1
2 ] ∩ Cc) + m(Ĉ ∩ (χĈ ∗ p)−1[0, 1

2 ] ∩ (χC ∗ p)−1[0, 1
2 ]c)

≤ m(Ĉ ∩ Cc)+m((χĈ ∗ p)−1[0, 1
2 ] ∩ (χC ∗ p)−1[0, 1

2 ]c). (7.18)

Adding (7.18) to the inequality obtained by interchanging Ĉ and C in (7.18) gives:

d(Ep(Ĉ), Ep(C)) ≤ d(Ĉ, C) + d((χĈ ∗ p)−1[0, 1
2 ], (χC ∗ p)−1[0, 1

2 ]). (7.19)

As the first half of (7.19) tends to zero by definition as Ĉ approaches C, and
the second half of (7.19) tends to zero by our first conclusion (7.8), we have
lim
Ĉ→C

d(Ep(Ĉ), Ep(C)) = 0.

7.2 Frame Sets

In the previous section, we showed that for a convex class C, the points at which
classification errors due to noise will occur more often than not, namely Ep(C), may
be approximated by Ep(Ĉ), provided Ĉ is sufficiently close to C. Our aim is thus to

find convenient Ĉ such that the performance of a classifier can be analyzed using Ĉ
instead of an arbitrary C. As C is convex, convex polytopes are natural candidates
for the approximating set Ĉ. In this section, we show how convex polytopes are a
special case of sets that naturally arise in the context of frame theory. We term
these sets frame sets. In the next section, we shall show how these frame sets
may be used to classify elements of C, and study the errors associated with such a
classification scheme.
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As we have seen in Chapter 4, a sequence of vectors {ϕm}M
m=1 in RN is a

frame for RN if they span RN . Equivalently, {ϕm}M
m=1 is a frame if its analysis

operator Φ̃∗ : RN → RM , (Φ̃∗x)(m) = 〈x, ϕ̃∗
m〉 is injective; Φ̃∗ may be regarded as

an M ×N matrix whose mth row is ϕ̃∗
m.

Definition 7.1. Given a frame {ϕ̃∗
m}M

m=1 for RN and some subset Ω ⊆ RM , the
corresponding frame set is:

(Φ̃∗)−1(Ω) := {x ∈ RN : Φ̃∗x ∈ Ω}.

7.2.1 Properties of Frames Sets

Being defined in terms of preimages of sets under the action of a function, frame sets
immediately inherit many of convenient set relations often encountered in topology,
such as:

(Φ̃∗)−1(Ω1 ∪Ω2) = (Φ̃∗)−1(Ω1) ∪ (Φ̃∗)−1(Ω2),

(Φ̃∗)−1(Ω1 ∩Ω2) = (Φ̃∗)−1(Ω1) ∩ (Φ̃∗)−1(Ω2),

(Φ̃∗)−1(Ωc) = ((Φ̃∗)−1(Ω))c.

More can be said since the functions which generate these preimages are linear:

Proposition 7.3. The translation of a frame set is a frame set of a translation. In
particular, for any x0 ∈ RN :

x0 + (Φ̃∗)−1(Ω) = (Φ̃∗)−1(Φ̃∗x0 + Ω). (7.20)

Also, if {θn}N
n=1 is a frame for RP with analysis operator Θ̃∗, then:

(Φ̃∗Θ̃∗)−1(Ω) = (Θ̃∗)−1
(

(Φ̃∗)−1(Ω)
)

. (7.21)

Proof. To prove (7.20), let x0 be an element of RN . Then,

x ∈ (Φ̃∗)−1(Φ̃∗x0 + Ω)⇔ Φ̃∗x ∈ Φ̃∗x0 + Ω

⇔ Φ̃∗(x− x0) ∈ Ω

⇔ x− x0 ∈ (Φ̃∗)−1(Ω)

⇔ x ∈ x0 + (Φ̃∗)−1(Ω).

To prove (7.21), note:

(Φ̃∗Θ̃∗)−1(Ω) = {x ∈ RP : Φ̃∗Θ̃∗x ∈ Ω}
= {x ∈ R

P : Θ̃∗x ∈ (Φ̃∗)−1(Ω)}

= {x ∈ RP : x ∈ (Θ̃∗)−1
(

(Φ̃∗)−1(Ω)
)

}

= (Θ̃∗)−1
(

(Φ̃∗)−1(Ω)
)

.
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Proposition 7.3 has interesting consequences. In particular, given Ω, if M = N
and Φ̃∗ is a rotation, (7.21) implies that a frame set of a rotated analysis operator
is another frame set of the rotated subset Ω. If Φ̃∗ were a dilation, we would obtain
a similar result.

In general, to compute a frame set explicitly, one needs to find a left-inverse
of the analysis operator, that is, an operator Φ : RM → RN such that ΦΦ̃∗ = I. To
be precise, we have:

Proposition 7.4. If ΦΦ̃∗ = I, then:

Φ̃∗(Φ̃∗)−1(Ω) = Ω ∩ Φ̃∗RN , (7.22)

(Φ̃∗)−1(Ω) = Φ(Ω ∩ Φ̃∗
R

N ). (7.23)

Moreover, if Φ̃∗ is a Parseval tight frame, that is, (Φ̃∗)TΦ̃∗ = I, then (Φ̃∗)−1(Ω) is
isometric to Ω ∩ Φ̃∗RN .

Proof. For (7.22), note that if y ∈ Φ̃∗(Φ̃∗)−1(Ω), then y = Φ̃∗x with x ∈ (Φ̃∗)−1(Ω) ⊆
RN , that is, y ∈ Ω and y ∈ Φ̃∗RN . Thus, Φ̃∗(Φ̃∗)−1(Ω) ⊆ Ω ∩ Φ̃∗RN . Meanwhile,
if y ∈ Ω ∩ Φ̃∗RN , then y = Φ̃∗x for some x ∈ RN ; since y ∈ Ω then x ∈ (Φ̃∗)−1(Ω),
implying y ∈ Φ̃∗(Φ̃∗)−1(Ω). Thus, Φ̃∗(Φ̃∗)−1(Ω) ⊇ Ω ∩ Φ̃∗RN .

Next, (7.23) is obtained by taking Φ of (7.22), that is:

(Φ̃∗)−1(Ω) = ΦΦ̃∗(Φ̃∗)−1(Ω) = Φ(Ω ∩ Φ̃∗RN ).

Note that the injectivity of Φ̃∗ along with (7.22) gives that (Φ̃∗)−1(Ω) is isomorphic
to Ω ∩ Φ̃∗RN . Moreover, when Φ̃∗ is Parseval, then for any x ∈ RN , the fact that
‖Φ̃∗x‖2 = 〈(Φ̃∗)TΦ̃∗x, x〉 = 〈x, x〉 = ‖x‖2 implies the two sets are isometric. We

note that neither (7.22) nor (7.23) claims that (Φ̃∗)−1(Ω) is equal to Φ(Ω); indeed
the second set is larger than the first, in general. In fact, when Φ̃∗ is Parseval and
Φ is chosen to be (Φ̃∗)T, the set Φ(Ω) is isometric to the orthogonal projection of
Ω onto Φ̃∗RN , whereas (Φ̃∗)−1(Ω) is isometric to the intersection of Ω and Φ̃∗RN .

As needed in the next section, the following result shows that a frame set will
inherit many of the characteristics of the set Ω which generates it.

Proposition 7.5. For any frame analysis operator Φ̃∗ and subset Ω of RN ,

a. if Ω is convex, then (Φ̃∗)−1(Ω) is convex,

b. if Ω is closed, then (Φ̃∗)−1(Ω) is closed,

c. if Ω is bounded, then (Φ̃∗)−1(Ω) is bounded.

Proof. If Ω is convex, then for any x1, x2 ∈ (Φ̃∗)−1(Ω),

Φ̃∗(λx1 + (1− λ)x2) = λΦ̃∗x1 + (1− λ)Φ̃∗x2 ∈ Ω,
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and so λx1 + (1 − λ)x2 ∈ (Φ̃∗)−1(Ω). Meanwhile, Φ̃∗, being a linear operator over
a finite-dimensional domain, is continuous and therefore Ω being closed implies
(Φ̃∗)−1(Ω) is closed. Now assume that Ω is bounded, that is, that there exists a
ρ ≥ 0 such that ‖y‖ ≤ ρ for all y ∈ Ω. Let {ϕ̃∗

m}M
m=1 be the frame corresponding

to Φ̃∗, and let Φ satisfy ΦΦ̃∗ = I and have operator norm ‖Φ‖. Then, for all
x ∈ (Φ̃∗)−1(Ω), we have Φ̃∗x ∈ Ω and so:

‖x‖ = ‖ΦΦ̃∗x‖ ≤ ‖Φ‖‖Φ̃∗x‖ ≤ ‖Φ‖ρ.

As a corollary to the previous result, note that if Φ̃∗ is a frame analysis operator
and Ω is compact and convex, the previous result implies that (Φ̃∗)−1(Ω) is also
compact and convex.

7.2.2 Convex Polytope Frame Sets

In the special case where Ω =
∏M

m=1[am, bm], that is a parallelepiped rectangle,
then (Φ̃∗)−1(Ω) is a convex polytope:

(Φ̃∗)−1(Ω) = {x ∈ RN : Φ̃∗x ∈ Ω}
= {x ∈ RN : 〈x, ϕ̃∗

m〉 ∈ [am, bm], m = 1, . . . , M}

=
M
⋂

m=1

{x ∈ RN : am ≤ 〈x, ϕ̃∗
m〉 ≤ bm}. (7.24)

In the following section, we will show how sets of this form may be used to approx-
imate an arbitrary compact convex set C, and propose a classification scheme for C
in terms of (Φ̃∗)−1(Ω). To facilitate this process, we consider the following decision
function:

Definition 7.2. For any frame {ϕm}M
m=1 of RN and any Ω =

∏M
m=1[am, bm], the

associated decision function is DΦ̃∗,Ω : RN → [0, 1],

DΦ̃∗,Ω(x) :=
1

M

M
∑

m=1

χ[am,bm](〈x, ϕ̃∗
m〉).

Note that the frame set is equal to the set of points where its decision function is
1, that is, (Φ̃∗)−1(Ω) = D−1

Φ̃∗,Ω
({1}). Moreover, DΦ̃∗,Ω(x) = m

M precisely when x

belongs to exactly m hyperbands of the form
{x ∈ RN : am ≤ 〈x, ϕ̃∗

m〉 ≤ bm}.

Example 7.2. Let us choose the set of frame vectors ϕ̃∗
m = [cos (m−1)π

M sin (m−1)π
M ]T

in the plane, let Φ̃∗ be their analysis frame operator and Ω = [−1, 1]M . Then, de-
cision function DΦ̃∗,Ω is depicted in Fig. 7.2(a), where shades of gray correspond
to a value between 0 (black) and 1 (white), and represents, how many inequalities
in (7.24) are satisfied. Fig. 7.2(b) shows the corresponding frame set (Φ̃∗)−1(Ω) as
the region where the decision function is equal to 1.
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(a) (b)

Figure 7.2: A frame set example for M = 3 and Ω = [−1, 1]2. Each shade of gray corre-
sponds to a value between 0 (black) and 1 (white), and represents, how many inequalities
in (7.24) are satisfied. (a) Decision function DΦ̃∗,Ω. (b) Frame set (Φ̃∗)−1(Ω).

In the context of classification, frame sets of the form (7.24) provide the additional
advantage of easing the decision making process. To be precise, membership in the
class (Φ̃∗)−1(Ω) may be decided by independently determining whether each 〈x, ϕ̃∗

m〉
belongs to [am, bm], a classification method which is elaborated upon below. In a
more general case, for instance, when Ω is a ball, deciding class membership requires
the use of multiple frame coefficients at once. For these reasons, the remainder of
this work is dedicated to the special case Ω =

∏M
m=1[am, bm].

7.3 Classification of Convex Sets with Frame Sets

In Section 7.1, we considered a classification problem for a convex set C, namely,
deciding whether a given x ∈ RN is an element of C, in the presence of noise. How-
ever, issues arise in applying this analysis to a real-world problem. For example,
one is seldom given the classification set C explicitly; in reality, it is often approxi-
mated via training, that is, using a small set of actual examples of signals which are
known to lie in that class. Moreover, even in the ideal case when one has a perfect
understanding of C, determining whether a given point lies in the convex set C may
require an arbitrary large amount of computation, as the set may only be expressed
as an infinite intersection of half-spaces. This second issue may be partially resolved
by approximating C by convex polytopes, which, as seen in Section 7.2, are frame
sets.

In particular, we propose the following classification scheme, in which an ar-
bitrary convex class C is approximated by a frame set Ĉ = (Φ̃∗)−1(Ω). To be
precise, given x ∈ RN , we shall decide whether x ∈ C by instead deciding whether
x ∈ Ĉ = (Φ̃∗)−1(Ω), that is, whether Φ̃∗x ∈ Ω. In other words, letting {ϕ̃∗

m}M
m=1

be the frame vectors of Φ̃∗ and Ω =
∏M

m=1[am, bm], we say x ∈ C precisely when
am ≤ 〈x, ϕ̃∗

m〉 ≤ bm for all m = 1, . . . , M .
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7.3.1 Classification with Frame Sets when No Noise is Present

We note that even in the noiseless case, such an approximation will inevitably lead
to classification errors whenever x ∈ C ∩ (Φ̃∗)−1(Ω)c or x ∈ (Φ̃∗)−1(Ω) ∩ Cc. The
frequency of such errors may only be reduced by choosing an alternative Φ̃∗ and Ω
so that the resulting new frame set is closer to C. In the following result, we write
an arbitrary compact convex set as the limit of a sequence of frame sets, and show
that these errors vanish asymptotically.

Theorem 7.6. Let u ∈ Rd, u /= 0 be fixed, and let {ϕ̃∗
m}∞m=1 be any countable

dense set in the hemisphere {x ∈ RN : ‖x‖ = 1, 〈x, u〉 ≥ 0}. Then for any compact
convex set C, there exists a corresponding sequence of intervals {[am, bm]}∞m=1 such
that

C = lim
M→∞

M
⋂

m=1

{x ∈ R
N : 〈x, ϕ̃∗

m〉 ∈ [am, bm]}, (7.25)

in which the limit is taken with respect to the distance (7.6). In particular, letting
Φ̃∗

M be the frame analysis operator of {ϕm}M
m=1 and letting ΩM =

∏M
m=1[am, bm],

we have:
C = lim

M→∞
(Φ̃∗)−1

M (ΩM ).

Before we prove this theorem, let us give an illustrative example of this result.

Example 7.3. We go back to our initial example in the plane, and use the disk
as the compact convex class C. Let ϕ̃∗

m = [cos (m−1)π
M sin (m−1)π

M ]T be the sequence
of frame vectors and ΩM = [−1, 1]M . Fig. 7.3 shows the set of misclassified points
when we approximate the disk C with the frame set (Φ̃∗)−1

M (ΩM ) (black), that is,
the set of points where the disk and the frame set differ. Note that our choice of ΩM

implies that the frame sets will be approaching the disk from the outside, namely, C
is inscribed in (Φ̃∗)−1

M (ΩM ). However, for a given M , we can choose ΩM = [−a, a]M

for a > 0 and compute the approximation error d(C, (Φ̃∗)−1
M (ΩM )) as a function of

a that can be optimized. Indeed, we have:

d(C, (Φ̃∗)−1
M ([−a, a]M )) = (2M − 1)π − 2M

(

2 sin−1(a) + 2a
√

1− a2 − a2 tan( π
M )

)

,

which leads to the expression of the minimal approximation error for the optimal
parameter a0:

d(C, (Φ̃∗)−1
M ([−a0, a0]

M )) = (2M − 1)π − 4M sin−1(a0), (7.26)

where a0 = 2(4 + tan2( π
M ))−

1
2 . Moreover, we can prove that the error in (7.26)

goes to zero as M grows large, illustrating our result in Theorem 7.6.

Proof. We first note that such countable dense sets of vectors indeed exist. In
particular, for any positive integer k, the compactness of the hypersphere implies
that there exists a finite number of points {(ϕ̃∗

l )
(k)}Lk

l=1 such that for any x with
‖x‖ = 1, we have ‖x− (ϕ̃∗

l )
(k)‖ < 1

k for at least one index l = 1, . . . , Lk. The
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(a) (b) (c)

(d) (e) (f)

Figure 7.3: Example of frame sets Ĉ and corresponding approximation error sets for three
values of M , when the class C is the unit disk. The approximation errors are due to
approximating C by the frame sets (Φ̃∗)−1(Ω) where Φ̃∗ and Ω are as in Example 7.3.
First row: Frame sets (a) M = 2, (b) M = 4 (c) M = 6. Second row: Corresponding
approximation error sets in black and convex class C in a medium shade of gray (d) M = 2,
(e) M = 4, (f) M = 6.

concatenation {ϕ̃∗
m}∞m=1 of the sequences {(ϕ̃∗

l )
(k)}Lk

l=1 over all k ≥ 1 is then a
countable set which is dense in the whole sphere, and as such, is dense in any
hemisphere.

For any m, let

am = min
x∈C
〈x, ϕ̃∗

m〉, bm = max
x∈C
〈x, ϕ̃∗

m〉.

Then, for any x ∈ C, we immediately have that 〈x, ϕ̃∗
m〉 ∈ [am, bm] for all m, that

is,

C ⊆
∞
⋂

m=1

{x ∈ RN : 〈x, ϕ̃∗
m〉 ∈ [am, bm]}, (7.27)

To prove equality in (7.27), note that if x /∈ C, then the fact that C is a compact
convex set implies there exists y ∈ RN , ‖y‖ = 1, such that 〈z − x, y〉 > 0 for all
z ∈ C. Letting α = minz∈C〈z − x, y〉, we have α > 0. Since {ϕ̃∗

m}∞m=1 is dense in a
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hemisphere of {x ∈ RN : ‖x‖ = 1}, there exists m0 such that:

min
{

‖y − ϕ̃∗
m0
‖, ‖y + ϕ̃∗

m0
‖
}

≤ α

2 max
z∈C
‖z − x‖ . (7.28)

In particular, if ‖y − ϕ̃∗
m0
‖ ≤ α

2 max
z∈C
‖z − x‖ , then for any z ∈ C,

〈z − x, ϕ̃∗
m0
〉 = 〈z − x, y〉 − 〈z − x, y − ϕ̃∗

m0
〉

≥ α− ‖z − x‖ ‖y− ϕ̃∗
m0
‖

≥ α−max
z̃∈C
‖z̃ − x‖ α

2 max
z̃∈C
‖z̃ − x‖

= α
2 ,

that is, 〈z, ϕ̃∗
m0
〉 ≥ α

2 + 〈x, ϕ̃∗
m0
〉 for all z ∈ C. Thus, in this case we have:

am0 = min
z∈C
〈z, ϕ̃∗

m0
〉 ≥ α

2 + 〈x, ϕ̃∗
m0
〉 > 〈x, ϕ̃∗

m0
〉,

implying x /∈ {x ∈ RN : 〈x, ϕ̃∗
m0
〉 ∈ [am0 , bm0 ]}.

Meanwhile, in the case where ‖y + fm0‖ ≤
α

2 max
z∈C
‖z − x‖ , then for any z ∈ C,

〈z − x, ϕ̃∗
m0
〉 = 〈z − x, y + ϕ̃∗

m0
〉 − 〈z − x, y〉

≤ ‖z − x‖ ‖y − ϕ̃∗
m0
‖ − α

≤ max
z̃∈C
‖z̃ − x‖ α

2 max
z̃∈C
‖z̃ − x‖ − α

= −α
2 ,

that is, 〈z, ϕ̃∗
m0
〉 ≤ 〈x, ϕ̃∗

m0
〉 − α

2 for all z ∈ C. Thus, in this case we have:

bm0 = max
z∈C
〈z, ϕ̃∗

m0
〉 ≤ 〈x, ϕ̃∗

m0
〉 − α

2 < 〈x, ϕ̃∗
m0
〉,

which again implies x /∈ {x ∈ RN : 〈x, ϕ̃∗
m0
〉 ∈ [am0 , bm0 ]}. To summarize, if x /∈

C, then (7.28) holds, which, regardless of whether ‖y − ϕ̃∗
m0
‖ or ‖y + ϕ̃∗

m0
‖ is the

smaller quantity, implies that:

x /∈
∞
⋂

m=1

{x ∈ R
N : 〈x, ϕ̃∗

m〉 ∈ [am, bm]},

Thus, C =
∞
⋂

m=1

{x ∈ RN : 〈x, ϕ̃∗
m〉 ∈ [am, bm]}.
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To prove (7.25), note that since C ⊆
M
⋂

m=1

{x ∈ RN : 〈x, ϕ̃∗
m〉 ∈ [am, bm]}, then:

d
(

C,
M
⋂

m=1

{x ∈ RN : 〈x, ϕ̃∗
m〉 ∈ [am, bm]}

)

= m(∅) + m
( M
⋂

m=1

{x ∈ RN : 〈x, ϕ̃∗
m〉 ∈ [am, bm]} ∩ Cc

)

= m
( M⋂

m=1

{x ∈ RN : 〈x, ϕ̃∗
m〉 ∈ [am, bm]} ∩ Cc

)

. (7.29)

We claim that the sets in (7.29) have finite measure when M is sufficiently large.
Indeed, as {ϕ̃∗

m}∞m=1 is dense in the hemisphere, then there exists M0 such that
{ϕ̃∗

m}M0
m=1 spans RN , that is, is a frame for RN . Letting ΩM0 =

∏M0

m=1[am, bm], the
third statement of Proposition 7.5 gives that since Ω is bounded, then

(Φ̃∗)−1
M0

(ΩM0) =
M⋂

m=1

{x ∈ RN : 〈x, ϕ̃∗
m〉 ∈ [am, bm]}

is bounded. In particular, the measures in (7.29) are finite whenever M ≥ M0.
Moreover, as the sets in (7.29) are nested, that is,

M+1
⋂

m=1

{x ∈ R
N : 〈x, ϕ̃∗

m〉 ∈ [am, bm]} ∩ Cc ⊆
M
⋂

m=1

{x ∈ R
N : 〈x, ϕ̃∗

m〉 ∈ [am, bm]} ∩ Cc,

the continuity of the Lebesgue measure implies:

lim
M→∞

d
(

C,
M⋂

m=1

{x ∈ RN : 〈x, ϕ̃∗
m〉 ∈ [am, bm]}

)

= lim
M→∞

m
( M
⋂

m=1

{x ∈ R
N : 〈x, ϕ̃∗

m〉 ∈ [am, bm]} ∩ Cc
)

= m
( ∞
⋂

m=1

{x ∈ RN : 〈x, ϕ̃∗
m〉 ∈ [am, bm]} ∩ Cc

)

= m(C ∩ Cc)

= m(∅)
= 0.

7.3.2 Classification with Frame Sets in the Presence of Noise

The above result shows that in the noiseless case, frame sets may be used to approx-
imate any compact convex set to within any degree of accuracy. In the noisy case,
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additional classification errors will occur. Errors of this type are unavoidable, and
limit the performance of any classification scheme. As it is impossible to eliminate
such errors, we instead focus on characterizing those points which are most in dan-
ger to be misclassified due to noise. Indeed, as discussed in Section 7.1, the error
set Ep(C) for a given convex set C and noise model p, given in (7.5), is the set of all
points which are misclassified more than half of the time. We now refine this error
set concept further, so as to include both errors due to noise and those that arise in
approximating C by a frame set (Φ̃∗)−1(Ω). Specifically, we let Ep(C, (Φ̃∗)−1(Ω)) be
the set of all x ∈ RN for which either Type-I or II errors arise more than half of the
time while attempting to determine membership in class C using its approximation
(Φ̃∗)−1(Ω):

Ep(C, (Φ̃∗)−1(Ω)) := {x ∈ C : P (x + η /∈ (Φ̃∗)−1(Ω)) > 1
2}

∪ {x /∈ C : P (x + η ∈ (Φ̃∗)−1(Ω)) > 1
2}. (7.30)

That is, Ep(C, (Φ̃∗)−1(Ω)) is the set of those points where we expect to err when
using our decision rule, namely deciding x ∈ C whenever Φ̃∗x ∈ Ω. Note that
when C = (Φ̃∗)−1(Ω), this definition generalizes (7.5), namely Ep(C, C) = Ep(C).
More importantly, the next result shows that Ep(C, (Φ̃∗)−1(Ω)) will asymptotically
approximate the intrinsic error in C due to noise, namely Ep(C), as the frame set
(Φ̃∗)−1(Ω) is taken ever closer to C.

Theorem 7.7. Let p be a radially symmetric noise model, let C be a compact
convex set which is regular (7.7), and let {(Φ̃∗

k)−1(Ωk)}∞k=1 be any sequence of frame

sets where (Φ̃∗)k is a Mk ×N frame analysis operator, Ωk =
∏Mk

m=1[amk
, bmk

], and

C = lim
k→∞

(Φ̃∗
k)−1(Ωk).

Then, the error sets of (Φ̃∗
k)−1(Ωk) converge to the error set of C:

Ep(C) = lim
k→∞

Ep((Φ̃
∗
k)−1(Ωk)), (7.31)

and furthermore the decision rule “decide x ∈ C if (Φ̃∗)x ∈ Ω” asymptotically
attains the best classification accuracy possible in the presence of noise:

Ep(C) = lim
k→∞

Ep(C, (Φ̃∗
k)−1(Ωk)). (7.32)

Proof. To prove (7.31), let {(Φ̃∗
k)−1(Ωk)}∞k=1 be any sequence of frame sets such

that C = limk→∞(Φ̃∗
k)−1(Ωk). Note that since Ωk =

∏Mk

m=1[amk
, bmk

] is compact
and convex, Proposition 7.5 gives that each set (Φ̃∗

k)−1(Ωk) is compact and convex.
Thus, for any radially symmetric noise model p, the continuity of Ep(C), as given in
Theorem 7.2, immediately implies our first result (7.31):

lim
k→∞

Ep((Φ̃
∗
k)−1(Ωk)) = lim

Ĉ→C
Ep(Ĉ) = Ep(C).
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Next, to show (7.32), we, in a manner similar to the proof of Theorem 7.2, may
write the error set of C, abbreviated to E1, as:

E1 := Ep(C) = {x ∈ C : P (x + η /∈ C) > 1
2} = C ∩ (χC ∗ p)−1[0, 1

2 ].

Similarly, we write Ep(C, (Φ̃∗
k)−1(Ωk)) = E2 ∪ E3, where:

E2 := {x ∈ C : P (x + η /∈ (Φ̃∗
k)−1(Ωk)) > 1

2} = C ∩ (χ(Φ̃∗
k
)−1(Ωk) ∗ p)−1[0, 1

2 ],

E3 := {x /∈ C : P (x + η ∈ (Φ̃∗
k)−1(Ωk)) > 1

2} = Cc ∩ (χ(Φ̃∗
k
)−1(Ωk) ∗ p)−1(1

2 , 1].

Thus, under this notation:

d(Ep(C), Ep(C, (Φ̃∗
k)−1(Ωk))) = d(E1, E2 ∪ E3)

= m(E1 ∩ (E2 ∪ E3)
c) + m((E2 ∪ E3) ∩ Ec

1)

= m(E1 ∩ Ec
2 ∩ Ec

3) + m((E2 ∩ Ec
1) ∪ (E3 ∩ Ec

1))

≤ m(E1 ∩ Ec
2) + m(E2 ∩ Ec

1) + m(E3 ∩ Ec
1)

= d(E1, E2) + m(E3). (7.33)

Thus, it suffices to show that both d(E1, E2) and m(E3) tend to zero as k grows
large. To prove the former, note that letting S1 = (χC ∗ p)−1[0, 1

2 ] and S2 =
(χ(Φ̃∗

k
)−1(Ωk) ∗ p)−1[0, 1

2 ],

d(E1, E2) = d(C ∩ S1, C ∩ S2)

= m(C ∩ S1 ∩ (C ∩ S2)
c) + m(C ∩ S2 ∩ (C ∩ S1)

c)

= m(C ∩ S1 ∩ (Cc ∪ Sc
2)) + m(C ∩ S2 ∩ (Cc ∪ Sc

1))

= m(C ∩ S1 ∩ Sc
2) + m(C ∩ S2 ∩ Sc

1)

≤ m(S1 ∩ Sc
2) + m(S2 ∩ Sc

1)

= d(S1,S2),

which tends to zero by (7.8) of Theorem 7.2. Meanwhile, by applying Lemma 7.1
to (Φ̃∗

k)−1(Ωk), we see that (χ(Φ̃∗
k
)−1(Ωk) ∗ p)−1(1

2 , 1] ⊆ (Φ̃∗
k)−1(Ωk), and so m(E3)

will also tend to zero:

m(E3) = m(Cc ∩ (χ(Φ̃∗
k
)−1(Ωk) ∗ p)−1(1

2 , 1])

≤ m(Cc ∩ (Φ̃∗
k)−1(Ωk))

≤ d((Φ̃∗
k)−1(Ωk), C).

Fig. 7.4 illustrates the result in (7.31) for a given white Gaussian noise with
mean zero and standard deviation σ = 0.25. The error sets of the frame sets for
different values of M (M = 2, M = 4 and M = 6) converge toward the error set of
the disk C.
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(a) (b)

(c) (d)

Figure 7.4: Error sets Ep((Φ̃
∗)−1(Ω)) for M = 2 (a), M = 4 (b), M = 6 (c) and Ep(C)

(d), where p is a Gaussian noise model of mean zero and standard deviation σ = 0.25. We
see that as M increases, Ep((Φ̃

∗)−1(Ω)) better approximates the error set of the data set
C.

7.4 Estimating the Classification Error of Frame Sets

In the previous section we showed how an arbitrary compact convex set C may be
approximated to within an arbitrary precision by a frame set (Φ̃∗)−1(Ω), specif-

ically those of the form Ω =
∏M

m=1[am, bm]. We further showed that when C is
regular, the set of points we expect to misclassify due to noise, namely Ep(C), is
well-approximated by the analogous error set of a frame set approximation of C,
namely a set Ep((Φ̃∗)−1(Ω)) where (Φ̃∗)−1(Ω) is close to C in measure. That is,
the properties of Ep(C) may be understood by studying the less complicated sets
Ep((Φ̃∗)−1(Ω)), which are the subject of this section.

For any frame {ϕ̃∗
m}M

m=1 of RN , any Ω =
∏M

m=1[am, bm], any noise model p,
and any fixed x ∈ RN , let DΦ̃∗,Ω be the decision function defined in (7.2). Then,
the expected value of this function evaluated at the noisy point x + η is:

E(DΦ̃∗,Ω(x + η)) :=
1

M

M
∑

m=1

∫

RN

χ[am,bm](〈x + η, ϕ̃∗
m〉)p(η) dη. (7.34)

When p is radially symmetric, and in particular, when p is Gaussian, the next result
shows that this expected value may be computed more explicitly.
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Theorem 7.8. For any frame {ϕ̃∗
m}M

m=1 of RN , any Ω =
∏M

m=1[am, bm], and any
x ∈ RN :

a. If p is radially symmetric, then writing η = (η1, . . . , ηN ), we have:

E(DΦ̃∗,Ω(x + η)) =
1

M

M
∑

m=1

∫

RN

χ[am,bm]−〈x,ϕ̃∗
m〉(‖ϕ̃∗

m‖η1)p(η) dη. (7.35)

b. If η ∼ N (0, σ2I), that is, if p(η) = (2πσ2)−
N
2 exp(− ‖η‖2

2σ2 ), then:

E(DΦ̃∗,Ω(x + η)) =
1

2M

M
∑

m=1

[

erf
( bm−〈x,ϕ̃∗

m〉
‖ϕ̃∗

m‖
√

2σ

)

− erf
(am−〈x,ϕ̃∗

m〉
‖ϕ̃∗

m‖
√

2σ

)
]

, (7.36)

where erf(x) =
2√
π

∫ x

0
exp(−t2) dt.

Proof. To prove (7.35), for any m = 1, . . . , M let Um be an orthogonal matrix such
that Umϕ̃∗

m = ‖ϕ̃∗
m‖e1, where e1 is the first vector in the standard basis for RN .

Thus, making the change of variables η = UT
mu in the mth summand of (7.34) gives

(7.35):

E(DΦ̃∗,Ω(x + η))

=
1

M

M
∑

m=1

∫

RN

χ[am,bm](〈x, ϕ̃∗
m〉+ 〈η, ϕ̃∗

m〉)p(η) dη

=
1

M

M
∑

m=1

∫

RN

χ[am,bm]−〈x,ϕ̃∗
m〉(〈UT

mu, ϕ̃∗
m〉)p(UT

mu)|det(UT
m)| du

=
1

M

M
∑

m=1

∫

RN

χ[am,bm]−〈x,ϕ̃∗
m〉(〈u, Umϕ̃∗

m〉)p(u) du

=
1

M

M
∑

m=1

∫

RN

χ[am,bm]−〈x,ϕ̃∗
m〉(‖ϕ̃∗

m‖u1)p(u) du.

Next, as the Gaussian distribution η ∼ N (0, σ2I) is radially symmetric, we may
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apply (7.35) in this special case, and obtain:

E(DΦ̃∗,Ω(x + w))

=
1

M

M
∑

m=1

∫

RN

χ[am,bm]−〈x,ϕ̃∗
m〉(‖ϕ̃∗

m‖u1)(2πσ2)−
N
2 exp(− ‖u‖2

2σ2 ) du

=
1

M

M∑

m=1

{

(2πσ2)−
1
2

∫

R

χ[am,bm]−〈x,ϕ̃∗
m〉(‖ϕ̃∗

m‖u1) exp(− u2
1

2σ2 ) du1

×
N
∏

n=2

[

(2πσ2)−
1
2

∫

R

exp(− u2
n

2σ2 ) dun

]}

=
1

Mσ
√

2π

M
∑

m=1

∫

R

χ[am,bm]−〈x,ϕ̃∗
m〉(‖ϕ̃∗

m‖u1) exp(− u2
1

2σ2 ) du1.

Making the change of variables t = u1√
2σ

, we continue simplifying the above expres-

sion to obtain (7.36):

E(DΦ̃∗,Ω(x + w)) =
1

M
√

π

M
∑

m=1

∫

R

χ[am,bm]−〈x,ϕ̃∗
m〉(‖ϕ̃∗

m‖
√

2σt) exp(−t2) dt

=
1

M
√

π

M
∑

m=1

∫ (bm−〈x,ϕ̃∗
m〉)/(‖ϕ̃∗

m‖
√

2σ)

(am−〈x,ϕ̃∗
m〉)/(‖ϕ̃∗

m‖
√

2σ)
exp(−t2) dt

=
1

2M

M
∑

m=1

[

erf
( bm−〈x,ϕ̃∗

m〉
‖ϕ̃∗

m‖
√

2σ

)

− erf
(am−〈x,ϕ̃∗

m〉
‖ϕ̃∗

m‖
√

2σ

)
]

.

7.4.1 Bounds on the Total Classification Error

Given x ∈ RN , a frame set (Φ̃∗)−1(Ω) and an additive noise η, P (x+η /∈ (Φ̃∗)−1(Ω))
represents the probability that the additive noise η perturbs x into being an element
of this frame set (see (7.1)).

In the following, we derive an upper bound on P (x + η /∈ (Φ̃∗)−1(Ω)). This
bound depends on the expected value of the decision function DΦ̃∗,Ω(x+η). Namely,
we have:

Proposition 7.9. Given a frame set (Φ̃∗)−1(Ω) with Ω =
∏M

m=1[am, bm], any x ∈
RN and any additive noise η,

P (x + η /∈ (Φ̃∗)−1(Ω)) ≤M(1− E(DΦ̃∗,Ω(x + η))). (7.37)

Proof. We demonstrate the above using two different arguments: the first one relies
on the subadditivity of probability functions, whereas the second one is based on
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the expression of the expected value of the decision function. The first argument is:

P (x + η /∈ (Φ̃∗)−1(Ω)) = P (Φ̃∗(x + η) /∈ Ω)

= P (
M
⋃

m=1

{η : 〈x + η, ϕ̃∗
m〉 /∈ [am, bm]})

≤
M
∑

m=1

P (〈x + η, ϕ̃∗
m〉 /∈ [am, bm])

= M −
M
∑

m=1

P (〈x + w, ϕ̃∗
m〉 ∈ [am, bm])

= M −
M∑

m=1

∫

RN

χ[am,bm](〈x + η, ϕ̃∗
m〉)p(η) dη

= M −ME(DΦ̃∗,Ω(x + η)).

For the second method, recall that the decision function DΦ̃∗,Ω takes values in

{ m
M }M

m=0, where P (DΦ̃∗,Ω(x + η) = 1) = P (x + η ∈ (Φ̃∗)−1(Ω)). Thus,

E(DΦ̃∗,Ω(x + η)) =
M
∑

m=0

m
M P (DΦ̃∗,Ω(x + η) = m

M )

≤ P (DΦ̃∗,Ω(x + η) = 1) + M−1
M

M−1
∑

m=0

P (DΦ̃∗,Ω(x + η) = m
M )

= P (x + η ∈ (Φ̃∗)−1(Ω)) + M−1
M P (x + η /∈ (Φ̃∗)−1(Ω))

= 1− 1
M P (x + η /∈ (Φ̃∗)−1(Ω)),

which is equivalent to the desired result.

We presented two arguments above, as each may be generalized in a different
way; the first using the inclusion/exclusion principle, and the second using the
variance and other higher-order moments. Each method shows some promise of
obtaining a bound tighter than (7.37).

When Ω is convex, the total classification error of (Φ̃∗)−1(Ω) is:

Er((Φ̃∗)−1(Ω), p) = m({x ∈ (Φ̃∗)−1(Ω) : P (x + η /∈ (Φ̃∗)−1(Ω)) > 1
2}.

Using Proposition 7.9, we derive the following bounds on the classification error of
a frame set:

Corollary 7.10. Given a convex decision set Ω and any noise model p,

Er((Φ̃∗)−1(Ω), p) ≤ m({x ∈ (Φ̃∗)−1(Ω) : E(DΦ̃∗,Ω(x + η)) < 2M−1
2M }).

If p is a radially symmetric Gaussian distribution, then

Er((Φ̃∗)−1(Ω), p) ≤ m({x ∈ R
N :

M
∑

m=1

[

erf
( bm−〈x,ϕ̃∗

m〉
‖ϕ̃∗

m‖
√

2σ

)

− erf
(am−〈x,ϕ̃∗

m〉
‖ϕ̃∗

m‖
√

2σ

)
]

< 2M − 1}).
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(a) (b) (c)

Figure 7.5: Classification error set and estimating bound for Gaussian noise with σ =
1. (a) The expected value of the decision function E(DΦ̃∗,Ω(x + η)), (b) The error set

Ep((Φ̃
∗)−1(Ω)) (right-hand side of (7.38)), (c) Upper bound on Ep((Φ̃

∗)−1(Ω)) (left-hand
side of (7.38)). We clearly see that the set of points in (b) is a subset of the points in (c).

As illustrated in the example below, Corollary 7.10 provides a quick numerical mech-
anism for estimating the set of those points for which our frame set-based classifier
will fail more often than not. However, we note that the bounds in Corollary 7.10
will become increasingly useless as M grows large. Indeed, as seen in the proof of
Proposition 7.9, one should only expect these bounds to be good whenever for most
x, the addition of the noise η causes misclassification due to having x + η leave
but a single hyperband of the form {x ∈ RN : 〈x, ϕ̃∗

m〉 ∈ [am, bm]}. In particular,
one should expect these bounds to perform poorly in the corners of the frame set,
namely wherever two or more of the boundary-defining hyperplanes meet.

Example 7.4. We continue our running example here and assume p is a Gaussian
noise model of mean zero and standard deviation σ = 1, and let the sequence
ϕ̃∗

m = [cos (m−1)π
M sin (m−1)π

M ]T be the frame vectors corresponding to the analysis

frame operator Φ̃∗. Let us choose Ω = [−a0, a0]M , where a0 = 2(4 + tan2( π
2M ))−

1
2

is the parameter that optimizes the error due to the approximation of C by the
frame set (Φ̃∗)−1(Ω) (7.26). Then for any η ∼ N (0, σ2I), we use (7.36) to obtain:

E(DΦ̃∗,Ω(x + w)) =
1

2M

M
∑

m=1

[

erf
(a0−〈x,ϕ̃∗

m〉√
2σ

)

− erf
(−a0−〈x,ϕ̃∗

m〉√
2σ

)
]

,

for any x ∈ RN . The set of points satisfying the equation above is shown in
Fig. 7.5(a). Note that here, Corollary 7.10 may also be written as

Ep((Φ̃
∗)−1(Ω)) ⊆ {x ∈ RN :

M
∑

m=1

[

erf
(a0−〈x,ϕ̃∗

m〉√
2σ

)

− erf
(−a0−〈x,ϕ̃∗

m〉√
2σ

)
]

< 2M − 1}),

(7.38)
which is illustrated in Fig. 7.5.
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7.5 Summary

We investigated a single-class classification problem where the class itself is a com-
pact convex subset of RN . We introduced a classification scheme based on frames
and proved that frame sets can approximate the class in question to within an ar-
bitrary degree of precision. We also introduced a measure-theoretic framework for
the study of classification errors in this context and showed that our classification
scheme performs well in the presence of radially symmetric noise.



Chapter 8

Lapped Tight Frame
Transforms

Contents
8.1 Lapped Tight Frame Transforms . . . . . . . . . . 113

8.2 The Princen-Johnson-Bradley LTFT . . . . . . . . 113

8.3 The Oddly Modulated DCT LTFT . . . . . . . . . 122

8.4 The Young-Kingsbury LTFT . . . . . . . . . . . . . 124

8.5 The Malvar LTFT . . . . . . . . . . . . . . . . . . . 125

8.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . 126

Examining the results we obtained with our MR classification system, we
found the trends to be similar: MR significantly outperforms no MR and the best
results are invariably obtained by frames. Whether it is classifying biomedical
or biometric images, frames, and in particular the SWT, always outperformed any
other transform. However, the redundancy of frames is only bought at an additional
computational cost. Taking this fact into account, it is important to have a system
that is efficient in addition to being accurate. The SWT is the most accurate here
but also the most redundant. Therefore, to allow for a trade-off between accuracy
and cost, we would like to create new frame transforms that are less redundant but
still afford very good accuracies when it comes to classification.

A known issue with MR bases is that they are not translation invariant (rather,
they are periodically translation invariant). This is due to downsampling being used
and can create problems as translated versions of data can lead to different features
in MR subspaces. As for the fingerprint data set, we conducted an experiment on
the protein subcellular location images to test the sensitivity of our classification
system to translations. Our hypothesis is that translations in the testing set produce
reduced classification accuracy. We tested this hypothesis by training the system
with the original data and tested with images that were translated by some number
of pixels. We ran the algorithm with Haralick texture features T3 alone and with
translations of t = 0, 1, 2, 3 horizontally and vertically in the testing set (these trans-
lations were chosen because we use 2 levels of the MR transform, so it is translation

111
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invariant to translations of 22t, but not to translations of 22t + 1, 22t + 2, 22t + 3).
As expected, the classification accuracy dropped by 0.22%. Both experiments for
fingerprints and protein subcellular location patterns strongly indicate the use of
MR techniques which are translation invariant (or almost translation invariant).

These considerations lead us to conjecture that properties provided by frames,
on top of the MR ones, are crucial requirements in some applications. Motivated
by the need of having frame families dedicated to a spectrum of applications not
considered before, we seek to design new classes of frames.

The question now is: How do we go about constructing new families and what
do we look for? Most of the known frame families (though not all) are block based
ones (finite-dimensional) leading to blocking effects. We want efficient implemen-
tations as well as the flexibility to decide on the requisite amount of redundancy.
These requirements reminded us of LOTs: As mentioned in Section 4.1.3, in addi-
tion to being computationally efficient, the LOTs have the advantage of processing
blocks of overlapping data and hence eliminate blocking artifacts. So the question
is: Could we construct a similar transform with frames? Our idea is to seed LOTs
to obtain a new class of frames we name Lapped Tight Frame Transforms (LTFTs).
That is, we want to find filter-bank frames seeded from the LOTs in the hope they
will inherit all the good properties LOTs possess. Obtained by seeding, the LTFTs
could thus be seen both as the frame counterpart of LOT bases as well as the infinite-
dimensional, filter-bank counterpart of the most famous frame family—Harmonic
Tight Frames (HTFs, seeded from the DFT). These relationships are illustrated in
the table below.

finite-dimensional infinite-dimensional
(block transforms) (overlapped transforms)

ONBs DFT → LOT

↓ ↓

TFs HTF → LTFT

There has already been some work done in designing what we call LTFTs. In
particular, in [46], the authors propose a LTFT derived from the extended lapped
complex transform [131]. They use a change of parameters to derive their decom-
position vectors from the extended lapped complex transform and ensure that the
inverse of such a decomposition, that corresponds to the reconstruction matrix, ex-
ists. They also propose a construction of the inverse. These are not obtained by
seeding (they start from a frame) and while they are in spirit similar to what we
are proposing, they lead to a completely different family. The same authors have
also developed a 2D nonseparable LTFT.

In this chapter, we first present general LTFTs, we then look at a specific
cases of LTFTs and study four families that we derive from the LOTs presented
in Section 4.4.6. We investigate equal-norm and maximal robustness properties for
all families and explore window design procedures for the first family. Some results
from this chapter appear in [25].
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8.1 Lapped Tight Frame Transforms

We previously mentioned that the HTFs are the counterpart of the DFT, that is,
they are obtained by seeding the DFT. As we said in Section 4.4.5, the HTFs are
finite-dimensional frames and thus equivalent to block transforms. For the same
reasons LOTs were introduced, we would like to find filter-bank frames seeded from
the LOTs in the hope they will inherit all the good properties LOTs possess. Recall
that in filter-bank parlance, seeding is done on the polyphase matrix. Suppose that
Ψp(z) is the M ×M polyphase matrix associated with the DFT of size M . Then
Ψp(z) = Ψ0 (see (4.2) and Section 4.4.5) and

Φ∗
p(z) = Φ∗

0 = Ψp[J]

is the transpose of the HTF matrix. It turns out that the indices in J do not have
to be contiguous for the following discussion to hold, that is, we can erase any
subset of M − N columns from Ψp(z) and still get an HTF. However, to simplify
the discussion, we take J = [0, . . . , N − 1]. Note that for M = 3 and N = 2, this
procedure leads to the Mercedes-Benz frame [74] (within unitary equivalence).

Now, let us start with Ψp(z) being the M ×M polyphase matrix associated
with the LOT of size M . Then (4.11) holds and Φ∗

p(z) = Φ∗
0+z−1Φ∗

1 = Ψp[0, . . . , N−
1]. The matrices Φr are now rectangular of size N ×M . For r = 0, 1, we have

Φr =








ψ∗
0,Mr · · · ψ∗

0,Mr+M−1

ψ∗
1,Mr · · · ψ∗

1,Mr+M−1
... · · ·

...
ψ∗

N−1,Mr · · · ψ∗
N−1,Mr+M−1








. (8.1)

By the Naimark Theorem, we know that this family is a TF, which implies that
Φp(z)Φ∗

p(z) = cI (c is a constant). Note that as opposed to the LOT case, the
matrix products no longer commute.

All of the above is general and can be applied to any type of LOT. Let us now
go through an example what happens when the obtained LTFT has been seeded
by the Princen-Johnson-Bradley (PJB) LOT in (4.14). We then turn our attention
to some of the LOT families presented in Sections 4.1.3 and study their frame
counterparts. Figure 8.1 shows all four LTFT families produced via a seeding of
the LOT families defined in Section 4.1.3.

8.2 The Princen-Johnson-Bradley LTFT

We use the PJB family as our main LTFT example and study here its properties.
Namely, we investigate equal-norm and maximal robustness properties. We also
explore appropriate solutions for a modulating window analytically and through
optimization techniques. The frequency response of the PJB LTFT filters resulting
from consecutive seeding of the first N = 5 columns with M = 5 are depicted in
Fig 8.1(a).
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Figure 8.1: LTFT families resulting from consecutive seeding with M = 8 and N = 5.
Namely, in each case there are M = 8 filters of length 2N = 10. (a) Princen-Johnson-
Bradley, (b) oddly modulated DCT, (c) Young-Kingsbury, (d) Malvar.

8.2.1 Equal-Norm

To investigate the equal norm property, we need to compute the norm of the frame
elements of the PJB-LTFT ‖ϕm‖, for m = 0, . . . , M − 1 and prove that they are
all equal. In fact, the mth element of the diagonal of the matrix Φ∗

0Φ0 + Φ∗
1Φ1 is

diag(Φ∗
0Φ0 + Φ∗

1Φ1)m = ‖ϕm‖2. Note that

‖ϕm‖2 =
N−1
∑

n=0

ψ∗2
n,m + ψ∗2

n,m+M . (8.2)

Using this expression, we can prove the following:

Proposition 8.1. If {ϕm}M
m=1 are the frame vectors of the PJB-LTFT, then

‖ϕm‖2 =
N

M
, m = 0, · · · , M − 1,

that is, the PJB-LTFT is an equal norm frame.
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We prove this results using two proofs. The first one computes directly ‖ϕm‖2,
whereas the second one relies on expressing the frame coefficients as cosine and
sine functions of the same angles, which leads to a straightforward way to prove
equal-norm.

Proof.

1. Let us write the 2N ×M LTFT matrix Φ explicitly as

Φ =















ψ0,0 · · · · · · ψ0,M−1

ψ1,0 · · · · · · ψ1,M−1
... · · · · · ·

...
ψN−1,0 · · · · · · ψN−1,M−1

ψ0,M · · · · · · ψ0,2M−1
... · · · · · ·

...
ψN−1,M · · · · · · ψN−1,2M−1















,

where the mth column of Φ is ϕm for m = 0, . . . , M − 1. This allows us to
write

‖ϕm‖2 =
2N−1
∑

n=0

ϕ2
m,n

=
N−1∑

n=0

ψ2
n,m + ψ2

n,m+M ,

where we have from (4.14) that

ψn,m = 1√
M

cos
(
π(2n+1)

2M (m− M
2 + 1

2 )
)

= 1√
M

cos
(

qn(m−+M
2 + 1

2 )
)

and

ψn,m+M = 1√
M

cos
(

qn(m + +M
2 + 1

2 )
)

,

with qn = π(2n+1)
2M .

Let bm = m− M
2 + 1

2 and cm = m + M
2 + 1

2 and now write

ψn,m = 1
2
√

M

(

ejqnbm + e−jqnbm
)

ψn,m+M = 1
2
√

M

(

ejqncm + e−jqncm
)

.
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Then,

M‖ϕm‖2

=
1

4

N−1
∑

n=0

(ejqnbm + e−jqnbm)2 + (ejqncm + e−jqncm)2

=
1

4

N−1
∑

n=0

e2jqnbm + e2jqncm + e−2jqnbm + e−2jqncm + 2 + 2

= N +
1

4

N−1
∑

n=0

e2jqnbm + e2jqncm + e−2jqnbm + e−2jqncm

bm=cm−M
= N +

1

4

N−1
∑

n=0

e2jqncme−2jqnM + e2jqncm + e−2jqncme2jqnM + e−2jqncm

= N +
1

4

N−1
∑

n=0

e2jcm [cos(π(2n + 1)) + 1] + e−2jcm [cos(π(2n + 1)) + 1]

= N,

where the last equality results from the fact that qnM = π
2 (2n + 1) and

e−2jqnM = cos(π(2n + 1)) = e2jqnM = −1, for all n = 0, . . . , N − 1.

2. For this second proof, we use the polyphase version of the PJB-LOT filters
writing the elements of Ψp(z) as

ψk,m(z) = ψk,m + z−1ψk,m+M for k, m = 0, . . . , M − 1

= 1√
M

cos (2k+1)(2m+1−M)
4M π

+ 1√
M

z−1 cos
(

(2k+1)(2(m+M)+1−M)
4M π

)

= 1√
M

cos (2k+1)(2m+1−M)
4M π

+ 1√
M

z−1 cos
(

(2k+1)(2(m+M)+1−M)
4M π + (2k+1)π

2

)

.

Therefore,

ψk,m(z) = 1√
M

(

cos (2k+1)(2m+1−M)
4M π + (−1)k+1z−1 sin (2k+1)(2m+1−M)

4M π
)

,

(8.3)
for k, m = 0, . . . , M − 1. Then, by using (8.2), it is easy to see that

M‖ϕm‖2 = N,

for all m = 0, . . . , M − 1.
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8.2.2 Maximal Robustness

Since LTFTs are the counterparts of HTFs, we expect them to be maximally robust
as well. This requirement arose in using frames for robust transmission where the
loss of up to M −N transform coefficient over the transmission channel would not
be fatal. The loss of coefficients translates into removal of the corresponding set of
M −N columns in Φp(z) and the ability to reconstruct despite the loss translates
into the remaining matrix being invertible. Hence, a LTFT is maximally robust if
and only if any N ×N submatrix of Φp(z) is of full rank on the unit circle.

To study necessary and sufficient conditions for a LTFT to be maximally
robust, we need to go back to the LOT family from which it originated and consider
the type of seeding that would lead us to maximal robustness.

For z = −j, ψk,m(z) in (8.3) can be expressed in terms of the roots of unity

WM = e−j 2π
M as

ψk,m(−j) = 1√
M

W (−1)k(2k+1)(1−M)
8M W (2k+1)m

4M .

The row-scaling factors W (−1)k(2k+1)(1−M)
8M , k = 0, . . . , M − 1, can be collected into

an invertible diagonal matrix, so that

Ψp(−j) = U · Ψ̂p(−j),

U = 1√
M

diag
(

W (−1)k(2k+1)(1−M)
8M

)

0≤k≤M−1
, Ψ̂p(−j) =

[

W (2k+1)m
4M

]

0≤k,m≤M−1
.

Note that Ψ̂p(−j) is a submatrix of the DFT matrix DFT4M of size 4M and
is constructed from the first M consecutive columns and the first M odd rows of
DFT4M . Therefore, any seeding of Ψ̂p(−j) is a seeding of a submatrix of a DFT.
That is, a choice of N consecutive columns in Ψp(−j) to build the M × N LTFT

matrix Φ̂p(−j) is the same choice of N consecutive columns in a submatrix of the
DFT4M .

Using the results in [98], we know that any choice of consecutive seeding of a
DFT matrix produces a maximally robust frame. Hence, any consecutive seeding
of a submatrix (here, Ψ̂p(−j)) built using consecutive columns of a DFT, produces

a maximally robust frame. In particular, let us assume that Φ̂p(−j) results from
consecutive seeding of Ψ̂p(−j). Then, any N × N submatrix of Φ̂p(−j) is also a
submatrix of a frame consecutively-seeded from DFT4M , which is invertible. That
is Φ̂p(−j) is a maximally robust frame. Now, since U is a diagonal invertible matrix,
we can use the invariance properties of frames described in Section 4.4.4 to conclude
that the PJB LTFT Φp(−j) = U Φ̂p(−j) is a maximally robust frame. Note that
proving this result for z = −j is sufficient to deduce that Φp(z) is also maximally
robust. We summarize our result as follows:

Proposition 8.2. The PJB LTFT resulting from consecutive seeding of the PJB
LOT is a maximally robust frame.

Note that consecutive seeding is a sufficient condition only and unlike the
results in [98], the seeding cannot be cyclically contiguous (only contiguous).
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8.2.3 Window Design

Since LTFTs are determined by the LOT basis functions, we have little design
freedom in the frames construction. To circumvent this, we can design a modulating
window that provides additional degrees of freedom in the design as well as improves
the frequency response of the filters. Ideally, a single window would modulate all
filters at once. Namely, a diagonal window matrix would multiply Φp(z) to produce
a modulated LTFT. We tackled the design of this window in two different ways.
The first, analytical using perfect reconstruction conditions for the filter bank. The
second uses optimization techniques where the goal is to approximate the frequency
behavior of harmonic tight frames, as these are narrow band-pass filters evenly
spread across the frequency domain.

Analytical Design If we start with the Princen-Johnson-Bradley LOT with a win-
dow ∆, and seed ∆Ψ, the tight frame obtained would loose its equal-norm property
since ‖ϕm‖2 = (N/M)δ2

m. To preserve equal norm, we have to modulate directly the
LTFT after seeding the LOT. In the Princen-Johnson-Bradley LOTs, the window
chosen was symmetric, that is, δm = δ2M−1−m. We lift this restriction initially and
assume a general window represented by a matrix ∆, a 2N × 2N diagonal matrix.
We can write ∆ = [∆0 ∆1] and ∆r is a N × N diagonal matrix. Unlike for the
LOTs, the matrix product Φ0Φ∗

0 has no particular structure, in fact,

(Φ0Φ
∗
0)i,n = ai,n = 1

2M
sin( π(i+n+1)

2 )

sin(
π(i+n+1)

2M )
+

1

2M
sin( π(i−n)

2 )

sin(
π(i−n)

2M )
,

for i, n, = 0, . . . , N − 1.

Proof. We have that (Φ0Φ∗
0)i,n = ai,n =

∑M−1
k=0 ψi,kψn,k.

Mai,n =
M−1
∑

k=0

cos (
2i + 1

4M
(2k −M + 1)π) cos (

2n + 1

4M
(2k −M + 1)π)

=
1

2

M−1
∑

k=0

cos (
2i + 2n + 2

4M
(2k −M + 1)π) + cos (

2i− 2n

4M
(2k −M + 1)π)

=
1

4

M−1
∑

k=0

ejlvkπ + e−jlvkπ

︸ ︷︷ ︸

α

+
1

4

M−1
∑

k=0

ejovkπ + e−jovkπ

︸ ︷︷ ︸

β

,

where l = 2i + 2n + 2, o = 2i− 2n, and vk = 2k −M + 1. We now compute α and
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obtain:

α =
1

4

M−1
∑

k=0

e2jlkπej(−M+1)lπ + e−2jlπe−j(−M+1)lπ

=
1

4
(e−jlMπejlπ 1− e2jlMπ

1− e2jlπ
+ ejlMπe−jlπ 1− e−2jlMπ

1− e−2jlπ
)

=
1

2

sin (lMπ)

sin (lπ)
.

Similarly, β = 1
2

sin oMπ
sin oπ and we finally obtain the desired result:

Mai,n =
1

2

(

sin (i+n+1)π
2

sin (i+n+1)π
2M

+
sin (i−n)π

2

sin (i−n)π
2M

)

. (8.4)

Substituting this into (4.12), we obtain the following:

an,nδ2
n + (1 − an,n)δ2

N+n = 1, (8.5)

δnδi = δN+nδN+i, i = 0, · · · , N − 1, i /= n. (8.6)

The set of solutions to (8.5)-(8.6) is infinite. Of course, the constant window with
δn = 1, for n = 0, . . . , 2N − 1 is also a solution to the above. Finding the best
window amongst all the possible solutions is part of our future work.

If the window is symmetric, then (4.12) becomes:

∆0Φ0Φ
∗
0∆0 + J∆0JΦ1Φ

∗
1J∆0J = I (8.7)

with Φ0Φ
∗
0 + Φ1Φ

∗
1 = I. (8.8)

Using (8.7), we derive the following conditions on ∆:

an,nδ2
n + (1 − an,n)δ2

N−n−1 = 1, (8.9)

δnδi = δN−n−1δN−i−1, i = 0, · · · , N − 1, i /= n. (8.10)

Proof. Using Φ0Φ∗
0 = I − Φ1Φ∗

1, we can rewrite (8.7) as

∆0Φ0Φ
∗
0∆0 + J∆2

0J − J∆0JΦ0Φ
∗
0J∆0J = I, (8.11)

where ∆0 = diag{δn}N−1
n=0 . Note that J∆0J = diag{δN−1−n}N−1

n=0 and simi-
larly for J∆2

0J . Also, Φ0Φ∗
0 is a symmetric matrix. Assuming as previously that

(Φ0Φ∗
0)i,n = ai,n, we have

∆0Φ0Φ
∗
0∆0 =










δ2
0a0,0 · · · δjδ0a0,n · · ·

δ0δ1a1,0 · · · δjδ1a1,n · · ·
δ0δ2a2,0 · · · δjδ2a2,n · · ·

... · · ·
... · · ·

δ0δN−1aN−1,0 · · · δnδN−1aN−1,n · · ·










,
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Figure 8.2: Window solution to (8.9)-(8.10) for N = 7, 8 (left to right).

and

J∆0JΦ0Φ
∗
0J∆0J =










δ2
N−1a0,0 · · · δN−n−1δN−1a0,n · · ·

δN−1δN−2a1,0 · · · δN−n−1δN−2a1,n · · ·
δN−1δN−3a2,0 · · · δN−n−1δN−3a2,n · · ·

... · · ·
... · · ·

δN−1δ0aN−1,0 · · · δN−n−1δ0aN−1,n · · ·










.

Hence, using (8.11), the conditions that ∆0 have to satisfy are

{

(δ2
n − δ2

N−n−1)an,n + δ2
N−n−1 = 1

δnδi − δN−n−1δN−i−1 = 0 for i /= n, i = 0, . . . , N − 1.
,

which are the conditions written as (8.9) and (8.10).

Fixing δ0 = −1, we have δN−1 = ±1 and δi = −δN−1δN−i−1 for i = 1, . . . , N−
2. Note that the same conditions hold for an anti-symmetric window, that is, the
half-windows can only be symmetric or antisymmetric. For a symmetric window, a
possible solution, depicted in Fig. 8.2, is given by

δn =

{
cos( nπ

N−1 + π) if N is even,
cos( 2nπ

N−1 + π) if N is odd,
n = 0, . . . , N − 1.

Optimization Techniques The first window design procedure using optimization
tools we explore is through error minimization algorithms. This procedure finds
the optimal window δ̂ that minimizes the weighted error between HTF and LTFT
filters in the frequency domain as follows

δ̂ = argmin
δ

κ: (Ψ(HTF ) − δ ! Ψ(PJB))

where κ is a weight vector, : denotes point-wise multiplication and ! denotes
column-wise convolution. Note that to make sizes compatible, we need to use a
stacked version of the HTF. Namely, we build Ψ(HTF ) by stacking two N × M
HTF matrices on top of each other. Algorithms used to implement this procedure
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Figure 8.3: Window design for the PJB LTFT with M = 8 and N = 5. (a) HTF filters,
(b) PJB LTFT filters, (c) Modulated PJB LTFT filters with δ̂, generated through error
minimization techniques, (d) Modulated PJB LTFT filters with a randomly generated
window.

include the trust region method [30] and sequential quadratic programming meth-
ods [17], which are gradient descent-based methods. The results we obtain with
this procedure are not as promising as hoped. Indeed, when we randomly gener-
ate the modulating window, the modulated LTFT filters look better than the ones
modulated with the optimized window δ̂. Fig 8.3 shows the results when using
the optimized window (Fig 8.3 (c)) and the random window (Fig 8.3 (d)). The
frequency response of the HTF filters is depicted for reference on Fig 8.3 (a) and
the frequency response of the PJB LTFT filters is shown on Fig 8.3 (b).

The second type of design procedure we investigate relies upon the polar de-
composition of matrices and the Fan and Hoffman theorem [41]. The polar decom-
position of a matrix Ψ is defined as follows [39]: Given a 2N × 2N matrix Ψ, its
polar decomposition is

Ψ = ∆Σ
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where Σ is a 2N×2N Hermitian positive semi-definite matrix defined as Σ = (ΨΨ)
1
2 ,

and ∆ is a 2N × 2N unitary matrix with singular value decomposition written as

∆ = P

(

Ir 0
0 Θ

)

Q∗,

with r is the rank of Ψ, and the matrices P and Q originate from the singular
value decomposition of Ψ itself. That is, the singular value decomposition of Ψ is
Ψ = PΛQ∗. Note that ∆ is unique if Ψ has full rank. Then the best approximation
theorem by Fan and Hoffman [41] states that

‖Ψ−∆‖ = min {‖∆−Q‖ : Q∗Q = I2N} (8.12)

for any unitarily invariant norm.

By taking Ψ = Ψ(HTF ) × Ψ(PJB)−1
and ∆ the modulating window matrix,

the problem becomes:

∆̂ = ‖Ψ−∆‖ = argmin
∆

‖∆−Ψ(HTF ) ×Ψ(PJB)−1

‖. (8.13)

Therefore, we obtain a 2N × 2N modulating window matrix. As ideally, we would
like to have one window vector for the entire set of LTFT filters, we can use ∆̂ in
three different ways:

1. ∆1 = ∆̂. Each column of ∆1 modulates one LTFT filter.

2. δ2 is the vector of eigenvalues of ∆̂. This window modulates all LTFT filters.

3. δ3 = λ1 × e1, where λ1 is largest eigenvalue of ∆̂ and e1 its corresponding
eigenvector.

Fig 8.4 shows the frequency response of the PJB LTFT filters when modulated
by ∆1 (Fig 8.4(a)), δ2 (Fig 8.4(b)), and δ3 (Fig 8.4(c)). All results show a small
improvement over the original PJB in that they have a somewhat better localization
in the frequency band of the PJB frame vectors, with δ2 being the best one.

8.3 The Oddly Modulated DCT LTFT

Figure 8.1(b) depicts the frequency response of the eight oddly modulated DCT
LTFT filters obtained from contiguous seeding (choice of the first N columns) of
the oddly modulated DCT LOT with M = 8 and N = 5.

8.3.1 Equal-Norm

Similarly to the PJB LTFT, to prove the equal norm property for the oddly mod-
ulated DCT LTFT, we rewrite (4.18) in its polyphase version as

ψk,m(z) = ψk,m + z−1ψk,m+M

= 1√
M

cos (2k+1)(2m+1+M)
4M π + 1√

M
z−1 cos ((2k+1)(2(m+M)+1+M)

4M π)

= 1√
M

cos ( (2k+1)(2m+1+M)
4M π) + 1√

M
(−1)k+1z−1 sin ( (2k+1)(2m+1+M)

4M π).(8.14)

Using (8.2), we deduce the following:
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Figure 8.4: Modulated PJB LTFT filters using the polar decomposition method (M =
8, N = 5). (a) PJB LTFT filters modulated with ∆1, (b) LTFT PJB filters modulated
with δ2, (c) PJB LTFT filters windowed with δ3.

Proposition 8.3. If {ϕm}M
m=1 are the frame vectors of the oddly modulated DCT

LTFT, then

‖ϕm‖2 =
N

M
, i = m, . . . , M − 1,

that is, the oddly modulated DCT LTFT is an equal norm frame.

8.3.2 Maximal Robustness

For z = −j, ψk,m(−j) in (8.14) can be expressed in terms of the roots of unity WM

as
ψk,m(−j) = 1√

M
W (−1)k(2k+1)(1+M)

8M W (2k+1)m
4M .

The row-scaling factors 1√
M

W (−1)k(2k+1)(1+M)
8M , k = 0, . . . , M − 1, can be collected

into an invertible diagonal matrix, so that

Ψ(−j) = U · Ψ̂p(−j),
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where U = 1√
M

diag
(

W (−1)k(2k+1)(1+M)
8M

)

0≤k≤M−1
and Ψ̂p(j) =

[

W (2k+1)m
4M

]

0≤k,m≤M−1
.

Similarly to the PJB case, Ψ̂p(−j) is a submatrix of DFT4M , constructed
from the first M consecutive columns and first M odd rows. Therefore, selecting
any number N of consecutive columns of Ψ̂p(−j) and constructing an M×N matrix

Φ̂p(−j) from them corresponds to selecting N consecutive columns from DFT4M .
We then conclude that Φ̂p(−j) is a maximally robust frame and so is Φp(z) using
the invariance of frame properties. We summarize this result as follows:

Proposition 8.4. The oddly modulated DCT LTFT resulting from consecutive
seeding of the oddly modulated DCT LOT is a maximally robust frame.

8.4 The Young-Kingsbury LTFT

The frequency responses of the Young-Kingsbury LTFT filters are shown in Fig. 8.1(c)
for M = 8 and N = 5. As in the example for the previous LTFT families, these
result from seeding contiguously the first N columns.

8.4.1 Equal-Norm

Unlike the previous two families, the Young-Kingsbury LOT has complex basis
vectors (4.19). However, we can still use the same argument as for the other families
to prove the equal norm property. Indeed, we can write

ψk,m = 1√
M

cos πm
2M e−j

(2k+1)mπ
2M = 1√

M
cos ( πl

2M )W (2k+1)m
4M ,

and the polyphase elements as:

ψk,m(z) = 1√
M

cos (πm
2M )W (2k+1)m

4M + 2√
M

z−1 cos (π(m+M)
2M W (2k+1)(m+M))

4M

= 1√
M

cos πm
2M W (2k+1)m

4M + 2√
M

z−1 sin (πm
2M )W (2k+1)M

4M W (2k+1)m
4M

= 1√
M

W (2k+1)m
4M

(

cos (πm
2M ) + z−1(−1)k+1j sin (πm

2M )
)

. (8.15)

Since |W (2k+1)m
4M | = 1, we can conclude the following:

Proposition 8.5. If {ϕm}M
m=1 are the frame vectors of the Young-Kingsbury-

LTFT, then

‖ϕm‖2 =
N

M
, m = 0, . . . , M − 1,

that is, the Young-Kingsbury-LTFT is an equal norm frame.

8.4.2 Maximal Robustness

By taking z = 1 and using (8.15), we can write ψk,m(z) as

ψk,m(1) = 1√
M

W (2k+1+(−1)k+1)m
4M .



8.5. The Malvar LTFT 125

By the same reasoning we used for the previous families, we again observe that
the Young-Kingsbury polyphase matrix taken at z = 1, Ψp(1) is a submatrix of
DFT4M , constructed from the first M consecutive columns . By applying the same
argument as for the PJB LOT, we can conclude the following:

Proposition 8.6. The Young-Kingsbury LTFT resulting from consecutive seeding
of the Young-Kingsbury LOT is a maximally robust frame.

8.5 The Malvar LTFT

The frequency response of the Malvar LTFT filters for M = 8 and N = 5 are shown
in Fig. 8.1(d).

8.5.1 Equal-Norm

Similarly to the previous family, we write the polyphase elements of the Malvar
LOT defined in (4.20) as:

ψk,m(z) = 2√
M

W−(2k+1)(2m+M+1)
8M + 2√

M
z−1W−(2k+1)(2(m+M)+M+1)

8M

= 2√
M

(

1 + (−1)kjz−1
)

W−(2k+1)(M+1)
8M W (2k+1)m

4M .

Proposition 8.7. If {ϕm}M
m=1 are the frame vectors of the Malvar LTFT, then

‖ϕm‖2 =
2N

M
, m = 0, . . . , M − 1,

that is, the Malvar LTFT is an equal norm frame.

8.5.2 Maximal Robustness

For the Malvar LTFT, the row-scaling factors 2√
M

(

1 + (−1)kjz−1
)

W−(2k+1)(M+1)
8M ,

k = 0, . . . , M − 1, can be collected into a diagonal matrix, so that

Ψ(z) = U(z)Ψ̂,

where U(z) = 2√
M

diag
(

(1 + (−1)kjz−1)W−(2k+1)(M+1)
8M

)

0≤k≤M−1
and

Ψ̂ =
[

W (2k+1)m
4M

]

0≤k,m≤M−1
.

Here again, Ψ̂ is a submatrix of DFT4M , constructed from the first M con-
secutive columns and first M odd rows. Hence, by using the same arguments as for
the other LTFT families, we draw the following conclusion

Proposition 8.8. The Malvar LTFT resulting from consecutive seeding of the
Malvar LOT is a maximally robust frame.
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8.6 Summary

Using a simple design procedure, we developed new frame families we termed lapped
tight frame transforms. These can be viewed as the frame counterpart of lapped
orthogonal transforms. Similarly to harmonic tight frames, LTFTs are tight, and
we proved that they are equal-norm and maximally robust as well. Finally, LTFTs
are efficient to implement and their construction provide flexibility and control over
the desired amount of redundancy. In an MR classification setting this is important
as it would allow for example to adjust the redundancy depending on the biomedical
application at hand and reach a desired compromise between redundancy and cost.
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Conclusions

We have provided a mathematical framework for redundant
= multiresolution classification and have designed an accurate and adaptive mul-
tiresolution classification algorithm for the classification of biomedical images. We
divided our work into two themes: The first was the design of a classification algo-
rithm for biomedical applications based on multiresolution techniques. The second
was the development of a theory of frame multiresolution classification along with
the design of new frame families tailored for biomedical applications.

Multiresolution Classification Algorithm We have developed an accurate, efficient
and adaptive supervised classification algorithm based on multiresolution (MR)
techniques, which aims to extract discriminative features within space-frequency
localized MR subspaces. These features are obtained by MR decomposition; that
is, rather than add MR features to existing features, we instead chose to com-
pute these features in the MR-decomposed subspaces themselves. Thus, our system
has an upfront MR decomposition block which is followed by feature computation
and classification in each of the MR subspaces, which, in turn, are then combined
through an adaptive weighting process. For the MR decomposition step, we used
both MR bases and MR frames. The main features used were Haralick-based texture
features as these seem to well characterize the biomedical data sets under consid-
eration in this work. We tested our system on five applications obtaining excellent
results in four of the five, as well as promising initial results in the remaining case.
As proven by the high accuracies obtained on the fingerprint recognition problem,
our MR classification algorithm is flexible and can be used for data sets other than
the ones we considered during this thesis.

Theory of Frame Multiresolution Classification As the use of redundant MR
transformations in our classification algorithm outperformed nonredundant ones,
we explored deeper the frame classification question and provided a framework for
the development of a rigorous understanding of why frames perform better than
bases when it comes to the classification of certain classes of signals. We simplified
the question and investigated a single-class classification problem where the class
itself is a compact convex subset of RN . Convex sets may be approximated by con-
vex polytopes, and may thus be regarded as the preimages of hyperrectangles under
frame analysis operators, which we termed frame sets. We proposed a classification
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scheme based on frames and akin to a majority voting. We proved that frame sets
can approximate any compact convex class to within an arbitrary degree of preci-
sion. We introduced a measure-theoretic framework for the analysis of classification
errors, and applied it to the study of our proposed classification scheme. We showed
this scheme performs well in the presence of radially symmetric noise, and provided
upper bounds on the measure of the set of points at which misclassification will
frequently occur.

We also developed new frame families we termed lapped tight frame trans-
forms. These can be viewed as the frame counterpart of lapped orthogonal trans-
forms. We showed in four specific cases that in addition to being tight, lapped tight
frame transforms possess many desirable properties, such as equal norm, maximal
robustness and efficient implementation. In the MR classification algorithm, the
frame representation that is the most accurate is also the most expensive in terms
of computational cost. This new family of frames is simple to design and its con-
struction provide flexibility and control over the desired amount of redundancy.
This allows the user to customize the trade-off between efficiency and accuracy. In
addition to providing custom-tailored frame transforms, the design of this new fam-
ily enriches the frame toolbox and offers a larger choice on the menu of redundant
MR representations.

Reproducible Research In the past few year there have been many efforts in the
signal processing community to adopt the ideas of reproducible research (see for
example [18, 7]). The goal here is to make freely available all the necessary tools
and materials that led to a publication. This allows signal processing algorithms to
be widely and freely accessible to the scientific community and it also permits easy
integration of results into more larger projects as well as facilitates exchanges and
collaborations within the community. In our work, we followed the reproducible
research paradigm. Namely, we distributed via the web all the material used to
produce journal papers issued from our work. We made our classification algorithm
as well as the frame toolbox available freely. The code is be accompanied by a
compendium containing all the necessary data to reproduce any of the results in
our published papers, as well as additional material such as proofs and pseudo-code
(see, for example, the compendium for [23]).

Future Research

Multiresolution Classification Algorithm

To improve the performance of our MR classifier, a few venues are possible. By
examining each of the blocks of the system, we discuss several potential avenues for
enriching our classification toolbox as well as ways to enhance its last three blocks:
feature extraction, classifier and weighting procedure.

Feature Extraction Block The aim of this block is to extract numerical features
that will best characterize the data at hand. In building the MR classification
system, we not only intended it to be accurate and adaptive to the specific data
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Figure 8.5: MR boosting classification system.

sets available to us, but to be versatile and applicable to other data sets as well.
Having that in mind, we would like to have a pool of feature sets from which to
choose depending on the input data.

It would also be important to examine how to make this block adaptive to
the input signal. This is possible in two different ways: a “coarse” adaptivity per
feature set and a “finer” adaptivity per subband. For the former, we would select
the feature set that best suits each subband. Since each subband expresses different
space-frequency content which lies within a signal, it is natural to think that some
feature sets are more suitable for some subbands than for others. For example, it
seems natural to have some morphological features (such as the number of objects)
used in the coarse subbands, but in the detailed versions, one would rely on other
types of features. As for the latter, we can describe a subband even better if within
each feature set chosen for that MR subspace, we target only relevant features.
This way, we avoid computing features that are not useful for classifying a data set.
Thus reducing the size of the feature vector characterizing a subband at a given
position in the MR tree would not only allow us to better describe the data but
would improve the efficiency of the classification system as well. In a similar fashion
to what we did with the weighting procedure, another variation on this theme would
be to have the feature selection process per class and per data set.

Classifier and Weighting Blocks Currently, the classifier we use is composed of
NNs that act independently on each subband to produce local decisions. The sub-
sequent weighting procedure combines many local decisions into a single global one
to finally assign a label to an image. We propose as a future venue to allow the
subbands to work together to come up with a final decision by using a modified
version of a boosting algorithm.
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Boosting is a powerful technique for combining multiple base classifiers (here
NNs) to form a committee whose performance can be significantly better than
that of any of the base classifiers (called weak learners), as long as these achieve
accuracies slightly higher than random. The most widely used form of boosting
algorithm is called AdaBoost (for adaptive boosting) [44]. With boosting, the base
classifiers are trained in sequence, and the boosting effect comes from the fact that
data points that have been misclassified by one of the previous base classifiers are
given greater weight when used to train the next classifier in the sequence. Once the
classifiers are trained, their predictions are combined through a weighted majority
voting process.

We propose an MR boosting algorithm where each base classifier (NN) rep-
resents a subband. The subbands would now work in sequence as opposed to the
current system where they work in parallel. We train the first NN classifier (corre-
sponding to the first subband) using weighting coefficients that are all equal. That
means that we give each data point equal importance in reaching a correct classifica-
tion decision. In the subsequent iterations, the weighting coefficients are increased
for data points that were misclassified and decreased for data point that are cor-
rectly classified. Successive classifiers (subbands) are therefore forced to put greater
emphasis on those points that have been misclassified by previous subbands, and
data points that continue to be misclassified by successive classifiers receive ever
greater weight. Once all subbands have been trained, their decisions are assembled
by a weighted sum (similar to our current weighting procedure) where a greater
weight will be given to the more accurate classifier.

Note that, unlike the usual boosting algorithm where the subsequent classi-
fiers have as their input the set of misclassified data points, here (see Fig. 8.5) we
propose to boost the performance of each base classifier based on the input from
“its subband” as well as from the previous classifier (the misclassified points).

Theory of Frame Multiresolution Classification

Our work on frame classification establishes the foundations for a theory that allows
to answer fundamental questions. We proved that, in a particular setting, frames
outperform bases in regards to classification. In the future, this work can be gen-
eralized to more complicated classification problems. A top priority would be to
extend our theory to multiple classes as well as classes with multiple clusters. It
is also important to consider making the decision function a nonlinear function of
the transform coefficients, as is usually the case in any real-world implementation
of these ideas. By doing so, one would then be able to fit the present MR classifi-
cation work in this model (multiple classes, nonlinear features) and truly establish
theoretical results for the MR classification of biomedical images.

Another general issue, similar to the one we tackled in this work, is that of
why is it always better to use multiresolution representations for classification as
opposed to using only the original data. We believe that first gathering a complete
understanding and answer to the first question “why are frames better than bases”
will help better tackle this question. It is unclear how one would easily answer
“why using MR is better than not using it?”. We anticipate that here the modeling
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of the signals at hand would play an important role in understanding the role of
multiresolution representations in classification.

As for the new frame family we designed—lapped tight frame transforms, the
immediate future step would be to integrate these into our adaptive multiresolution
classification algorithm and study their performance for different biomedical data
sets. Another possible venue is to find necessary conditions that would ensure the
maximal robustness property of these frames.
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Abstract 

This thesis presents a mathematical framework and an algorithm for the 

classification of biomedical image data sets based on adaptive and redundant 

multiresolution representations---frames. We illustrate the results on several 

different biomedical applications. 

Classification is a ubiquitous problem in image processing; many biomedical 

tasks are in essence classification problems. Examples of such problems 

include determining a specific protein from its subcellular location pattern, 

determining the developmental stage of Drosophila embryos, recognizing 

tissue types in histological images of stem-cell teratomas, as well as 

determining otitis media stages. Though cumbersome, some of the above 

tasks, and many similar ones, are performed simply by visual inspection. As 

our eyes are not trained to extract statistical measures or time-frequency 

behavior of the signal across scales, these characteristics often pass 

unnoticed, resulting in poorer performance. We hypothesize that classifying 

adaptively in multiresolution subspaces will increase classification accuracy. 

We develop a new classifier, based on adaptive multiresolution ideas, by 

adding a multiresolution block in front of a generic classifier. The system is 

completed with a weighting block at the end, which plays the role of an arbiter; 

it decides how to combine the ``subspace'' decisions into a common one. The 

classifier achieves remarkable results, with most of the applications having 

classification accuracy in the mid-to high 90s. 

In all of the applications, redundant multiresolution transforms performed the 

best. This led us to ask the following question: Why do frames perform better 

than bases? This question is nontrivial in scope, to begin to answer it we 

propose a classification scheme which uses finite frames and introduce a 

measure-theoretic framework for the analysis of classification errors. We then 

use this framework to examine those classes of signals for which a bases-

based classification scheme is sufficient, and those for which a frame-based 

scheme is superior. We also show the proposed classification scheme 

performs well in the presence of noise. 

Finally, as there are very few frame families available in the literature, we 

embarked on developing our own. To that end, we introduce a new class of 

frames we call lapped tight frame transforms, obtained by seeding from higher-

dimensional orthonormal bases. We prove several properties of such frames, 

such as tightness, equal norm and maximal robustness. 


