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Abstract

This thesis presents a new active mask (AM) framework and an algorithm for segmenta-

tion of digital images, particularly those of punctate patterns from fluorescence microscopy.

Fluorescence microscopy has greatly facilitated the task of understanding complex sys-

tems at cellular and molecular levels in recent years. Segmentation, an important yet dif-

ficult problem, is often the first processing step following acquisition. Our team previously

demonstrated that a stochastic active contour based algorithm together with the concept of

topology preservation (TPSTACS), successfully segments single cells from multicell images.

In this work, we begin by presenting improvements to TPSTACS and highlighting some

of the benefits of combining TPSTACS with a multiresolution approach for segmenting flu-

orescence microscope cell images. We also demonstrate the flexibility of the active-contour

framework by developing algorithms for segmentation on different modalities, including

DIC microscopy, MRI and fMRI. As a further improvement, we combine the active-contour

framework with a multiscale transformation perspective to form the multiscale active con-

tour (MSAC) transform. The need to overcome some of the limitations inherent to these

active-contour-based frameworks while retaining their flexibility inspired the new AM frame-

work.

The AM segmentation framework is suited for digital images, particularly for fluore-

scence microscope images. It is based on a local majority voting-based scheme, and can

incorporate different forms of the voting function as well as several different functions to

skew the voting to obtain a meaningful segmentation result. This framework has multires-

olution and multiscale techniques built into it and can be instantiated to segment data of

any dimension. We demonstrate the efficacy of the AM through an algorithm for segment-

ing punctate patterns of cells in fluorescence microscope images. While the theory opens

up interesting vistas for research and development, the results demonstrate AM’s utility in

practice.
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Chapter 1

Introduction

In recent years, the focus in biological science has shifted to understanding complex systems

at the cellular and molecular levels, a task greatly facilitated by fluorescence microscopy.

Its success is due in part to the advent of a range of new fluorescent probes, including

the nontoxic green fluorescent protein (GFP), used to tag proteins or molecules of interest.

While fluorescence microscopes permit the collection of large, high-dimensional datasets,

their manual processing is inefficient, not reproducible, time-consuming and error-prone,

prompting the movement towards automated, efficient and robust processing to allow for

high-throughput applications.

Fluorescence Microscope 

Software 

Post 

Proc 

Mathematical 
segmentation 

core 

MR MS 

MD Init 

Data dependent 
modules 

Figure 1.1: A diagram of the proposed research.
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Segmentation, a fundamental yet very difficult problem in image processing, is often the

first processing step following acquisition. Its aim is to separate objects of interest from

other objects as well as from the background, and its output is either a collection of simple

closed curves or a collection of masking functions. While it is always desirable for imaging

tasks in biology to be as automated as possible, this is especially critical for segmentation,

because it takes human experts anywhere from hours to days to segment by hand. The

current segmentation algorithm used in fluorescence microscopy, the watershed algorithm—

a region-growing method—is not designed to produce tight boundaries around the objects

of interest. Meanwhile, state-of-the-art segmentation algorithms have only recently begun

to be applied to this problem.

In this work, we present improvements to a stochastic active contour based algorithm

designed to segment fluorescence microscope cell images. We demonstrate the flexibility of

the frameowork by adapting it to segment images of various imaging modalities. Inspired by

the success of the active-contour based framework and to overcome some of its limitations,

we develop a mathematical framework suited to segment digital images. This, like the

active-contour framework, can incorporate data-specific modules and thus has the potential

to be adapted to other image types.

In summary, (see Fig. 1.1):

We present a new active mask framework particularly suited to

the digital domain, and an instantiation of the framework to segment

punctate patterns of fluorescence microscope cell images.

A mathematical core and data-dependent modules. As shown in Fig. 1.1, we

endeavor to build a mathematical tool, that has at its core a flexible segmentation frame-

work on top of which data-dependent modules may be added to instantiate the framework

for a particular segmentation task. This idea is, to a large extent, inspired by the flexible

framework of active-contour methods. The design reflects that the challenges of segmen-

tation are different depending on the specimen, imaging modality, experimental conditions

and application, but the underlying task is common to them all. So this framework is both

2



general, in that it is not limited to a certain application and yet, specific, in that it is not

a “universal segmenter” but one that can be adapted to a specific application through the

choice of data-specific modules and functions that drive the segmentation to be used with

the core.

In particular we focus on the task of segmenting punctate1 patterns of fluorescence

microscope images and seek specificities of this data to inspire the design of functions that

drive the segmentation. However, throughout this work, we demonstrate the advantage

of flexibility by calling upon other applications to which this framework may be similarly

extended.

Mathematical framework. Given a fluorescence microscope dataset, we need to

efficiently extract features (such as local densities) in terms of the functions that aid in

their segmentation. The punctate patterns of fluorescence microscope images motivates the

use of multiscale transforms, known to extract intricate textures. Texture features, may

facilitate the segmentation of these images [4]. Moreover, we would like to distinguish the

foreground cells not only from their background but also from each other, without the use

of external constraints. Above all, we would like to depart from the traditional formulation

of active contour-based methods that are typically defined in the continuous domain. The

framework we propose is suited especially for the segmentation of digital images, and in

particular, the algorithm (choice of functions) we present is suited to segment punctate

patterns of fluorescence microscope images. This is a large class of images in fluorescence

microscopy.

Data-driven algorithmic development. Based on the nature of input, such as the

number of channels and the dimensionality as well as the specific application, the processing

demands different functionalities. While we have a powerful framework at the core, we need

different modules to cater to the specific needs of the data. These modules are in the form

of functions that drive the segmentation. The design of these functions is based on the

characteristics of the objects of interest that we seek to segment. We present some of the
1Punctate refers to dotted patterns or patterns with very small holes. Such patterns form a large class

of fluorescence microscope cell images, such as those of subcellular location patterns of proteins in cells.
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data-specific modules and application-specific post-processing that could be included with

the segmentation core through the needs of a few different applications that we consider.

Software. As tool developers, we look to the biological problem for insight to de-

signing an algorithm and in turn, provide a tool that solves a computational task that is

either intractable to be solved manually, and/or provides an effective alternative to manual

processing so that resources can be better engaged. Consequently, in this process, biolo-

gists’ feedback on the tool’s performance is an important aspect to ensure the tool’s utility.

While the nature of the biological images at hand provide the inspiration and basis for the

algorithm’s design, it is the biologist’s feedback that drives the algorithm’s further develop-

ment. Thus, to facilitate testing and further development, we provide the software to both

biologists and algorithm developers.

1.1 Major Contributions

1. Segmentation framework. We present the perspective of a mathematical core

that is general and can be adapted to different applications. This is possible through

the choice of forces (or functions) and other data-specific modules that can be used

with the core as different instantiations of the framework to drive the segmentation.

We demonstrate this idea through adapting the stochastic active-contour scheme to

segment images from various applications.

2. Multiscale active-contour transform. We combine the active contour framework

with the multiscale transform perspective to improve the efficacy and efficiency of

a level-set based formulation. This is particularly suited to applications in which

traditional level-set based methods perform well.

3. Active mask framework. We present an iterative local-majority-voting based and

local-averaging based framework suited to the segmentation of digital images and

demonstrate it with the example of functions designed specifically to segment punctate

patterns of fluorescence microscopy.
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1.2 Thesis Outline

This thesis is organized as follows. In Chapter 2, we introduce the notion of segmentation

and place it in the larger context of bioimaging applications. We discuss at length the

need for automating segmentation and motivate the problem by introducing two of the

applications in fluorescence microscopy for which our collaborators, Murphy et. al. and

Linstedt et. al., both from CMU, require automated segmentation. To emphasize the

broader impact of this work, we also highlight a few applications that use other modalities

and require automated segmentation. The focus of these sections is to introduce the need

for automated segmentation in each of these applications as well as the specific challenges

posed by the data.

In Chapter 3, we review some of the segmentation methods in the literature and highlight

some of the advantages and limitations of these methods 2. In particular, we introduce the

active-contour framework and discuss in detail an instance of this method, the stochastic

active contour scheme (STACS), developed by Moura et. al. at CMU, as it forms the basis

and inspiration of the methods we develop.

In Chapter 4, we describe how STACS was adapted to segment fluorescence micro-

scope cell images. Up until Section 4.4, we present the previous work of bimagicLab (Dr.

Kovačević’s group) [21]. Thereafter, we present our improvements to this method in the

context of a particular application in fluorescence microscopy.

In Chapter 5, we present how we adapt STACS to different imaging modalities. This

flexibility of the framework, together with the specificity offered by data-specific modules

forms the impetus for the present work. However, the traditional formulation assumes a

continuous domain. We highlight some of the drawbacks of the method and transition

towards a method more suited to digital images.

In Chapter 6 we present a multiscale active mask (MSAC) transform framework that

combines the flexible active-contour framework with the powerful multiscale transforma-
2We note that the citations we provide are not exhaustive but only suggestive. Since the segmentation

literature is vast, while we have tried faithfully to cite the related work at each relevant juncture throughout
this thesis, it is possible we may have omitted some important and relevant method/reference or the other
inadvertently.
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tions. We demonstrate enormous speed ups of the algorithm as a result of this change in

perspective. This also forms the first step towards a framework suited especially for the

segmentation of digital images.

In Chapter 7, we present the new active-mask (AM) framework, the major contribution

of this thesis. We motivate the need for moving away from the traditional contour view of

segmentation towards a mask-based perspective. We discuss the design considerations and

details of two distributing functions (analogous to forces in the active-contour framework)

in the context of fluorescence microscope image segmentation. We build in topology preser-

vation through the appropriate design of these functions and also include multiresolution

and multiscale techniques as a part of the framework. We end this chapter by exploring

some of the issues in proving mathematical convergence of the procedure.

In Chapter 8, we discuss the choice of parameters and evaluate the segmentation on

a particular dataset. AM supersedes the active-contour-based algorithms for fluorescence

microscope cell segmentation developed by bimagicLab. We compare the performance of

AM segmentation with seeded watershed (SW)—the algorithm widely considered as most

accurate in the fluorescence microscopy community—against the reference of manual seg-

mentation. Results demonstrate that AM is very competitive with SW by both qualitative

and quantitative measures of performance, and is thus a viable alternative to hand seg-

mentation as well as SW and other active-contour based techniques. In line with our effort

to extend AM to other modalities, we present preliminary results on applying the method

to segment DIC stem cell images used for tracking. We conclude the chapter with a few

pointers to one of the next steps in further developing the AM framework.
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Chapter 2

Background and Motivation

In this chapter, we review some of the biomedical applications that rely on imaging, and

motivate the need for automated processing of these images. In particular, we discuss the

important role that fluorescence microscopy has assumed in biological research. We intro-

duce the concept of segmentation and highlight the role it plays in two of the applications

in fluorescence microscopy that we focus on as well as three other biomedical applications

using different imaging modalities.

2.1 Biological Motivation: Automating Knowledge Extraction in

Fluorescence Microscopy

In recent years, the focus in biological sciences has shifted from understanding single parts

of larger systems (a vertical approach) to understanding complex systems at the cellular

and molecular levels (a horizontal approach). Thus, there has been a revolution of “omics”

projects, such as genomics, and now proteomics. Understanding complexity of biological

systems is a task that requires acquisition, analysis and sharing of huge databases, and in

particular, high-dimensional image databases.

The Advent of Fluorescence Microscopy. This task has been greatly facilitated by

fluorescence microscopy, its success due in part to the advent of a range of new fluorescent

probes used to tag proteins or molecules of interest, including the nontoxic, green fluorescent
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protein (GFP) [22, 23]. These sophisticated probes are capable of marking proteins or

molecules of interest. There are several ways these probes can be directed to a target.

For example, in immunofluorescence, antibodies (either primary or secondary) are used to

transport fluorescent probes to the target protein (not suitable for live cell imaging). With

gene tagging the blueprint for the GFP—the DNA sequence coding of the GFP (or one of

its cousins)—is attached to the gene of interest. Traditional techniques such as staining 1

can also be used either in addition to the fluorescent probe or independently.

Fluorescence microscopes (see [24] for details) are then used to collect both 2D slices (for

example, see Fig. 2.1(a)) and 3D volumes (z-stacks). Acquiring these images at multiple

time instants results in 3D movies (2D time series) or 4D datasets (3D z-stacks). These

microscopes also allow for imaging of multiple structures through multiple fluorescence

channels. Biologists can use these techniques to collect images not only of multiple struc-

tures at multiple time points but also images across a span of resolutions and modalities

(for example, electron microscopy and light microscopy), leading to enormous quantities of

image data.

The Need for Automated Processing of Fluorescence Microscope Images.

Visual processing of such a large number of multidimensional images is inefficient, not re-

producible, time-consuming and error-prone, prompting the movement towards automated,

efficient and robust processing of fluorescence microscope images. Moreover, some infor-

mation hidden in the images may not be easily discerned by the human eye. Thus, we

strive towards automated processing, not only for speed and efficiency, but to generate new

knowledge through use of sophisticated algorithms as well. While such tools are widely

present in clinical (medical) imaging, their use is not as widespread in imaging of biological

systems at cellular and molecular levels. This is a huge challenge and requires integration

of teams from such diverse fields as mathematics, signal processing, machine learning and

biology.

A Must: Automated Segmentation. Segmentation is often the first step after
1Commonly used in vivo stains include DAPI and Hoescht for staining DNA and Rhodamine for staining

Actin
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(a) Multichannel image (b) Nuclear protein

(c) Specific protein (d) Total protein

Figure 2.1: A representative slice of a z-stack of HeLa cells imaged using a laser-scanning-confocal micro-
scope [1]. (a) Three fluorescence channels (in pseudo color) superimposed. (b) Nuclear channel (total DNA
stained with DAPI). (c) Golgi protein channel (protein in trans-Golgi network tagged using GFP-UCE). (d)
Total-protein channel (labeled with LRSC). (Images courtesy of Dr. R. F. Murphy [2].)

acquisition. It is a fundamental yet very difficult problem in image processing, especially

for microscope images that contain more than one cell. The goal of segmentation is to

separate objects of interest both from other objects and from the background, and is used,

for example, in high-content screening to identify cellular structures. The output of the

analysis phase can be used as feedback to drive the acquisition, segmentation and any other

intermediary processing phases to facilitate and enhance the analysis. Fig. 2.2 shows a block

diagram of such a system.

As shown in the example in Fig. 2.2, often the output of a segmentation algorithm

is a collection of simple closed curves, with one curve enveloping each object of interest.

Alternatively, the result of segmentation may be regarded as a binary image, called a mask,

taking the value 1 inside the objects of interest and 0 otherwise. While it is desirable for

all tasks dealing with biological or biomedical images to be as automated as possible, this

requirement is absolutely crucial for segmentation. For example, it takes a skilled expert

one hour to segment an image (a z-stack of about 10 slices with 8-15 cells in each slice—one

such slice is shown as in Fig. 2.1(d)) and almost three days for just the left hemisphere of
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Figure 2.2: A diagram of the stages in a typical bio(medical) imaging system.

a brain MRI (left half of a z-stack of images such as the one in Fig. 2.7(b)).

While there has been an increasing effort to automate analysis of biological images, tools

to meet the various challenges posed by specific applications in this area are still in their

infancy [25]. When the size of the data is tractable, most often the analysis is performed

visually; on the other hand, in large-scale studies, either semi-automated or automated

techniques are used, trading off accuracy versus efficiency. For example, one of the most

popular approaches to segmentation of cells in fluorescence microscope images is Voronoi-

based and another algorithm, considered to be one of the most accurate for this task, is

the seeded watershed. These approaches are beset with limitations that do not produce an

accurate segmentation of the cells (see Sections 3.6.1 and 3.6.2).

There is a rich body of literature on segmentation algorithms developed for various

applications in other fields. However, the nature of fluorescence microscope images is such

that it does not allow for algorithms developed for applications such as multimedia to be

used directly. This issue is discussed in some detail in Section 3.6.

In the following sections, we start by introducing two important biological problems

for which our collaborators try to arrive at answers by using fluorescence microscope im-
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ages. These problems require automated segmentation both to enable analysis, as hand

segmentation of a sufficient number of images might not be feasible, as well as to ensure the

reproducibility and accuracy of results. Although our focus is on segmentation of fluore-

scence microscope images, we consider a wider range of modalities, including problems using

differential interference contrast microscopy (DIC), magnetic resonance imaging (MRI) and

functional MRI (fMRI), to show the broader impact that automated segmentation would

have.

2.1.1 Determining Protein Subcellular Location

Understanding the behavior and role of all proteins is a major current focus in the biological

sciences, as it will help researchers map out complex systems, such as the nervous system,

and will be critical in understanding how cells respond to injury, disease, stress, and aging.

Crucial aspects of understanding a protein include understanding its structure, activity,

function and its subcellular location. Such an understanding has several ramifications,

including disease diagnosis and better drug design. Today’s method of choice to determine

protein subcellular location is fluorescence microscopy.

Murphy pioneered automated interpretation and analysis of protein subcellular location

images, resulting in systems that can classify protein location patterns (see Fig. 2.3) with

well-characterized reliability and better sensitivity than human observers [3,4,26,27]. This

work was followed by [28,29].

Apart from improving the efficacy of image analysis, automation is inevitable for this

application for various reasons: (1 ) The work on classification of protein patterns is just

an initial step towards building generative models that would contribute to furthering our

understanding of known proteins and to discovering new proteins/subcellular structures.

(2 ) With data for over a million proteins and an estimate of more than two million proteins

in just the human body [30], with proteins such as Actin known to have more than one role

in the cell based on its localization and finally, with the subcellular localization of a protein

likely being different in various diseases or stages of a single disease, location proteomics is

a problem of enormous combinatorial proportions.
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Figure 2.3: Images of subcellular localization of ten proteins [3]. Top row(L-r): DNA, Giantin, Lysosomal,
Nucleolar and Tfr. Second row(L-r): ER, Gpp, Mitochondrial, Actin and Tubulin. The highest reported
classification accuracy for these patterns is 95.4% [4]. (Images courtesy of Dr. R. F. Murphy [2].)

The Need for Automated Segmentation. In [3], the dataset contained parallel

images for a specific protein, total protein and total DNA. Of the four data sets collected,

on only one could automated segmentation be performed, as it contained a third fluorescent

probe marking the total cell protein (in addition to the total DNA and the specific protein).

Fig. 2.1 shows the three channels for an example image from this dataset. Although it is

the specific protein channel (in this, case GFP) that is required for further analysis, the

extent of the cell can be determined only from the total protein channel, as proteins in

the cytoskeleton (cell periphery) also show up in this image. The nuclear channel has an

unambiguous, bright pattern corresponding to each cell, which provides a good starting

point. The segmentation outcome on the total protein channel can then be used to isolate

each cell’s specific protein localization pattern for further analysis.

Of the few studies which have used automated segmentation of fluorescence microscope

images, the watershed algorithm is considered the most accurate method. Consequently,

segmentation was performed using the seeded watershed algorithm on the total-protein

channel, using the nuclei as seeds [31]. However, the method suffers from some limitations,

especially in the context of cell segmentation applications such as this one, as we will see in

Fig. 4.3. Watershed suffers from both splits (one cell/object is split into more than one) as

well as merges (more than one cell/object are merged into a single one) when the initial seeds
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are not accurately picked. Furthermore, by design the algorithm does not produce tight

contours, causing the segmented cells to include a significant portion of the background.

As a result of these drawbacks, a large number of cells are cannot be used (nearly 62%, see

Table 4.1 as well as [13])2 as such for further processing, wasting time and resources.

2.1.2 The Influence of Golgi-Protein Expression on the Size of the Golgi Ap-

paratus

Eukaryotic cells are fundamentally distinguished from prokaryotes by the presence of com-

partments which optimize reactions by creating specialized environments, increasing surface

area and dramatically increasing regulatory potential. Vesicle budding and fusion achieve

protein exchange between biosynthetic secretory compartments and, in turn, these mem-

brane trafficking reactions establish and maintain the secretory compartments. Defects in

membrane trafficking are responsible for many human diseases [32] and our understanding

of the molecular basis of these defects is paving the way to future effective therapeutics [33].

The Golgi body is one such membrane-bound organelle in eukaryotic cells whose cy-

toplasmic surface is a site for a number of important signaling pathways [34]. The Golgi

body also mediates the processing and sorting of proteins and lipids in the final stages of

their biosynthesis. The Golgi apparatus is subcompartmentalized and make it possible for

the membrane and protein components to move through the organelle. The subcompart-

mentalized membranes are also responsible for the amazing capacity of the organelle to

undergo rapid cycles of disassembly/reassembly in response to stress, cell division and even

differentiation.

Linstedt and his group seek to understand how the Golgi body’s underlying structures

are established and maintained, how they are regulated in stress, and the purpose of each

structural feature. That is, they seek a structure/function analysis from the underlying

components of the organelle.

The Need for Automated Segmentation. The current hypothesis being tested is

that the affinity of interaction between vesicle coat complexes and SNARE molecules (and
2We get 62% of cells are not usable based on the computation: 100 - round(max(Recall,Precision)).
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(a) Cell image (b) Golgi image

Figure 2.4: (a) A HeLa cell image (COPII). (b) A HeLa Golgi image (giantin). (Images courtesy of Dr.
A. D. Linstedt [5].)

other Golgi proteins) establishes and controls the size of Golgi compartments [35]. These

tests depend on a quantitative ratiometric assay comparing Golgi size to cell size. The

assay is fluorescence microscopy-based; immunofluorescence (secondary) is used to stain

a component of one of the Golgi-body coat proteins as well as mark the Golgi body by

labeling one of its proteins. The cells are imaged using a spinning-disk microscope. An

accurate segmentation of the cell (as well as of the Golgi body) images is a critical step in

determining cell (and Golgi-body) volume. Fig. 2.4 shows both the cell and corresponding

Golgi channels for a representative slice from a z-stack of HeLa cell images used in this

study.

To date, the experimental tests of this hypothesis have resulted in the discovery that

direct interactions between the cytoplasmic domains of Golgi proteins existing in the Endo-

plasmic Reticulum (another membrane bound organelle in eukaryotic cells) and the COPII

(a specific coat protein complex; this is a type vesicle that transports proteins from the

Endoplasmic Reticulum to the Golgi Body) component Sar1p regulate COPII assembly,

providing a variable exit rate mechanism that influences Golgi size [36].

Segmentation was carried out without automation and involved, for each cell, hand

segmenting the cell boundaries in each of as many as 20 optical slices. For this reason, the

analysis was limited to cells with flat morphology (fewer optical slices) and to small numbers

of cells. To extend this finding, the Linstedt group will assay the role of Golgi protein/Sar1p

interactions in Golgi size changes that accompany differentiation/dedifferentiation of the

secretory pathway. Because a developmental time course will be analyzed and because the
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cell types involved are not flat, the proposed experiments necessitate analysis of many more

cells and much larger numbers of slices per cell. The automated segmentation algorithms to

be developed here will allow a rigorous, objective and efficient means of Golgi/cell volume

determination.

2.2 Importance of Automated Segmentation on Other Modalities

While we focus on developing the mathematical and algorithmic tools needed for segmen-

tation of fluorescence microscope images, due to their flexibility we believe these tools will

allow the development of algorithms for automated segmentation on other modalities as

well. As representative examples, we discuss some of the projects we are involved in, in-

cluding differential contrast microscopy (DIC), magnetic resonance imaging (MRI) of the

heart and functional MRI (fMRI) of the brain, all applications for which our collaborators

are looking for segmentation solutions.

2.2.1 DIC Images of of the Yeast

The yeast organism has become one of the most often used eukaryotic microorganisms for

biological studies, leading to the “awesome power of yeast genetics” [37]. The sequencing

of its genome was a tremendous help in the sequencing of the human genome. Moreover,

yeast may be genetically manipulated with relative ease.

One of the standard ways of imaging yeast is using differential interference contrast

(DIC) microscopy. It provides an excellent way for showing contrast in transparent speci-

mens. DIC microscopy has many uses. One of the most important ones is that it represents

an optical view of the entire cell and some of its parts, whereas any fluorescence label will

exhibit a certain localization pattern (which may be restricted and could also vary over

time). DIC microscopy does not require UV illumination (which may damage cells) and

it works well on both live and fixed samples. Furthermore, it requires no special reagents

(antibodies, cDNAs, dyes etc.).

The Need for Automated Segmentation. Segmentation is the first step in quantita-

tive and automated studies of yeast [6, 38]. For instance, just as in the protein localization
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(a) DAPI channel (b) GFP channel (c) DIC channel

Figure 2.5: A sample image showing three available channels from the yeast localization database [6]. (a)
Total DNA marked by DAPI. (b) Specific protein tagged with GFP. (c) Budding yeast cells as seen under
DIC. (Images courtesy of the Yeast GFP fusion localization database [7].)

study of HeLa cells, a GFP channel of randomly tagged specific proteins in the yeast is

available. Due to the typically large number of these cells in each image (see Fig. 5.1(c)),

hand segmentation is highly impractical and time consuming.

2.2.2 MRI Images of the Heart

MRI has emerged as a powerful technique to noninvasively visualize biological structures

such as bone and soft tissues. It uses a powerful magnetic field and electromagnetic (radio)

waves that are not ionizing (unlike x-rays) for the imaging. Hence, MRI is routinely used

to evaluate structures of the heart, valves and major blood vessels. MRI images can be

used to diagnose various cardiovascular diseases such as defects in the valves, myocardium

(heart muscle) and blockages in the coronary artery as well as to monitor the progress of a

patient who has been treated for a cardiovascular ailment.

Cardiac MRI is being used by Laine and his team [8] to understand heart wall motion

and quantify the left-ventricular heart volume. The motivation for quantifying the left-

ventricular volume is to be able to realize more accurate ejection fraction measures. Such

measures facilitate the efficacy of interpretation of the images in relation to the cardiac

output. As for understanding wall motion itself, the first step is to study normal hearts

with the motivation of being able to understand anomalies in a diseased condition, and

detect abnormal wall motion due to ischemia (which may eventually lead to an infarction

or heart attack) and perhaps diagnose the condition in its early stages.

The Need for Automated Segmentation. The first step for either quantifying the
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Figure 2.6: A 2D image from a human chest MRI showing a hand segmentation of the endocardium (in
blue) and epicardium (in green) [8]. (Images courtesy of Dr. A. F. Laine [9].)

left-ventricular volume or understanding wall motion is to image a time series of the heart

motion using MRI, and to isolate the inner heart wall (endocardium) and outer heart wall

(epicardium) from the resulting images of a chest MRI (see Fig. 2.6. At least 25 frames at a

given depth in the coronal direction at 125 time points is used to capture a single heartbeat

for a study of this kind. Because the number of images in a time series of the chest MRI are

large, it is necessary to automate the segmentation. An automated segmentation will also

facilitate the subsequent visualization of heart wall motion. While there have been a few

algorithms proposed for the segmentation of cardiac MRI images, a challenge is to develop

a technique that will work on peripheral volumes, as well as on images from high-speed

MRI that have poorer signal quality and that are beset with noise.

2.2.3 fMRI Images of the Brain

With the development of functional MRI techniques, it is now possible to directly visualize

neuronal activity in the brain by using the amount of oxygen in the surrounding blood flow

as a proxy for neuronal activity. This can be used to study the development, structure and

activity of the human brain. In particular, the work of Wandell and his team focuses on

using functional neuro-imaging to study visual pathways [39].

The Need for Automated Segmentation. Anatomical MRI images of the whole

human brain are collected routinely at a resolution of about 1mm3 in functional and anatom-

ical imaging studies. Segmentation of these MRI brain images into gray and white matter,
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or, tissue types, is crucial for multiple purposes, including: (a) measuring the location and

size of visual field maps in human occipital cortex by overlaying fMRI signals on surface

representations of the gray matter [40]; (b) studying the organization of retinotopic, mo-

tion and object sensitive cortex through 3D visualization of an inflated surface along the

gray-white boundary of the brain [41], (c) mapping gray-matter growth and loss patterns

in normal development and in neurological conditions, by computing deformation fields on

the entire gray matter mask or on specific structures (for example, lateral ventricles, corpus

callosum) defined by tissue type (respectively: CSF, white matter) [42], and many others.

Thus, high quality tissue segmentation is a powerful tool that enables multiple lines of

investigation in neuroscience [43].

In particular, to generate meaningful visualizations of the data obtained from fMRI

studies for understanding visual pathways, it is important to first obtain accurate topological

maps of the area of the brain in which the neuronal activity is being measured—the gray

matter in the cerebral cortex. One way to create these topological maps is to segment

3-D MRI images of the brain into three regions: gray matter, white matter and cerebral

spinal fluid. Gray matter forms the outer layer of the brain (called the cortex), completely

encasing the inner white matter. The gray matter is highly folded to allow a higher surface

area to volume ratio, and its topology resembles “two crumpled sheets having no holes or self

intersections” [44]. Further, a large portion of the gray matter resides in the deep fissures,

or, sulci, that surround the ridges on the surface of the brain. On the other hand, white

matter forms the bulk of the deep parts of the brain, and is a large monolithic structure

with no holes (see Fig. 2.7(a)). Finally, the cerebral spinal fluid (CSF) occupies the region

between the cerebral cortex and the skull and appears in brain MRI images as a black region

that surrounds the gray matter.

Once the 3-D topology of gray matter region has been identified by segmentation, an

equivalent 2-D visualization can be created by flattening out the 3-D shape. The flattened

2-D representation makes it easier to visualize the deep furrows (sulcii) that exist in the

gray matter. As noted earlier, accurately hand segmenting half a hemisphere of the brain
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(a) Brain structure (b) An axial slice

Figure 2.7: (a) A schematic cross section of the human brain showing the gray matter and white matter [10].
(b) A 2D image from an axial section showing the left and right hemispheres of the brain. (Images courtesy
of Dr. B. A. Wandell and Dr. M. B.-S. Chechik [11].)

along one of the axes such as the axial section (a section of which is shown in Fig 2.7(b)),

takes an expert about 3 days. For all these reasons, automating the segmentation process

is of immense value.

2.3 Application and Algorithm—A Symbiosis

In all of the applications discussed above, we see that computation, and in particular seg-

mentation, plays a crucial role in interpreting the images produced in the acquisition phase.

The acquisition phase in Fig. 2.2 subsumes the preparation of the data for the imaging

process as well as the process of imaging itself (and any intermediate steps involved in digi-

tizing the image). The segmentation and knowledge extraction phases are part of the image

processing phase.

In studies such as those described above, no step of this system can function in isolation.

The quality of the segmentation directly impacts the quality of the outcome of the knowledge

extraction phase. The outcome of the knowledge extraction phase (class labels in case of

pattern recognition, cell volume in case of a volumetric assay, cell number (or motion) in

case of a proliferation study, etc.) is examined by the biologists and this in turn drives

the further steps of their research, which may influence the acquisition phase. In turn, the

considerations of the acquisition phase (modality, dimensionality, specific application etc.)

drive the design of the image processing phase. In addition to this, the accuracy of the results
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obtained in control experiments, for example, enable the biologists to provide feedback to

the algorithm developers regarding the performance of the image processing phase. This

feedback serves as the impetus for further development of the algorithm. It is, therefore,

an iterative process as shown by the feedback loop in Fig. 2.2, with each phase influencing

the other. Consequently, the hallmark of a successful study is these areas is the synergetic

combination of knowledge from various domains. We take into account the importance of

the role of the feedback from our collaborators in making the tools we design useful for

them. Thus, we endeavor to make the segmentation algorithms we design accessible to our

end users and available for testing by other algorithm developers to facilitate the process of

testing and further development.
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Chapter 3

Overview of Segmentation

Methods

As highlighted in the previous chapter, segmentation is a fundamental task in image process-

ing. It is the process by which an image is divided into its parts and background [45]. Since

we discuss the segmentation of real-valued discrete images f ∈ Rd, where d is the dimension,

of size D1×D2 for d = 2 (and similarly for higher dimensional datasets), segmentation may

be defined as the mapping S : f 7→ S, where S =
⊕

Sm and each Sm,m ∈ {1, 2, ...,M}
is a bounded open subset of Rd and represents a segment of the image. Corresponding to

each Sm there is a closed curve, Cm, which is the boundary of Sm. The curves are such

that any pixel in an image f belongs to one and only one segment Sm, where Cm encloses

an object in the foreground and one of the segments is arbitrarily selected to represent the

background. Thus, the segments Sm span image f .

The set Sm may be represented as a black and white mask or characteristic function χ

of the same size as the input image; the white regions correspond to the objects of interest

and the black to the background. Another representation of Sm may be a multi-hued mask

ψm with a different color m assigned to each object (members of a distinct curve Cm) and

black to the background.

In case of segmentation of biological images, S is a good mapping if the resulting Sm
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are biologically meaningful segments of the input image. The quality of an automated

segmentation scheme S is usually measured in terms of its similarity to the result of manual

segmentation, what is commonly referred to as ground truth.

Efforts to automate segmentation have been ongoing for more than three decades [46,47].

Automated segmentation algorithms began with simple thresholding operations and have

since come a long way [48,49]. As the different imaging modalities and the different applica-

tions for which the segmentation is required present highly specific challenges, particularly

in biomedicine, there is no “universal segmenter”; a solution developed for one problem

often cannot be applied to another without compromising segmentation accuracy [50]. This

specificity has resulted in a vast body of literature. Segmentation algorithms can be classi-

fied broadly into edge-based, region-based and hybrid methods. In the sections below, we

briefly review these methods.

3.1 Edge-Based Segmentation Methods

An edge is typically the boundary between the object and its background [51]. Edge-based

segmentation methods may be further categorized as follows:

Gradient-based edge detection. The edge strength is the magnitude of the gradient

and the edge direction the angle of the gradient of the image. The gradient is commonly

estimated by operators such as the Sobel and Prewitt approximations to the first deriva-

tive [52]. Thresholding is usually the next step in obtaining the edges from the gradient of

the image. The edges detected after thresholding are usually in the form of ridges. Thus, in

a model involving an edge map, the edge point is usually considered to be the point whose

strength is locally maximum along the direction of the gradient that reduces the ridges.

Occasionally, edge-preserving filters may be used to enhance the edge detection [53].

Laplacian-based edge detection. In this method, an initial smoothing operator is

first applied to the image to filter out the noise. However, this dilutes the edges. In order

to enhance them, the second derivative of the image is taken. This has been empirically

found to be a superior method to the gradient-based edge detection [54].
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Canny edge detection. This is one of the most widely used edge-detection tech-

niques [55]. It involves first smoothing the image and then computing the magnitude and

angle of the gradient. This is followed by nonmaximum suppression that involves comput-

ing the zero-crossings of the second directional derivative in the direction of the gradient.

Finally, a two-way threshold is applied to detect the edge points. All pixels greater than or

equal to a threshold value T1 are presumed to be edge-pixels. Likewise, any pixel connected

to an edge-pixel with a value greater than or equal to threshold T2, are also presumed to

be edge-pixels. While the initial smoothing helps eliminate spurious edges, the two-way

threshold helps detect weak edges in the image that may have otherwise been neglected.

Edge-based methods are usually quick to compute. The limitations of edge-based seg-

mentation are that it is sensitive to noise, involves the selection of an edge-threshold which

has to be empirically determined to work well and that the edge may not fully enclose the

object.

3.2 Region-Based Segmentation Methods

Region-based methods segment an image based on some properties such as the mean, vari-

ance or textures of the object(s) of interest.

Pixel-level properties. A region-based method may distinguish the object of interest

based on pixel similarities and pixel differences [56]. The advantage of this method is that

gaps produced by missing edge pixels are not an issue. The disadvantage is that decisions

about region membership are often more difficult than applying an edge detector.

The region-growing method first picks a seed pixel p and computes a similarity measure

ξ(p, q) where q is another pixel in the image. It adds pixel q to pixel p’s region if and only if

ξ(p, q) > T , where T is some threshold, fixed a priori. The design of the similarity measure

ξ(·) may be based either on the average intensity over a neighborhood of size w around each

pixel, or on the gradient or geometric properties. Adding a pixel to a region may be done

in several ways. Comparing the original pixel directly to the seed pixel is easy but makes

the region produced very sensitive to the choice of the seed pixel. Comparing to a neighbor
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in the region is another option. This is not sensitive to the choice of the initial seed but the

transitive closure of similarity might cause a significant drift.

Neighborhood properties. An alternative to pixel-level comparisons is comparing

some property of a pixel or properties of a small neighborhood of a pixel to some model

region statistics [56]. A pixel’s properties (or the properties of a small neighborhood of the

pixel) could be compared with the aggregated statistics of the current region. This is also

referred to as centroid region growing [57].

A prominent example of the region-based methods is the watershed algorithm, discussed

in detail in Section 3.6.2. With watershed segmentation, gaps produced by missing edge

pixels are not an issue; however, decisions about region membership are often more difficult

than applying an edge detector (for a critical comparison of several flavors of the watershed

algorithm, see [58]). Other examples of region-based segmentation methods include statis-

tical clustering, region merging and Markov-random-field-based methods [59,60]. Although

region-based methods produce connected regions, decisions about region memberships are

often ambiguous and it is usually nontrivial to set the threshold values to delineate one

object from another or to delete the object from the background.

3.3 Active Contour Segmentation Methods

Active contours are a flexible and adaptive class of algorithms that evolved from the need

to find a method that looks for any shape in the image that is smooth and forms a closed

contour around it. Even though active-contour segmentation can be viewed as a hybrid

between the edge-based and region-based forces, its flexible framework allows the incorpo-

ration of other techniques such as multiscale methods and graph partitioning, which may

be beneficial for a specific application.

In general, active-contour segmentation is formulated as an energy minimization problem

that involves evolving a curve towards the boundaries of objects of interest. As the curve

evolves and connects points at the same energy level, it is called an active contour. The

energy minimization problem is mapped to a PDE that describes the evolution of the
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contour. The evolution is expressed in terms of forces so that the contour is comparable to

an elastic string that moves according to two kind of forces: internal and external [61–65].

External forces are those derived from the image to segment (for example, based on edge

detection). Internal forces are determined from the intrinsic geometric properties of the

contour, such as its curvature [66,67]. The contour can be tracked using either a Lagrangian

or Eularian solution to the PDE, which gives rise to either a parametric (in which case the

curve is parameterized) or geometric (in which case the curve is evolved using the level-set

embedding) implementation of the active contour.

3.3.1 Parametric Active Contours

Parametric active contours are also called parametric deformable models. They can be un-

derstood with the famous example and first design of this class of algorithms, “snakes” [61].

In this method, a parameterized curve (“snake”), C(s) : [0, 1] 7→ R2, is initialized close to

the object boundary. An energy functional J is associated with the curve: Jsnake = Ji +Je.

The internal energy Ji of the curve depends on the intrinsic properties of the curve and

could be the sum of its elastic energy (which discourages stretching) and bending energy

(sum of the squared curvature of the contour):

Ji = α

∫ 1

0
|C ′(s)|2ds + β

∫ 1

0
|C ′′(s)|2ds,

where α and β are positive parameters. The external energy Je, of the curve is defined as

Je = −λ

∫ 1

0
|∇f(C(s))|2ds,

so that it takes on smaller values at the features of interest such as boundaries. The quantity

|∇f | in Je can be replaced by any function Υ of f that is an edge detector of the objects of

interest in f .

The curve that minimizes Jsnake is given by the Euler-Lagrange equation,

αC ′′(s) + βC ′′′′(s)−∇Υ(C(s)) = 0. (3.1)
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Thus, the variational problem is mapped to a PDE. This is solved numerically by introducing

an artificial time parameter t that parameterizes C along with s and rewriting (3.1) as

∂C

∂t
= αC ′′(s) + βC ′′′′(s)−∇Υ(C(s)). (3.2)

This can be interpreted as the action of two forces, internal and external (corresponding to

the respective energy functionals), based on which the snake starts deforming and moving

towards the desired object boundary. Gradient descent can be used to iteratively solve for

the zero of (3.2).

While snakes have the advantage of being tuned to be highly accurate, they have the

drawback of self-intersections. Further, they are not amenable for simultaneously segment-

ing multiple regions of interest as they require the splitting and merging of multiple pa-

rameterized curves, necessitating reparameterization in case of topological changes. Finally,

snakes are not good for 3D segmentation and are very difficult to generalize (to segment

higher-dimensional data).

To overcome these drawbacks, we may geometrically embed the contour as the level set

of a higher-dimensional function [68]. The boundary of an object of interest is then given

by that level set [69].

3.3.2 Geometric Active Contours

A geometric active contour is also formulated as a variational problem that involves en-

ergy minimization of an energy functional composed of internal and external energy terms,

much like the parametric active contour described above. The hallmark of a geometric

active contour is a higher-dimensional embedding of the contour; the level set forms this

higher-dimensional embedding of the contour of interest. Given an image f(x), the level-set

function φ : Rd → R, and a contour C = {x ∈ Rd
∣∣φ(x) = 0}, φ(x) is positive inside C, zero

on C and negative outside C [70]. To evolve the contour C, we evolve the level-set function

itself. Akin to parametric active contours described above, evolution of the level-set func-

tion is cast as an energy minimization problem that is solved by introducing an artificial
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time parameter t and computing the solution to the Euler-Lagrange equation:

∂

∂t
φ(x, t) =

∑

i

λiFi(x, t)|∇φ(x, t)|, (3.3)

where Fi is a driving force and λi its weight.

The level-set formulation presupposes an initial curve, which is then evolved based

on (3.3). In a signed-distance interpretation of the level-set function, the forces are com-

puted only at points on the current contour whereas the level-set function is defined over the

entire image domain. Thus, the level-set function is updated at each iteration based on the

so called velocity-extension function to maintain the integrity of the level-set function [68].

One of the advantages of using the level-set embedding is that C is not parameterized,

and in fact, one does not need to keep track of the number and shape(s) of the objects being

tracked as the contour is obtained at any time as the zero level set of the level-set function.

As an example, a geometric active-contour model based on the mean curvature motion is

given by [71],
∂

∂t
φ = Υ(|∇f |)|∇φ|

(
div

∇φ

|∇φ|
)

+ ν,

where

Υ(|∇f |) =
1

1 + |gσ(x, y) ∗ f(x, y)|p ,

p = 2 is an edge-detector of f with Gaussian gσ(x, y) = 1/
√

σ
(
exp

(−|x2 + y2|/4σ
))

, used

to suppress noise and ν > 0 is some constant. In this case, an initial curve embedded in

φ moves in the normal direction with speed Υ(∇f)(curv(φ)(x, y) + mean(φ)) and stops at

the desired boundary where φ vanishes and ν > 0 is a constraint on the area inside the

curve and increases the propagation speed [65]. Another well-known example is the level-set

formulation of the geodesic active-contour model [66].

While the examples mentioned above rely on edge information in the image to stop the

active contour at the boundaries of the objects of interest, edges are often too noisy or

weak leading a contour to overshoot the desired boundary. Thus, edge-based information

may be supplemented (or in the absence of edge information in an image, replaced) with
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region-based information such as statistics based on pixel intensities. A classic example of

a region-based geometric active contour is the Chan-Vese model [65].

The key to active contours’ or level-set based techniques’ flexibility lies in the fact that

Fi’s may be selected based on the data or application under consideration and suitably

balanced.

A recent example of this class of algorithms that combines different forces to segment

images with low contrast, and outperforms other similar methods on a specific dataset is

the stochastic active contour scheme that we describe in the following section.

3.4 Stochastic Active Contour Scheme

Stochastic Active Contour Scheme (STACS) belongs to the class of geometric active contour

algorithms and it was originally developed to segment MRI images of transplanted mice

hearts in the thigh muscle of mice [67]. The particular application posed the challenge of

low contrast, as the heart (a muscle) was attached to the thigh (another muscle), which

would cause most algorithms (even active-contour based) to not stop at around the desired

location. Besides, the heart chambers were also required to be segmented, which made a

perfect case for using a level-set based approach to be able to adapt to topological changes.

As a key concept, STACS maps the segmentation problem into an energy functional

minimization problem [65,67,70],

minimize: J(C) = λ1J1(C) + λ2J2(C) + λ3J3(C) + J4(C), (3.4)

where C = C(x, y) is the contour, J1(C) incorporates the model matching requirement and

is called the region-based term; J2(C) is an edge-based term; J3(C) incorporates the prior

knowledge on the shape of the contour; J4(C) is the contour smoothing term; and λ1, λ2, λ3

and λ4 are parameters that control the relative strength of J1, J2, J3 and J4, respectively.

The terms on the right hand side of (3.4) are detailed hereafter.

The model-matching term, J1. This term is used to force the contour to partition the

image into two regions with distinct (and homogeneous) statistics. One of the regions forms
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the object(s) of interest, with the statistical modelM∞ and the other, the background, with

the statistical model M∈. The contour is moved around by attempting to minimize the

function

J0(C) = p(u|C,M∞,M∈),

where p(u|C,M∞,M∈) is the joint probability density function of the image intensities u

given the contour C and models M∞ and M∈.

Let p1 and p2 be the probability density functions (pdf’s) of the models M∞ and

M∞ respectively. Since the intensities of the pixels outside and inside the contour C are

statistically independent, the equation above can be written as J0(C) = p1(u1|C)p2(u1|C).

Taking the negative log of the above gives

J1(C) = − ln(p1(u1|C))− ln(p2(u2|C)),

and maximizing J0(C) is equivalent to minimizing J1(C).

Suppose that the intensities of all pixels uij within each region are statistically indepen-

dent. Then, when contour C is embedded as the zero level of the level set function φ, the

equation for J1(φ) becomes

J1(φ) =
∫

Ω
− ln[p1(u(x, y))]Hε(φ(x, y))− ln[p2(u(x, y))][1−Hε(φ(x, y))]dxdy,

where Hε(φ(x, y)), is the regularized Heaviside function representing the pixels within the

contour, 1−Hε(φ(x, y)) is the function representing the pixels outside the contour and the

integral is taken over the entire domain Ω of the image. The original formulation of STACS

for MRI images of transplanted hearts in mice assumes the object and background to be

Gaussian [72].

The edge-based term, J2. This term forces the contour to search for the prominent
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edges in the image u(x, y) by minimizing the edge map Υ(x, y) along the contour C,

J2(C) =
∫

C
Υ(x, y)ds,

where ds represents the infinitesimal Euclidean arc length of the contour C, and Υ(x, y) is

an edge map derived from the original image u(x, y). The simplest way to obtain the edge

map is to take the gradient magnitude of the image u(x, y), i.e., Υ(x, y) = −|∇gσ ∗u(x, y)|2,
where gσ is the 2D Gaussian kernel with variance σ2, ∇ is the gradient operator and ∗ is

the 2D convolution operator.

When C is embedded in the level set φ, we get

J2(φ) =
∫

C
Υ(x, y)|Hε(φ(x, y))|dxdy =

∫

C
Υ(x, y)δ(φ(x, y))|∇φ(x, y)|dxdy.

Shape prior, J3. For the specific problem addressed in [72], this term incorporates an

ellipse shape into the model. In general, this term could incorporate any (parameterizable)

shape that we desire the contour to approximate. Let CH(θ) be the parametric form of the

desired shape with parameters of the shape in vector θ. Forcing the shape of the evolving

contour C to resemble the contour of shape CH(θ) is done by minimizing the squared

distance of the pixels on the contour C to the contour of the desired shape CH(θ). In other

words, we minimize J3(C) =
∫
C D2ds, where D(x, y) is the appropriate distance metric.

Embedding C as the zero of the level set function φ(x, y), we have

J3(φ) =
∫

Ω
D2(x, y)δε(φ(x, y))|∇φ(x, y)|dxdy.

Contour smoothing, J4. This term is used to ensure the final contour is smooth and

not too noisy. As minimizing the total length of C is a way to minimize the jaggedness of

the contour, we minimize the total Euclidean arc length of the contour C. In other words,

we could minimize

J4(C) =
∫

C
ds.
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In terms of the level set function φ(x, y), this would be

J4(φ) =
∫

Ω
|Hε(φ(x, y))|dxdy =

∫

Ω
δε(φ(x, y))|∇φ(x, y))|dxdy,

where δε(φ) is the regularized delta function that selectively masks out only the pixels in

the contour C.

The minimum of the functional is found at a zero of its first variation δJ(C) = 0, from

which a PDE is extracted of the form F (C) = 0, termed the Euler-Lagrange equation. This

equation is usually solved by introducing an artificial parameter t into C(x, y, t), and solving

∂C

∂t
= F (C). (3.5)

In steady state, ∂C/∂t = 0, leading to the solution of the Euler-Lagrange equation by

introducing an explicit parameter, t, as described in (3.3).

For STACS, a specific form of the equation is obtained with F4 = Fc, F3 = Fs are the

internal, curvature and shape forces, and F1 = Fr, F2 = Fg are the external, region-based

and edge-based forces, and λ1,2,3,4 = λr,g,s,c, respectively.

3.5 Other Methods

There have been several different approaches to segmentation depending on different per-

spectives taken to the problem. For example, one could think of segmentation as the problem

of dividing a given image into a (predefined) number of classes. This opens up a host of

methods such as neural networks, traditionally designed for classification (or pattern recog-

nition) to be used for segmentation. In this section, we discuss a few of the many different

methods used for segmentation.

3.5.1 Graph-Theoretic and Related Methods

Recently, particularly in the vision and machine learning communities, there has been a

significant amount of research on graph-theoretic approaches such as Bayesian networks,

normalized cuts, spectral graph partitioning and graphical models for segmentation [73–76].
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Bayesian Networks. This method consists of assigning a class label from a predefined

set of labels to each pixel in the image and subsequently combining the decisions in a local

neighborhood of a pixel to form meaningful segments of the image. The decision of region

memberships is based on some prior knowledge acquired from a set of training images. As

a training set is necessary for the decision phase, Bayesian networks are often categorized

as a supervised segmentation method. Bayesian networks are also called belief networks

because of the use of some belief (prior knowledge) in making a decision. Belief networks

can use any other method, most notably Markov-random-field, maximum likelihood or tree-

structured-based methods, to build the prior segmentation models for the decision phase.

The decision phase may also be referred to as belief propagation.

In some applications where sufficient and representative training images are available,

neural networks have been used for segmentation.

Normalized cut. This method casts the problem of segmentation as that of graph

partitioning. Unlike belief propagation, which focuses on local features and their degree of

similarity, normalized cut is a global criterion for segmenting an image. The normalized

cut criterion measures a global dissimilarity between groups and a global similarity within

groups to partition the image [74]. Unlike a min-cut (or max-cut) graph partitioning that

might result in optimal cuts of isolated pixels and large portions of the image, the normalized

cut criterion can be used to penalize such an unbalanced cut to achieve a more meaningful

segmentation.

Spectral-graph partitioning. A spectral graph is a graph representation, G = 〈V,E〉,
of an image, where V is a set of nodes, which could be pixels (or a group of pixels) or features

(such as edge features) extracted from an image and E is a set of edges between these nodes

that represents the relationship, such as the proximity of edges, between members of V .

The problem of segmentation is thus recast as one of partitioning the spectral graph so

that a partition consists of members of V with the strength of the relationship defined by

E being strongest between members of the same partition and weakest between members

of different partitions. The design goal is to ultimately achieve a segmentation where each
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Figure 3.1: Two-channel analysis filter bank for 2D signals. The filter h is a highpass filter and g is a
lowpass filter.

partition corresponds to a meaningful segment of the image. Different methods, such as

edge detection, may be used to transform an image to its spectral-graph representation and

different methods, such as normalized cuts, may be used to partition. This technique has

been combined with machine learning approaches such as the Hebbian rule to facilitate the

partitioning process.

3.5.2 Multiresolution and Multiscale Methods

Multiresolution (MR) transformations are known to offer localization, adaptivity and speed.

For example, our team showed that using MR for classification of fluorescence microscope

data significantly improves the classification accuracy, demonstrating the presence of hidden

information in multiresolution subspaces [4]. The theory of MR is well-established and

widely applied to many image processing problems with great success [77–79].

The fundamental unit for the most common form of this class of transformations—the

discrete wavelet transform—is a two-channel analysis filter bank. Each channel of the two-

channel filter bank consists of a filtering operation (either lowpass or highpass depending on

the channel) followed by a downsampling by two. The lowpass filter g and its even translates

typically form an orthonormal set. Further, for an orthonormal transform, g is orthogonal

to the orthonormal set formed by the highpass filter h and its even translates [79]. When

the analysis filter bank is applied to an image, it operates first on the rows of the image

then on the columns. This results in four complementary labeled images (see Figure 3.1).
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There are various benefits to using MR in segmentation. For instance, we can use MR

to obtain a very fast initial segmentation on a very coarse approximation of the image and

successively refine the result to the desired extent [80]. MR can also be used to characterize

edges in image and to detect those edges that are meaningful to its segmentation [81].

Redundant versions of MR have proved to be more useful than their nonredundant versions

for classification applications and have also been applied to segmentation tasks. However,

nonredundant MR adds significantly to the computational load.

MR, rather than being used independently for segmentation, can be combined with

most other segmentation methods to form a powerful combination that improves either the

efficacy and/or efficiency of the segmentation method. For example, anisotropic diffusion

and wavelet-based edge-detection have been shown to be superior to a fixed resolution/scale

edge detection [81, 82]. Moreover, at any given resolution, we may apply the segmentation

method of our choice at multiple scales to obtain information not provided by applying

the same method at a fixed scale. Some methods using multiscale (MS) approaches have

demonstrated the advantages of applying a method at multiple scales over their fixed scale

counterparts [83,84]. MS and MR methods have both been shown to be highly advantageous

to segmentation and have been combined with most of the methods described in the sections

above [85–87]. In particular, we will be combining MR and MS with active contours and the

active-mask framework that we propose in this work. Ideas along these lines have appeared

in [84,88–96].

3.6 Segmentation Methods for Fluorescence Microscopy

While the literature abounds in segmentation methods for digital images in various appli-

cations, the nature of fluorescence microscope images is very different from digital images

seen in applications such as multimedia. For instance, fluorescence microscope images may

lack edges (see Fig. 2.1(c)-(d)) that are central to defining an object of interest in a tradi-

tional application. Thus, many of the algorithms developed by image processing, computer

vision and machine learning communities for generic applications cannot be directly used to

analyze biological images. Moreover, fluorescence microscope images may have “features”
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Figure 3.2: The Voronoi tessellation of a plane showing Voronoi polygons for points x, y and z.

that are topical to the application and, when tapped, aid in their segmentation. Thus, it

becomes necessary to design segmentation methods tailored for this class of images.

3.6.1 Voronoi-Based Methods

One of the most widely used region-based cell segmentation methods in fluorescence micro-

scopy is Voronoi based [97,98].

Voronoi diagrams are based on some measure δ(·) between two points in a plane. Let

x and y be two points in the Euclidean plane and let δ(x, y) be the Euclidean distance

between them. The bisector of the line joining x and y forms the locus of points equidistant

from x and y and divides the plane into two halves, one of them containing points closer to

x than y and the other containing points closer to y than x. Suppose we add a third point z

to the plane and similarly construct the polygon joining their vertices. The intersection of

the bisectors of these three bisectors is a point equidistant to x, y and z. The intersection

of the half planes formed by the bisector of the lines joining x to y and z respectively, forms

the Voronoi polygon for x (likewise for the other points, y and z). The generalized Voronoi

diagram for a set of (three or more) initial points in a chosen space is a set of complete

polygons under a chosen δ for all (three or more) initial points in a chosen space. The

collection of Voronoi diagrams together with incomplete polygons in the convex hull of the

initial points forms the Voronoi tessellation (see Fig. 3.2) of the plane [99].

Voronoi diagrams applied to cell segmentation. The Voronoi-based segmentation

is the process of obtaining the Voronoi tessellation of the image and depends on an initial
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Figure 3.3: A sketch showing watersheds in a landscape [12].

set of points. In the case of cell images, these initial points are either provided manually, or

automatically and based on, for example, a parallel channel depicting the nuclei of the cells.

A small annulus around the initial points may be used instead of just the points themselves.

With this initialization, Voronoi diagrams are drawn based on δ(·), which could be pixel

values, texture features or any other measure derived from the image. A polygon in the

tessellation corresponds to a region. Voronoi-based segmentation is particularly useful in

coarsely determining the locations of cells and in studying the spatial relationships between

cells.

Disadvantages of Voronoi-based algorithms. Vornoi-based algorithms are usually

not robust to noise. More importantly, they divide the entire image into polygonal regions.

Thus, they do not produce tight contours around the cells and therefore, are not suitable

for applications that depend on an accurate segmentation of the cells.

3.6.2 Seeded Watershed—A Region-Based Method

An algorithm (and its many variants) considered the most accurate for the segmentation

of fluorescence microscope cell images is a region-based segmentation algorithm known as

the Seeded Watershed (SW). Because this is the algorithm we compare ours against, we will

outline the design considerations of this method.

In the watershed algorithm [100], the intensity of the image is interpreted as elevation in

a landscape. The algorithm splits the image into regions similar to the drainage regions of

this landscape, so that points are assigned to the same region if they drain to the same point
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(see Fig. 3.3). To create the watersheds, a gradient magnitude image is built in which water

will start to rise from minima representing areas of low gradient (such as areas inside the

cell or in the background regions), and the watershed borders will be built at the maxima

of the gradient magnitude. Thus, ideally, the borders will be at the edges of cells, assuming

those edges are well defined. For fluorescence microscope images, the problem is that these

edges are not well defined and so the contour (watershed border) keeps evolving following

gradual changes in the gradient, resulting in segmented regions much larger than the true

cell.

Yet another, more recent design for the watershed, is based on binning regions in the

image based on their gray scale values or building watersheds based on a distance map of a

thresholded (binarized) version of the image to be segmented [18]. This method results in

a large number of spurious splits and requires a postprocessing method to merge some of

these regions.

In the SW algorithm [101,102], instead of letting water rise from every minimum in the

image, water rises only from places marked as seeds (such as the cell’s DNA image, if a

parallel DNA channel is available). This design ensures we have as many regions as the

number of initial seeds.

Problems with watershed-based methods. The problems with watershed and its

variants are twofold. Firstly, many segmented regions are discarded due to true cells being

segmented into more than one region (splits), and more than one cell being merged into

the same region (merges, see Fig. 4.3(c)). Any postprocessing to deal with merges would

typically be manual. Secondly, by design, the SW algorithm splits the image into regions

and does not define a contour around the region of interest. The segmented regions are

typically much larger than the true cell (same figure), leading to background noise outside

the cell being included with the cell.

Variations on a theme. To solve the problem of separating single cells from a multicell

image taken by a fluorescence microscope, various modifications of the watershed algorithm

have been extensively used. A survey of these algorithms is found in [103]. For instance, a
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shape-based watershed segmentation has been found useful for segmenting cell nuclei [104].

Since merging of contours is a common problem with the watershed algorithms, rules may

be defined so that neighboring objects may be merged or not. An example is to use the

mean value of pixels along the border to decide if the border must exist [105].

3.6.3 Other Methods

As we noted in Section 2.1.1, the task of segmenting the nucleus of a cell in a fluorescence

microscope image is simple compared to that of segmenting the cell itself (see Fig. 2.1(b)

and (d)). However, it is more challenging to segment nuclei in tissue images as the cells

may be more tightly packed and the nuclei less distinct. In one of the studies, the authors

have applied a partial differential equation based geometric modeling that uses the level

set embedding to preprocess and postprocess the image to solve the problem of segmenting

nuclei from tissue images in three dimensions [106]. To isolate the individual cells from a

tissue image is even more challenging and an attempt has been made to solve this problem

by applying the more recent techniques of gradient curvature flows that also use a level set

embedding [107]. These methods, designed for a specific application, have been attended

with encouraging success.

Automating the entire process of segmentation may not be feasible when a high seg-

mentation accuracy is desired. Thus, in off-line processes (small-scale studies), it may be

viable to allow some user intervention to ensure better segmentation. A recent study based

on dynamic programming accepted two inputs from the user—a point on the cell boundary

and another inside the cell—to initiate the algorithm. Thereafter the segmentation was au-

tomatic. The optimum border around each cell was defined as the border with an average

intensity per unit length greater that any other possible border around that cell, and was

calculated using the gray-weighted distance transform. They reported perfect segmentation

using this approach [108]. The disadvantages of these and other such methods are that (1)

they cannot be applied to high-throughput applications due to the need for human inter-

vention and (2) they are heuristic-based. Selecting the right heuristic involves significant

effort and if the heuristic is not well chosen the segmentation outcome is beset with faults.
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Apart from fluorescence microscope images, there have been algorithms based on com-

puter vision applied to other imaging modalities within bioimaging. An example is the use

of principal component analysis for the analysis of cell shape in light micrographs [109] and

active contour methods for DIC or phase contrast microscope images [110]. Despite the

reported success of these methods, not much has been done to extend them to fluorescence

microscope images. To a large extent, watershed continues to be held as the most accurate,

and the Vornoi-based and SW algorithms that are widely used. Occasionally, new methods

are developed for a particular application in fluorescence microscopy, but are not seen to be

used by others. A major reason for this stunt in progress is attributed to the nonavailability

of the new methods or their nonflexibility to be tuned for applications other than those for

which they were originally designed.

There have also been some commercial efforts towards developing fluorescence micro-

scope image analysis toolboxes that contain generic spot detection, thresholding-based or

edge-based segmentation algorithms along with some preprocessing and postprocessing tools

(for example, BioApplication from Cellomics, ImageJ and others [111]). However, most of

the available generic tools fail to perform satisfactorily when applied to a specific problem

and more notably, are not within easy reach of end users or developers. A major effort

towards making some of the cell analysis algorithms available as software that can be used

by biologists is the Cell Profiler [112], an open-source software that is freely available, mod-

ular and compatible with most imaging formats. It allows the user to analyze thousands

of cells without tedious user interaction. Following this lead and inspired by the idea of

reproducible research, we hope that more algorithms will be made available for use as they

are published.

As active contour-based methods are very flexible, besides combining them with MR

and MS, there have been efforts to combine concepts from Bayesian networks and graph

partitioning as well [113–115]. In addition to their flexibility to incorporate different ap-

proaches within the same framework, the ability of active contours to be tuned to be highly

accurate has made them popular in biomedical image analysis, particularly for segmentation
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and tracking [116,117]. While they have been among the state-of-the-art tools in the med-

ical imaging community for nearly a decade now, active contours have only recently made

inroads into segmentation of biological images with promising success [13, 106, 110, 118].

In the following section we will see how STACS can be adapted to segment fluorescence

microscope cell images.
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Chapter 4

STACS for Fluorescence

Microscopy

In this section we discuss how STACS was adapted to fluorescence microscope cell image

segmentation in the context of the application of studying subcellular location patterns.

Sections 4.2-4.3 are previous work conducted by our lab and reported in [13]. As I have

been involved in extending the algorithm extensively (Section 4.4 onwards) and as the

new framework we present in this thesis has been inspired by the design ideas and results of

adapting STACS to fluorescence microscopy as well as extending STACS to other modalities,

we have devoted a chapter to each of these two topics and, in particular, discuss the previous

work at length in this chapter.

4.1 Dataset

Three patterns (total DNA, specific protein and total protein) in HeLa cells expressing

GFP-UCE were imaged using confocal immunofluorescence microscopy (see Fig. 2.1). Serial

sections in the z-axis through entire cells were taken with a step size of 0.1628µm and a

pixel size of 0.0977µm in the x and y dimensions (1024×1024 pixels per section). There are

82 images in this set from 8 3D volumes [1]. Only the total-DNA and total-protein channels

were used for segmentation.
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4.1.1 Reference for Evaluation—Hand-Segmented Images

For each image in the dataset, the DNA channel was used to guide a manual segmentation

of the total-protein channel in each case. We use this hand segmentation (HS) as our

reference for evaluating the performance of the algorithm. Because the total-protein images

are noisy and devoid of edges, fluorescent pixels inundate the image with no clear separation

between two cells in the foreground or between the foreground and background. Thus, HS

is often imprecise, with the same image having different segmentations. A couple of extreme

examples of HS contours from two different people are shown in Fig. 4.2.

The examples demonstrate the large variation between the HS examples and establish

that the performance measure numbers are within a large margin of error (due to the large

variation in the reference). Thus, although the algorithms’ results are compared to HS

contours, it might be that the algorithm actually performs correctly while disagreeing with

HS.

4.2 Modified STACS

The crux of the STACS algorithm is the choice of forces used for segmentation. As discussed

in the previous chapter, the original STACS uses four forces: region-based, edge, shape prior

and contour smoothness to segment cardiac MRI images. However, fluorescence microscope

cell images do not exhibit any edges (see Fig. 4.1(b) and Fig. 4.1(d)), obviating the need for

an edge-based force. Moreover, as each cell has a different shape, there is no benefit from

(a) DNA channel (b) Total protein (c) DNA channel (d) Total protein

Figure 4.1: Example multicell images for an easy case (first two images) and a difficult one (last two
images). The images (a) and (c) depict the DNA channel and (b) and (d) depict the total protein channel.
The algorithms are run on the total- protein image using the DNA channel as the starting contour for each
case. (Images courtesy of Dr. R. F. Murphy [2].)
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(a) Easy 1 (b) Easy 2 (c) Difficult 1 (d) Difficult 2

Figure 4.2: HS of on an easy case (first two images) and a difficult one (last two images) by two different
people. These images have been cropped to highlight the differences. The interior contours in white represent
the boundaries of total DNA of the cells obtained from an edge detection on the corresponding DNA channels
whereas the contours in yellow represent HS of the total-protein channels. (Original images courtesy of Dr.
R. F. Murphy [2].)

constraining the shape of the contour. Thus, the modified STACS used only two forces, an

external, region-based force Fr and an internal force Fc which depended on the curvature

of the contour. The evolution of the level-set function was given by

∂φ(x, y, t)
∂t

= λrFr(x, y)|∇φ(x, y, t)|+ λcFc(x, y, t)|∇φ(x, y, t)|, (4.1)

where λr and λc were scalar weights for the region-based force and the curvature force,

respectively [13]. The authors used the information in the DNA channel to obtain the

number of cells in the image, as well as an initial contour. The information in the total-

protein channel was used to drive the segmentation algorithm.

4.2.1 Initialization of the Level-Set Function

Equation (4.1) assumes that an initial level set function is available. This was obtained by

performing an edge-based segmentation on the DNA channel to develop initial contours.

Subsequently, the level-set function was initialized using the Euclidean distance transform:

Given a binary mask as input, for each pixel in the plane, the authors assigned the shortest

Euclidean distance between the pixel and the nearest point on a contour as its value. Finally,

they invert the sign of the distance for pixels outside of the contour. Thus, the value of any

point (x, y) in the level-set function represented its distance from the closest point to it on

the current contour and the sign of the value indicated whether (x, y) was inside or outside
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the current contour.

4.2.2 Evolution of the Level-Set Function

The evolution of the level-set function is given by (4.1) and is driven by the following forces.

External force, Fr. The region-based force is based on the assumption that the pixels

in the objects and the background are drawn from two different statistical models; M̂in and

M̂out. Thus, a pixel lying inside the contour C should be described by the model M̂in, while

a pixel outside the contour should be described by M̂out [67]. More specifically, the external

region-based force relies on the idea that the density of proteins should be higher inside

the cell than outside. As a simple statistical measure, the mean number of white pixels in

the image (previously converted to a binary image) are used. For each pixel (x, y) on the

contour, the mean number of white pixels is estimated in a small rectangular neighborhood

Wd around the pixel given by the span of (x−Wd, y) and (x, y+Wd), inside and outside the

contour as Min and Mout respectively. The deviation between the model and these values

let one define a force to drive the segmentation. Thus, the region based force at each pixel

(x, y) on the current contour is given by,

Fr = Min − M̂in + Mout − M̂out. (4.2)

The strength of Fr in driving the evolution is determined by its weight, λr.

Internal force, Fc. The internal force is a smoothing force based on the curvature

Fc of the contour. Given the level set function, this quantity can be computed at each

iteration [70] as:

Fc =
φxxφ2

y − 2φxφyφxy + φyyφ
2
x

|∇φ|3 ,

where φx, φy, φxx, φyy, φxy are the appropriate partial derivatives with respect to x and y

and |∇φ| =
√

φ2
x + φ2

x. This force imposes that the final contour not be jagged but be

smooth. The strength of the smoothness is determined by its weight, λc.
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Annealing schedule. In (4.1), the coefficients λr and λc evolve in time: this is referred

to as annealing, or, cooling schedule in [67]. (This is different from the “annealing” used in

traditional optimization literature.) The region-based coefficient λr is kept relatively large

initially and its influence is reduced with iteration number, whereas the curvature coefficient

λc is kept constant, so its influence is greater towards the end.

4.2.3 Numerical Implementation

The evolution described in (4.1) is realized through the numerical implementation,

φη+1
i,j = φη

i,j + ∆t

[
λr

(
max(F η

ri,j
, 0)∆+ + min(F η

ri,j
, 0)∆−

)
− λcF

η
ci,j

√
(D0x

i,j)2 + (D0y
i,j)2

]
,

(4.3)

where η denotes the discrete time index with time step ∆t and subscripts i, j denote the

discrete values of the corresponding continuous domain coordinates (x, y). φη
i,j is the grid

value of the point (i, j) at ηth iteration and is an approximation to the continuous domain

φ(x, y) at that iteration. Likewise, F η
ri,j and F η

ci,j are approximations to Fr and Fc in

equations (4.2) and (4.2.2).

The spatial derivatives necessary of φ are computed using the forward, backward and

central approximations of φx and φy respectively,

D+x
i,j = φη

i+1,j − φη
i,j , D+y

i,j = φn
i,j+1 − φη

i,j ,

D−x
i,j = φη

i,j − φη
i−1,j , D−y

i,j = φn
i,j − φη

i,j−1,

D0x
i,j =

φη
i+1,j − φη

i−1,j

2
and D0y

i,j =
φη

i,j+1 − φη
i,j−1

2
.

The symbols,

∆+ =
√

max(D−x
i,j , 0)2 + min(D+x

i,j , 0)2 + max(D−y
i,j , 0)2 + min(D+y

i,j , 0)2,

∆− =
√

max(D+x
i,j , 0)2 + min(D−x

i,j , 0)2 + max(D+y
i,j , 0)2 + min(D−y

i,j , 0)2

represent the forward and backward approximations of |∇φ|. Finally, the numerical approx-

imation of the curvature term in (4.2.2) is implemented using central differences, φx = D0x
i,j ,
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φy = D0y
i,j and

φxx = φη
i−1,j − 2φη

i,j + φη
i+1,j ,

φyy = φη
i,j−1 − 2φη

i,j + φη
i,j+1 and

φxy =
φη

i−1,j−1 − φη
i+1,j − φη

i−1,j+1 + φη
i+1,j+1

4
.

At every iteration η, forces are computed only at the points (x, y) on the current contour

C. However, φ is defined over the entire image domain. To keep the φ consistent across

iterations, it becomes necessary to update the rest of the values in φ in accordance with

the values computed at the points on the current contour. This process of level-set update

is called the velocity extension function. As φ is interpreted as a signed distance function,

moving any point (x, y) on the contour by (∆x,∆y) in some direction, it would move all

the points connected to (x, y) by the same amount. The movement of points connected to

the contour are most influenced by the movement of the point they are closest to. Hence,

for every point (x̃, x̃) in φ, we compute its distance from every point (x, y) on the current

contour. We pick that point (x, y) on the contour which is closest to (x̃, ỹ) and update φ

at (x̃, ỹ) by the same value it is being updated by at (x, y). Trivially, for each point on the

contour, it is closest to itself.

4.2.4 Results

The results of this algorithm are given in Fig. 4.3, third column, for an easier case (top) and

a harder case (bottom) [13]. As these are intermediate results, no objective measures were

computed. From the figures we see that MSTACS produces continuous, smooth contours

that appear to match well the hand segmented contours (first column). However, when

cells are close together or linked by an area of noise, merges occur (for both easy and

difficult cases), that is, two individual contours at the initialization phase merge during the

segmentation process. This is because, as explained in Section 3.3.2, level-set formulation

of active contours handle changes in topology gracefully, that is, contours merge and split
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Figure 4.3: Segmentation results on total-protein images of HeLa cells [13]. Sample images for an easy
case (top row) and a difficult one (bottom row). All images are of total protein with the initial contour
inside the final segmented contour. Cropped regions are shown for detail. First column: Hand-segmented
images used as ground truth. Second column: Results of the modified seeded watershed [3]. Note how in
the difficult case (bottom image), there are both splits and merges. Third column: Results of the modified
STACS algorithm. Note how in both cases, the contours merge, creating artificial cells. Fourth column:
Results after 35 iterations of our algorithm with topology preservation added (TPSTACS). The merging of
contours is no longer a problem. (Original images courtesy of Dr. R. F. Murphy [2].)

adapting to the image topology. Since we know the number of cells (given by the number

of nuclei in the DNA channel), we want to impose the constant number of contours on our

algorithm (termed “topology preservation”).

4.3 Topology Preserving STACS

In the context of fluorescence microscope cell image segmentation, topology is used to mean

the number of contours being represented by level-set function. Thus, topology preservation

refers to conserving the number of contours present at the end of the initialization phase

throughout the evolution. To do this, the authors followed the approach in [119], where the

notion of topology preserving level-set method is introduced.

Under given assumptions, a change in topology can occur only at points where the sign

of the level set function is changing. Moreover, at these points, a change in topology will

occur if the point is so-called nonsimple [120]. Fig. 4.4 shows an example of a simple and

a nonsimple point and how a change in the sign of the nonsimple point results in a change
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(a) Discrete lattice

q

(b) Topology change

p

(c) No change

Figure 4.4: Simple and nonsimple points in digital topology: (a) A discrete lattice with 4-connected black
components that are the background and an 8-connected white component that is the foreground. p and
q are foreground points. (b) Deletion of p causes a change in the number of white components and hence
topology. Thus p is a nonsimple point. (c) Deletion of q, a nonisolated border point, does not change the
topology and so q is a simple point.

in the topology. The simple-point criterion is based on the idea of digital topology and

topological number [119]. The approach is to monitor the change of sign of the level-set

function and apply the simple-point criterion.

From Fig. 4.4(c), it is clear that for any point (i, j) in a discrete lattice, one only

needs to test in a 3 × 3 neighborhood around (i, j) to determine if the point is simple

or nonsimple. Considering a discrete lattice with (4,8) connectivity (that is, 4-connected

background and 8-connected foreground), the simple-point criterion states that a point

is simple if its topological numbers, T4 and T8, are both equal to one. Otherwise it is

nonsimple.

The topological numbers T4 and T8 give the number of connected components in the

3 × 3 neighborhood of a point on the current contour in its background and foreground

mask, respectively. The background and foreground masks are extracted from φ as the

characteristic functions of all points less than zero and greater than or equal to zero, re-

spectively. Then, to compute T4 for a point (i, j), the 3 × 3 binary neighborhood around

(i, j) is considered from the background mask. If, after deleting (i, j) (assuming it was

present) from this 3 × 3 block, the number of 4-connected components is 1, then T4 = 1.

Likewise, to compute T8 for a point (i, j), the 3 × 3 binary neighborhood around (i, j) is

considered from the foreground mask. If, after deleting (i, j) (assuming it was present) from
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this 3× 3 block, the number of 8-connected components is 1, then T8 = 1.

If point (i, j) is not simple, the level-set function is not allowed to change its sign at

that point. Note that this test is performed at the end of each iteration on all points

that have changed their sign from the previous iteration of our Modified STACS algorithm.

This test does not require much overhead. The pseudocode for TPSTACS is presented in

Algorithm 1.

Algorithm 1: [TPSTACS] Input: Id, a DNA image, Ip, a total protein image, dt,
time step, scalar ηt, number of iterations, scalar λc, weight of the curvature force Fc,
Sr, scheme of evolution for the coefficient of the region-based force Fr. Output: φ, the
final level set function.

TPSTACS(Id, Ip, dt, ηt, λc, Sr)
initialize level set function φ(0) based on edge detection in Id and Euclidean distance
transform
compute all the values of λr based on Sr

convert Ip to a binary image by thresholding
for η = 1 to ηt do

for all points on the contour do
compute Fr, Fcurv, RHS of (4.1)

end for
extend the values to the whole domain, get Fφ

φtmp = φ(η) + dtFφ

for all points where the sign of φ(η) is changing do
if nonsimple point then

prevent change of sign of φ: φtmp = ε · sign(φ(η))
end if

end for
φ(η + 1) = φtmp

end for
return φ

4.3.1 Measures of Performance

To assess the performance of the algorithm, the authors of the previous work used these

common methods: area overlap, area similarity and recall/precision. They compared SW

and TPSTACS to the hand segmented images (HS), as well as DNA images. We delve

deeper into these measures for a deeper insight to the results and also because we use some

of these measures to quantify the performance of the algorithms we present this in this

49



thesis.

Area Overlap. This detects how much of each cell overlaps with HS (or DNA). HSi,

i = 1, . . . , C, is an array with values 1 where the hand segmented masks are nonzero and 0

elsewhere. Similarly, SWi (i = 1, . . . , Cs), and TPi (i = 1, . . . , Ct), denote masks output by

either SW or TPSTACS. Note that there are C true cells, and SW and TPSTACS output

Cs, Ct contours (masks), which could be different from C. We also denote by n(A) the

number of nonzero values in the mask A. Then, area overlap is defined as

AOi,j =
n(HSi ∧ SWj)

n(HSi)
,

where ∧ denotes the logical “and” operator (pixel-wise). The above equation is valid for

SW, and for TPSTACS we substitute TP for SW .

Algorithm 2 gives the procedure used to compute the area overlap and is later useful

for recall/precision. For each true cell mask (HS or DNA) in each image, we compute the

area overlap with all SW as well as TP masks. This gives rise to matrices ASW and ATP

(again for HS and DNA). These matrices are used later to compute recall and precision

with respect to a series of thresholds. Then, for each SW, TP mask, the largest overlap per

true cell mask (per row) is found, and this is added to the overall area overlap AOSW and

AOTP . These are then normalized by the number of true cells in each image and the total

number of images.

Note that this measure will count the splits although the resulting contour might be

discarded. For example, if a cell is split in half between two contours, the AO will count 50%

once though the segmentation result is not usable. Similarly, if two cells are merged into one

contour, one of them will be counted as 100% once, though again, the segmentation result

is not usable. This measure will be lenient towards algorithms producing loose contours,

such as SW.

Area Similarity. Another commonly used measure of performance is Area Similarity

(AS) [121], which, for each hand segmented mask, compares the area of that mask with

the area of any SW, TP mask which overlaps with it and normalizes it by the total area of
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Algorithm 2: [Area Overlap] Input: Set of true cell masks HSi, i = 1, . . . , C, as
well as SW and TPSTACS masks, SWi, i = 1, . . . , S, and TPi, i = 1, . . . , P . Output:
Two arrays. ASW of size S × C and ATP of size P × C, containing area overlaps for
all cell masks and all output masks for both algorithms. Also, two area overlaps for
SW and TP are output: AOSW and AOTP .

AreaOverlap(HS, SW , TP )
for all images, n = 1 to N do

for all true cell masks, i = 1 to C do
for all SW masks, j = 1 to S, TP masks, k = 1 to P do

compute AOi,j and store in (ASW )n,i,j

compute AOi,k and store in (ATP )n,i,k

keep track of S and P
end for

end for
Initialize AOSW = 0, AOTP = 0
for all SW masks, j = 1 to S, TP masks, k = 1 to P do

find the largest overlap, maxi (ASW )n,i,j , add to AOSW

find the largest overlap, maxi (ATP )n,i,k, add to AOTP

keep track of S and P
end for
normalize AOSW and AOTP by the number of true cells C

end for
normalize all measures across all images
return ASW , ATP , AOSW , AOTP

both masks (unlike area overlap). Thus

ASi,j =
2n(HSi ∧ SWj)

n(HSi) + n(SWj)
,

for seeded watershed, and similarly for TPSTACS. As for area overlap, the number is

normalized by the number of true cells present, as well as the total number of images. This

measure penalizes an algorithm if its contour is not tight, even though it might contain the

entire hand segmented contour. For this application, tightness of the contour is a desirable

property as a nontight contour will introduce a significant amount of background noise

existing outside the cell. According to [121], AS ≥ 70% indicates excellent agreement of

the segmented region with HS.

Recall and Precision. The recall/precision method derives two quantities, as per-
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centages. Consider the output of the algorithm to be a set of contours (masks). A true

positive, T (+), is a mask designated by the algorithm as a cell and that is one, whereas

a false positive, F (+), is a mask designated as a cell but which is not. Likewise, a false

negative, F (−) is defined. Unlike standard definitions of recall and precision, we do not

have true negatives, T (−). The two quotients, Recall (R) and Precision (P ) can then be

computed:

R =
T (+)

T (+) + F (−)
, P =

T (+)

T (+) + F (+)
.

Note that T (+) +F (−) = C, that is, the number of true positives and false negatives is equal

to the number of true cells. Similarly, T (+) + F (+) = Cs, for SW and T (+) + F (+) = Ct,

for TPSTACS, that is, the number of true positives and false positives is equal to the

total number of contours produced by the algorithms. Since there is no true negative, it is

possible to simultaneously obtain high R as well as P (see Fig. 4.5).
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Figure 4.5: Recall and precision for SW and TPSTACS, computed against the hand segmented images
(HS) as well as the DNA ones (DNA) with values of threshold from 100% decreasing by 5% to 35% [13].
Note that, for orientation, a final, artificial point at T=0% has been added as a projection of the last point
on the curve. The curve for TPSTACS against DNA reduces essentially to one point as all the DNA contours
are enclosed within the final TPSTACS contours.
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Algorithm 3: [Recall/Precision] Input: Two arrays, ASW of size Cs×C and ATP

of size Ct × C, containing area overlaps for all cell masks and all output masks for
both algorithms. Output: Four arrays, RSW , PSW , RTP , PTP , with recall/precision
values for both SW and TP, for various values of threshold for area overlap.

RecallPrecision(ASW , ATP )
initialize lower threshold Tl = 0.1
for all images do

for threshold T = 1 to 0.55 do
initialize ASWtmp = ASW , ATPtmp = ATP

for all values v of ASWtmp, ATPtmp do
if v < Tl then

zero out v in the matrix
else if Tl ≤ v < T then

v = −1
end if

end for
for SW and TPSTACS do

compute T (+) as the number of rows with one strictly positive entry only
compute F (−) = C − T (+)

compute F (+) = Cs − T (+) {for SW}
compute F (+) = Ct − T (+) {for TPSTACS}
compute R, P and store in RSW , PSW , RTP , PTP

end for
end for

end for
normalize all measures across all images
return RSW , PSW , RTP , PTP

4.3.2 Results

The authors of [13] tested TPSTACS on the above set of images with the cooling parameters

set to λr = 50 at the start and λr = 10 at the end of the run, and λc = 1. This means that

the region-based term dominates in the beginning, growing the contours to roughly divide

the pixels based on their statistical models, while the curvature term remains constant and

grows in importance towards the end, smoothing the contour.

Results based on these methods are given in Table 4.1 as well as Fig. 4.3. Both algorithms

were tested against HS as well as DNA. All measures have been averaged over all cells and

all images. In terms of recall and precision, which roughly measure the percentage of usable

contours after segmentation, TPSTACS outperforms SW by a fair margin. This is because
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SW [%] TPSTACS [%]

Area Similarity (AS) 30.82 80.51
Area Overlap (AO) HS 62.15 82.14

DNA 62.29 99.80
Recall (R) HS (T=70%) 37.88 71.13

DNA (T=95%) 36.75 99.06
Precision (P) HS (T=70%) 39.99 76.82

DNA (T=95%) 36.28 99.06

Table 4.1: Segmentation results for the seeded watershed algorithm (SW) and our topology-preserving
STACS (TPSTACS) [13]. Both algorithms were tested against both hand segmented images (HS) as well as
the DNA ones (DNA). Note that R and P are given for the value of threshold T = 70% for HS and T = 95%
for DNA. Other values of R and P are given in Fig. 4.5.

there is extensive splitting and merging in SW, whereas there are few in TPSTACS due to

our topology preservation constraint.

Note that the measures of recall and precision are somewhat coarse as they do not take

into account the fit of the final contour to the hand segmented one. Thus, area similarity is

used to compare the areas of hand segmented cells versus those segmented both by SW as

well as TPSTACS. The measure yielded 80.51% for TPSTACS versus 30.82% for SW; this

was expected as TPSTACS produces tight contours as opposed to oversegmented SW ones

(see Fig. 4.3, second and fourth columns). Area overlap yielded 82.14% for TPSTACS versus

62.15% for SW (against HS). Looking at the area overlap against the DNA (as well as recall

and precision against the DNA), we see that essentially, almost 100% of our segmented cells

are usable. Therefore, both objective (recall/precision, area similarity and area overlap) and

subjective (visual inspection) measures of quality establish that TPSTACS outperforms SW

by a fair margin.

4.4 Discussion—Transitioning from the Past to the Present

In summary, by using the combination of STACS with topology preservation, the authors

have built a powerful algorithm for segmentation of fluorescence microscopy images [13].

We note that the quantitative results obtained for TPSTACS establishes the accuracy of the

initialization procedure. Further, although the parallel DNA channel was used to initialize

the seeds even for SW, as they were not used in exactly the same way, the results for the

various measures are different. That is, the poor performance of SW due to splits and
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merges is due in large measure to faulty initialization. Even with perfect initialization SW

is not designed to produce tight contours around the cells. TPSTACS has the upper hand

in this respect. Up to this point, we have presented the previous work on top which we

began to build to ultimately lead to the new framework.

In the following sections we discuss improvements to TPSTACS to enhance the accu-

racy of segmentation and/or decrease the runtime of the algorithm. As AO does not give us

an accurate measure of how well automated segmentation matches with HS, we no longer

report this measure for the modifications proposed to TPSTACS. Moreover, as the initial-

ization procedure using the parallel DNA channel is nearly 100% accurate, we cease to

measure the recall and precision measures, which give us a coarse measure of the accuracy

of cell detection. Rather, we report only AS which is a stringent measure that penalizes an

algorithm that does not produce tight contours and describes how similar the final result

is to the desired result—reference algorithm/HS. We also measure runtime and any other

quantity that is relevant to the aspect of the algorithm that we endeavor to improve.

4.5 Local Area Topology Preserving STACS

While TPSTACS is found to be an effective segmentation method, its large run time (ap-

proximately four hours for an image of size 1024 × 1024) does not allow it to be used for

high-throughput applications. A profile of the code reveals that the bottleneck is the ve-

locity extension function, which accounts for nearly 80% of the computational load. This

extension function, as explained above, involves updating the entire level-set function with

the force values computed at only the points on the contour. For this, we compute the

distance of every point in the level-set function to every point on the current contour (the

zero level set). This step of extending the forces to update the level-set function is a time-

consuming and computation-intensive process. We note that the approach described here is

indeed the brute force approach to the problem. However, regardless of the implementation,

the process of updating the level set function is an involved one.

As the problem of updating the level-set function is inherent to the often used signed
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distance interpretation of the level-set function, there have been several modifications sug-

gested to expedite the update (for example, see [122–124]). Among the many methods, the

narrow band algorithm is particularly useful in applications that need topology preserva-

tion [125]. However, our experiments revealed that because of the irregular shape of the

cells, it took more computation to construct a narrow band around the cells. Further, the

high density of cells in a given image, caused the narrow bands to overlap very early in

the segmentation process. This required an overhead of resolving the conflicts caused by

overlaps and further contributed to the runtime.

Instead of using a narrow band around the current contour, we decided instead to use

a small rectangular neighborhood Wl around the current contour. This region would be

quick to construct and any overlaps would be resolved by merging the neighborhoods—that

is, considering a single neighborhood around the two (or more contours) whose individual

local areas overlapped. We called this the local area TPSTACS algorithm (LATPSTACS).

The steps of the algorithm are presented Algorithm 4.

We note that if a number of iterations is large and Wl small, then we might see abruptness

in the contour. To overcome the incoherence in the level-set function, we will have to

reinitialize the level-set function. This reinitialization, after sufficiently many iterations, is

inherent to optimization schemes that restrict the region of level-set update (including the

narrow-band algorithm).

4.5.1 Results

For ten representative images of size 512 × 512 pixels, we ran LATPSTACS for ηt = 10

iterations on each image with Wl = 20. This choice ensured LATPSTACS would not

quickly degenerate to the original TPSTACS problem as local areas, being small, would

take a number of iterations before overlapping. We averaged the time taken to compute the

velocity extension function across these 100 iterations and report the result in Table 4.2.

While we saved time during each iteration, it turned out that Wl = 20 was too small a

number, as the contour often hit the bounding-box of the local area and was constrained its

expansion. This necessitated running more iterations of the algorithm to achieve the same
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Algorithm 4: [LATPSTACS] Input: fd, a DNA image, fp, a total protein image,
dt, time step, scalar ηt, total number of iterations, scalar λc, weight of the curvature
force Fc, Sr, scheme of evolution for the coefficient of the region-based force Fr. Wl,
side of the rectangular local area. Output: φ, the final level set function.

LATPSTACS(fd, fp, dt, ηt, λc, Sr, Wl)
initialize level set function φ(0) based on edge detection in fd and Euclidean distance
transform
compute all the values of λr based on Sr

convert Ip to a binary image by thresholding
for η = 1 to ηt do

for all points on the contour do
compute Fr, Fcurv, RHS of (4.1)

end for
for all contours do

find the coordinates imax, jmax, imin and jmin

compute the local area given by the span, imin −Wl/2 and imax + Wl/2,
horizontally and jmin −Wl/2 and jmax + Wl/2, vertically
extend the force values to the local areas, get Fφ̂

end for
φtmp = φ(η) + dtFφ̂

for all points where the sign of φ(η) is changing do
if nonsimple point then

prevent change of sign of φ: φtmp = ε · sign(φ(η))
end if

end for
φ(η + 1) = φtmp

end for
return φ

results as that of TPSTACS.

Increasing Wl, we found that for images of size 1024×1024 pixels, updating the level-set

function at each iteration only in the neighborhood of Wl = 200 pixels around each contour,

we were able to reduce the run time of the algorithm by 18%. The contours obtained by

the method were almost the same as those returned by the TPSTACS because the forces

driving the evolution are computed in exactly the same way. The area similarity measure

between TPSTACS and LATPSTACS was computed to be roughly 98%. However, this too

did not prove to be a useful solution as the high density of cells and increased dimensions

of the local area ensured that the problem quickly degenerated to the original. Moreover,
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Velocity extension [sec] Local-area computation [sec] Entire iteration[sec]

TPSTACS 39.10 0 40.10
LATPTACS 21.90 9.50 32.60
Difference −17.2 +9.50 −7.5

Table 4.2: Average time taken during one iteration of TPSTACS and LATPSTACS for computing the
velocity extension function, local-area computation and the entire iteration on 10 images of size 512 × 512
pixels, running 10 iterations on each image with the local area Wl = 20 pixels.

the gain in computational speed was marginal, given the large margin for improvement.

4.6 Multiresolution STACS

We wanted to further improve the run time of the algorithm without compromising on the

segmentation quality. MR techniques, as described in Section 3.5.2, have been successfully

used to detect edges and aid in the contour evolution for improving the segmentation quality

or speed [81, 89, 92]. While we are not interested in the edges or the transform domain

coefficients themselves, we recognized that the coarse version of the image resulting from

such a transformation will aid its segmentation [80].

As a proof of concept, we used a 2D analysis filter bank (see Fig. 3.1) with the simplest

MR filters, the Haar basis, and performed a 3-level decomposition. We expected (a) the

downsampling to greatly reduce the run time and (b) the smoothing to render the cells easier

to discern. In fact, while we may still use the parallel DNA channel that is available to

initialize the level-set function, due to the lowpass filtering the cells are discernable enough

to let us apply a blob-detection algorithm directly to them. Fig. 4.7 shows an example of

a 2D HeLa cell image segmented without using any parallel channel in the initialization

phase.

The procedure we follow for using multiresolution STACS (MRSTACS) for segmenta-

tion is as follows: (1 ) We decompose the given image f to K levels using a two-channel

filter bank. The choice (length and shape) of the filter(s) used in the filter bank may be

determined based on the shape of the cell and type of marker used (although, experiments

have revealed this does not make a huge difference to the final outcome). We consider only

the coarsest version of the transformed image. (2 ) We initialize the level-set function at
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resolution k = K, φ(k), where η = 0 as described above using either a parallel channel or by

performing blob detection on the transformed image. As the size of the image is smaller by

2k in each dimension, just a few iterations of the level-set function is sufficient to achieve a

coarse segmentation at resolution k.

While we have the image at resolution k − 1, we need to construct the corresponding

φ(k−1). As we do not have the level-set function at the original resolution or even the

detailed versions of the level-set function at resolution k, we would have to construct φ(k−1)

using only φ(k). One of the ways to perform this construction is to interpolate φ(k). There is

a large pool of functions such as the family of β-splines that we could select from. However,

if we want to continue to preserve topology, then the question which begs an answer at this

juncture is, “what does a nonsimple point in φ(k) translate to in φ(k−1)?” An answer to this

is not immediately clear. As our level-set function can be interpreted as a signed distance

transform, we need to preserve Euclidean distances. For this, we may use the β0-spline

or the nearest neighbor interpolation function to ensure the sign of the nonsimple point

remains unchanged in the interpolated version (see Fig. 4.6 for the action of two different

interpolation functions). That is,

φk−1(m,n) =
∑

i

∑

j

φk(2i, 2j)β0[m/2− 2i, n/2− 2j], (4.4)

where

β0(m,n) =





1 if |m|, |n| < 1/2,

1/2 if |m|, |n| = 1/2,

0 otherwise.

.

The only drawback of the nearest neighbor interpolation is that it is relatively not smooth.

To smooth out some of the jaggedness in the contour, we could run a few more iterations

of the algorithm (with the contour smoothness force as the dominating term).

Thus, starting from the final segmentation at an initial coarse resolution k = K, we

successfully lift the result to a higher resolution k − 1 and refine it, all the way till the

desired maximum resolution k = K0. The number of iterations required at each higher
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(a) (b)

Figure 4.6: Images showing the effect of two different interpolation functions used to lift φ to a higher
level. (a) Bicubic interpolation causes merges. (b) Nearest-neighbor interpolation preserves the topology of
the image. (Original images courtesy of Dr. R. F. Murphy [2].)

resolution k − 1 using the final segmentation at resolution k as the starting point, is fewer

than if the initialization and segmentation had been performed at just that resolution k−1.

Thus, it takes fewer iterations and, consequently, much less time to refine the segmentation

outcome on the original image than it would if we performed the segmentation directly on

the original image. The pseudocode for MRSTACS is provided in Algorithm 5.

4.6.1 Results

We decompose an image of size 1024 × 1024 to K = 3 levels and use the same forces and

values of the parameters λr and λc as TPSTACS and recompute the model statistics only.

Due to the subsampling as well as a good initialization due to the smoothing, both provided

by MR, the number of iterations required is much less (2− 3 instead of roughly 45). With

this method (see an example in Fig. 4.7), we compute an initial coarse segmentation in less

than 10 seconds and the final contours in less than 30 minutes (on an Intel Pentium M 1.6

GHz platform), between 1-2 orders of magnitude faster than without MR.

Discussion. While time saving is the biggest advantage of MRSTACS and smoothing

also helps to discern the cell more easily, there are some limitations to MRSTACS. Firstly,

as we increase the number of decomposition levels, the sensitivity to the model parameters

and threshold used for the segmentation increases. This is because, even at k = 3, that is

one-eighth the resolution of the original image, a single pixel corresponds to 23 × 23 = 64

pixels. This implies that if we are off by a single pixel, the error is magnified by a factor of

roughly 64. Refining the segmentation outcome at higher resolutions mitigates this problem
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Algorithm 5: [MRSTACS] Input: fd, a DNA image, fp, a total protein image,
K, the maximum level of decomposition, K0, the maximum level of refinement, dt,
time step, %This may be varied at each resolution scalar {ηk

t }, number of iterations
at resolution k, scalar λc, weight of the curvature force Fc, Sr, scheme of evolution for
the coefficient of the region-based force Fr. Output: φ(K0), the final level set function.

MRSTACS(fd, fp, K, K0 dt, {η(k)
t }, λc, Sr)

initialize level set function φ(K)(0) based on edge detection in Id and Euclidean distance
transform
for k = K to K0 do

compute all the values of λr based on Sr

decompose fp to k levels, I
(
pk)

convert f
(
pk) to a binary image by thresholding

for η = 1 to η
(k)
t do

for all points on the contour do
compute Fr, Fcurv, RHS of (4.1)

end for
extend the values to the whole domain, get Fφ

φtmp = φ(k)(η) + dtFφ

for all points where the sign of φ(k)(η) is changing do
if nonsimple point then

prevent change of sign of φ(k): φtmp = ε · sign(φ(k)(η))
end if

end for
φ(k)(η + 1) = φtmp

end for
Compute φ(k−1) from φ(k) using (4.4)

end for
return φ

to an extent. However, we would have to be careful about the choice of the threshold

values at each level. Hence, if the application does not require one to strictly quantify the

performance against HS and a coarse but quick segmentation is required, MRSTACS is the

ideal choice as it produces tight contours and is fast.

4.7 Pseudo-3D STACS

As mentioned, the different variations of STACS discussed thus far utilize the DNA channel

to initialize the level-set function, used to segment the total-protein image. Further, we

use the concept of topology preservation. There are a few problems with this approach.

61



(a) (b)

Figure 4.7: Segmentation results for MRSTACS on HeLa images. (a) Coarse segmentation at level three.
(b) Segmentation on the original image. (Images courtesy of Dr. A. D. Linstedt [5]).

From the standpoint of accuracy, the DNA channel is not present in all of the slices of the

z-stack (3D cell image), even though in the corresponding total-protein image, the cell is

discernable. As a result, TPSTACS is not able to segment these cells, particularly in the

peripheral slices, where corresponding initial contours are not detected. From the stand-

point of performance, performing the initialization procedure several times, even though

the slices of a z-stack are not independent, poses an unnecessary computational load. In

addition, in the ideal situation, we would like to have an initial contour that is as close

as possible to the final contour calculated by TPSTACS (as it happens during the refining

phase of MRSTACS). Finally, by staining the DNA solely for the purposes of initialization,

we unnecessarily increase the number of extraneous material added to the cell. If we are able

to perform a reasonable blob detection on the original image itself (as we show is possible

using MRSTACS), then only the channels necessary for the biological application need be

imaged.

Given a parallel DNA channel, the pseudo-3D STACS (P3STACS) algorithm aims to

address the problem of missing cells in the total-protein channel due only to the absence

of DNA in the parallel channel. An analysis of the signal contained in the DNA and total-

protein channels (reveals that most of the DNA is contained towards the middle slices in

the z-stack. As the cell rests on the slide, it tends to spread out at the cell-slide interface,

relative to its free top end. Thus, a large part of the cell-signal is present towards the bottom

and tapers off towards the top. Thus, the strategy is to initialize the algorithm in one of the

middle slices and use the final segmentation contour obtained on that slice to initialize the
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level-set function for the previous and/or succeeding slices in the stack. The evolution itself

of the level-set function for a 2D image is no different from TPSTACS (or any of its 2D

variants). Using the information along the z-stack contributes to the appellation “pseudo

3D” for this approach. Algorithm 6 provides a pseudocode.

4.7.1 Results

This algorithm was tested with exactly the same parameters as those used to test TPSTACS,

except the initialization on the DNA channel was run only for the middle slice. Every other

slice was initialized using the final segmentation outcome of its previous (or succeeding)

slice. P3STACS segmentation results, starting from the middle slice to the top of the stack,

are shown in Fig. 4.8.

Apart from being able to detect cells that otherwise went undetected, P3STACS also

affords a saving in the runtime. We summarize this saving corresponding to the image shown

in Fig. 4.8 in Table 4.3. In this case, initialization using DNA channel was performed on

slice 12.

As a final word on P3STACS, we note that using the information from adjacent slices

can be advantageous, but dangerous if faulty. To prevent an error from propagating or to

recover from one, instead of propagating the results throughout the stack, we may stop to

initialize afresh every few slices. This is particular true for thick cells that have a large

number of slices (such as 40) in a z-stack.

In summary, in this chapter we have seen how STACS can be adapted to fluorescence

microscope data and seen various modifications of the algorithm to meet different require-

ments, as well discussing its pros and cons.
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Algorithm 6: [P3STACS] Input: fd, a z-stack of DNA images, fp, a z-stack of
total protein images, dt, time step, scalar ηt, maximum number of iterations, scalar
λc, weight of the curvature force Fc, Sr, scheme of evolution for the coefficient of the
region-based force Fr. Output: φ, the final level set function.

P3STACS(fd, fp, dt, ηt, λc, Sr)
compute Ap = [ap,l] and Ad = [ad,l], approximate area of cells and DNA at each slice l
on slice argmaxl{ad,l}L

l=1 of fd, initialize level-set function φ based on edge detection
and Euclidean distance transform
compute all the values of λr based on Sr

for the middle slice, convert Ip to a binary image by thresholding
for η = 1 to ηt do

for all points on the contour do
compute Fr, Fcurv, RHS of (4.1)

end for
extend the values to the whole domain, get Fφ

φtmp = φ(η) + dtFφ

for all points where the sign of φ(η) is changing do
if nonsimple point then

prevent change of sign of φ(k): φtmp = ε · sign(φ(k)(η))
end if

end for
φ(η + 1) = φtmp

end for
for all slices succeeding (or preceding) fd(l) in the stack do

moving from the middle of the stack towards the extremities, one slice at a time,
initialize level-set function φ using the final result from the previous (or next) slice
ηt for the slice to be segmented is set at 0.85ȧ where ȧ is the difference between the
approximate areas of cells in the two consecutive slices
for η = 1 to ηt do

for all points on the contour do
compute Fr, Fcurv, RHS of (4.1)

end for
extend the values to the whole domain, get Fφ

φtmp = φ(η) + dtFφ

for all points where the sign of φ(η) is changing do
if nonsimple point then

prevent change of sign of φ(k): φtmp = ε · sign(φ(k)(η))
end if

end for
φ(η + 1) = φtmp

end for
end for
return φ
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(a) z-12 (b) z-13 (c) z-14

(d) z-15 (e) z-16 (f) z-17

(g) z-18 (h) z-19 (i) z-20

(j) z-21 (k) z-22 (l) z-23

Figure 4.8: Segmentation results on applying P3STACS to the upper half of a z-stack of 24 images. The
images have been cropped to highlight the change in cell areas with height, moving away from the slide.
The caption above each image indicates the level of the image in the z-stack. (Original images courtesy of
Dr. R. F. Murphy [14].)
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Slice number TPSTACS time[sec] P3STACS time[sec] Time saving[%]

z − 13 2.0309 1.3163 35.2
z − 14 2.0092 1.1327 43.7
z − 15 1.9681 0.9677 50.8
z − 16 1.9705 0.9005 54.3
z − 17 1.9329 0.8500 56.0
z − 18 1.9133 0.8036 58.0
z − 19 1.9090 0.7404 61.2
z − 20 1.7751 0.7076 60.1
z − 21 1.6997 0.6711 60.5
z − 22 1.6172 0.6405 60.4
z − 23 incorrect 0.6419 NA

Table 4.3: Computational time for the traditional TPSTACS method for a z-stack slice of size 64 × 64
pixels and the corresponding computational time for P3STACS together with the saving.
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Chapter 5

Derivatives of STACS for Other

Modalities

Segmentation is a ubiquitous problem in imaging, particularly in biomedicine. Although a

lot of advances have been made in automating the segmentation of medical images, most

of them are not available for use. This is partly because of their proprietary nature, and or

that they are not made available to researchers whose primary focus is not computation and

hence do not want to invest time reimplementing ideas reported in the literature. At other

times, the specificity of applications and/or rigidity of algorithms render the algorithms of

no particular use for a new application. Some of our collaborating teams have images which

they want segmented, preferably automatically, but no available algorithm that works to

their satisfaction.

Segmentation demands posed by some of the images obtained from other imaging modal-

ities overlap enormously with those that underlie the design of TPSTACS. While TPSTACS

and its variants were designed primarily for the segmentation of fluorescence microscope im-

ages, as noted in Section 3.3, (3.3) allows us to include any number of forces adapted to the

data. Given below are some of the applications of the algorithm, with suitable adaptations

within the framework, to segment images from other modalities. We present these examples

to demonstrate the flexibility of the STACS framework as it inspired the design of our new
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framework in terms of having a flexible mathematical core, which can be suitably adapted

to segment different types of data through the use of data-specific modules.

5.1 DIC Microscopy Images of the Yeast

The segmentation task is to separate yeast cells from each other and from the background

in DIC images of budding yeast colonies. DIC microscopy is often used to study transparent

organisms such as yeast. It is based on interferometry and provides a high clarity image

of the biological specimen lending insight to properties such as its optical density. We now

discuss segmentation of yeast images, introduced in Section 2.2.1.

5.1.1 Dataset

We are given a set of over a 1000 images of closely spaced budding yeast cells (yeast colonies)

and are required to segment the individual cells in the DIC channel (see Fig. 5.1(c)). The

dataset also has a parallel DNA channel and a GFP labeled specific protein channel (see

Fig. 5.1(a) and 5.1(b)). This is a publicly available dataset [7].

We extend STACS to segment images of this dataset as DIC is commonly used for

studying transparent organisms and affords edge information which we use to extend the

repertoire of forces that can be used with STACS, and thus demonstrate its flexibility. We,

however, do not rigorously quantify the performance of the adapted STACS algorithm on

the entire dataset. We limit ourselves to a qualitative assessment of the performance of

the DIC-Yeast STACS (DYSTACS) algorithm in this section. A recent work that discusses

a graphical model approach to the segmentation of this dataset with promising success

presents a rigorous analysis of the performance of the graphical model algorithm as well as

the SW algorithm that is widely considered as one of the most accurate cell segmentation

algorithms [76].

5.1.2 Algorithm—DYSTACS

Initialization. Although the dataset we use has a parallel DNA channel, the information

is ambiguous and insufficient to yield an initial contour. Likewise, a specific protein chan-
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nel comprising the distribution pattern of a GFP labeled protein is of no avail to us for

initialization.

Thus, we initialize the contour by first distinguishing the clumps of cells from the back-

ground by thresholding the gradient image. Next, we get rid of blobs with holes larger than

a pre-determined size, as invalid objects. Similarly we get rid of very small fragments that

are unlikely to be cells. This results in a clump of cells that are still mostly merged. Using a

combination of k-means clustering and the watershed algorithm, we merge the fragmented

portions of a cell, while splitting spuriously merged cells. Unfortunately the above process

is not infallible. Even in our best results, we end up mistakenly splitting cells due to the

high variation in intensity, while failing to detect a few legitimate cells.

Evolution. The level-set function is evolved based on a region-based force and an

edge-based force whose influence is designed to increase with the iteration number. For

the region-based force, we use the mean intensities inside and outside the cells to drive

the segmentation. We note that instead of the mean, perhaps the variance might be more

discriminating for DIC images. While the intensity difference between the foreground and

background is usually weak, the edges are quite pronounced in the DIC channel. Thus, edge

maps are built using Canny edge detection (see Section 3.1). These edge-maps can be used

as a stopping criterion to prevent the contours from picking up the background. Further,

using topology preservation maintains the number of contours detected in the initialization

stage, preventing merges to which this data is highly prone.

5.1.3 Results

Experimentation reveals that the challenge in this data is the initialization itself as we tend

to get a good segmentation if we are able to first detect the cells accurately. Fig. 5.1(b)

shows a representative result of the segmentation with automated initialization. Since the

procedure is highly dependent on the initialization, Fig. 5.1(c) shows the result with a

manual segmentation.

Discussion. Unfortunately, the automated initialization we use at present is plagued

by errors. Even in our best results, we end up mistakenly splitting cells due to the high
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(a) (b) (c)

Figure 5.1: Segmentation results for DIC microscope images of budding yeast. (a) A DIC microscope
image of yeast cells. (b) Segmentation results after automated initialization and (c) segmentation result
after a manual initiailization. (Original images courtesy of the Yeast GFP fusion localization database [7].)

variation in intensity, while failing to detect a few legitimate cells. Thus there is much scope

for improvement in the initialization phase. The satisfactory performance of the algorithm

after manual initialization suggests that the procedure would benefit much from a minimal

user interaction (such as marking a single point in each cell). Moreover, as noted above,

DIC presents a strong variation in the foreground region (within cells) as opposed to the

background. Thus, we expect that using variance maps instead of mean intensities might

improve the detection and segmentation of the cells [126]. Once we have a robust automated

algorithm, a next step would be to compare our results with the recently proposed algorithm

for the segmentation of these images based on graphical models [76].

5.2 MRI Images of the Heart

The task is to segment the heart walls—endocardium and epicardium—from a 2D time

series of MRI images of a human chest cavity. The motivation is to understand wall motion

in normal hearts to be able to characterize abnormal wall motion due to ischemia and aid

in its early diagnosis. We now discuss the application of STACS to the problem detailed in

Section 2.2.2.

5.2.1 Dataset

We are given a set of 25 MRI images of a human chest cavity about 40ms apart that

correspond roughly to one heartbeat of a clinically healthy volunteer. The size of each

image is 196 × 156 pixels. Along with these images, a set of HS images were provided as

a reference for evaluating the performance of our algorithm. This dataset was provided by
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Dr. Laine and his team at Columbia University [9].

We note that while the original STACS algorithm was also developed to segment the

heart (and its chambers), the forces cannot be applied directly. This is primarily because

the dataset underlying the design of STACS was a transplanted heart in a mouse. Thus,

the considerations are different from those required for a MRI of the human chest cavity.

Below we present our MRI Cardiac STACS (MCSTACS) algorithm with suitable forces for

the segmentation of this dataset.

5.2.2 Algorithm—MCSTACS

The endocardium usually appears brighter than most structures in the chest cavity. Further,

the epicardium is present around it. Thus, the strategy is first to segment the endocardium

and use the result to segment the epicardium.

Endocardium initialization. The initial contour for an image obtained by first thresh-

olding the image. Mere thresholding, however, picks up some other structures. Morphologi-

cal operations are used to eliminate very small objects. To eliminate any remaining spurious

detections, we use the fact that the endocardium is the most circular of these structures.

Thus the object with the least eccentricity is retained. The signed distance transform is

then used to initialize the level-set function.

Endocardium segmentation. During the course of evolving the contour, we use

topology preservation as there is only one endocardium (as well as one epicardium). We

use a region-based force that considers the mean pixel intensities inside and outside the

endocardium as the inside and outside mean models respectively. Further, we use a shape-

based force, computed as a dilated version of the initial endocardium detection to ensure the

contour remains roughly circular in shape and does not leak out to include other structures.

Finally, the curvature force used in TPSTACS (see (3.3)) is used to maintain the smoothness

of the contour. The annealing schedule emphasizes the ballooning force in the beginning,

the region-based force in the middle and the curvature force towards the end of the evolution

procedure to ensure a satisfactory segmentation. Since the initialization detects almost all

of the endocardium, just a few iterations of the algorithm is sufficient to refine the contour
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and add the missing portions.

Epicardium initialization. The final contour obtained for the endocardium serves as

the initial contour for the segmentation of the epicardium.

Epicardium segmentation. The same algorithm as that used to segment the endo-

cardium with appropriately tuned statistical models for the region-based force, is iterated

a few times to segment the epicardium. A shape-based force, derived as a dilated version

of the initial endocardium detection, is used as a stopping force to ensure the contours do

not leak outside the heart into other structures in the chest cavity. In addition to these

two forces, we use a constant expansion force or a balloon force to ensure the contour only

expands [62] as the epicardium encompasses the endocardium.

5.2.3 Results

A representative image of the outcome of the endocardium segmentation is shown in Fig. 5.2(a).

The outcome of the epicardium segmentation is shown in Fig. 5.2(b). We observe that the

algorithm works well even when there is no edge information present. An entire frame of

size 192×156 is completely segmented with a high degree of accuracy in less than fifteen

seconds on a 1.8GHz Pentium M Processor. The average area similarity compared with

the hand segmented ground truth is 93% for the endocardium and 94% for the epicardium.

The best and worst performances together with the averages are reported in Table 5.1.

(a) (b) (c)

Figure 5.2: (a) Segmentation of the endocardium and (b) epicardium. (Red contour: TPSTACS. Blue
contour: hand segmented ground truth.) [15] (c) An example of a self-loop and nonsmooth contour in the
hand segmented ground truth. (Original images courtesy of Dr. A. F. Laine [9].)

Discussion. A high segmentation accuracy and reasonable runtime indicate MCSTACS

is a viable alternative to HS of heart walls from chest MRI images. A higher accuracy for

72



AS
Best[%] Worst[%] Average[%]

Endocardium 95.85 90.21 93.01
Epicardium 95.81 92.67 94.20

Table 5.1: Segmentation results for the application of endocardium and epicardium segmentation. Area
similarity with HS of the segmentation performance of MRI-chest STACS [15].

epicardium segmentation despite the relatively lower accuracy for its initial contour—the

endocardium segmentation—could be explained as follows. For a few of the frames, the

discrepancy between the contour from the algorithm and the ground truth is due to the

inconsistency and/or inaccuracy in the hand segmented contour (see Fig. 5.2(c)) rather than

any inaccuracy on the part of the algorithm. Though the ground truth is provided by an

expert, such anomalies are expected because the process of hand segmenting the images is

a tedious one.

Some of the future directions include tuning the algorithm to be robust to noise in the

data especially in peripheral sectioning planes and also in case of data from high-speed

MR imaging or in ultrasound images that are also used in such studies. Further, akin to

P3STACS, we can use the time series information and cyclic nature of the heartbeat to our

advantage in initializing MCSTACS for a given time-series data.

5.3 fMRI Images of the Brain

The task we focus on for this application is segmentation of white-matter. In brain fMRI

images, the functional activity under study is detected in the grey matter, which is obtained

by growing layers of it on top of segmented white matter. Since the functional information

is not particularly useful in distinguishing the white matter, we treat the fMRI dataset as

a time series of MRI, which is three-dimensional and can be sectioned into 2D images (see

Fig. 2.7(b)). We focus on the segmentation of brain MRI images and discuss below the

adaptation of STACS to the problem detailed in Section 2.2.3
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5.3.1 Dataset

We report the results of testing our algorithm on the MRI images of a child brain made

available to us by the VISTA laboratory at Stanford University [11]. It consists of 400

images—100 in the coronal plane, 140 in the sagittal and 160 in the axial sectioning planes—

each of size 217 × 180 pixels. The VISTA lab also provided us with human expert-based

segmentation for the left hemisphere to evaluate our algorithm.

5.3.2 Algorithm—VBSTACS

The challenge in segmenting MRI brain images stems from the highly convoluted nature

of the grey matter. While voxel-based classification methods that use image statistics

and histogram-based thresholding are partially successful, they are affected by intensity

variations and the need to maintain distinct templates for various brain pathologies [127,

128]. Active-contour-based methods, on the other hand, have considerable advantages due

to their topological flexibility [129].

Previous work. An automated initial segmentation used by the Stanford team results

in several anomalies which necessitate hours of involved manual postprocessing to clean up

the results [44]. The technique uses prior knowledge of the structure of the human brain to

aid the segmentation and has been made publicly available as a MATLAB toolbox called

mrGray [130].

Due to the difficulties in segmenting the gray matter directly, the authors segment only

the white matter and the cerebrospinal fluid (CSF) regions in the image. Once the white

matter has been segmented, the proposed technique reconstructs the gray matter surface

using a method of “constrained growing-out from the white matter boundary”. White

matter segmentation is performed by building statistical models of pixel intensities for the

white matter and nonwhite matter regions of the brain followed by a step that assigns, to

each pixel intensity value, a label based on a novel maximum a posteriori probability (MAP)

estimation algorithm. However, the segmented white matter regions obtained from this step

occasionally have holes and handles within them. Since actual white-matter regions cannot
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possess such holes or handles, all voxels that lie in these holes or handles are relabeled as

white matter. Finally, layers of gray matter are grown iteratively, starting from the edge of

the white matter region. The number of layers of gray matter that need to be grown is taken

as an input from the user. Care is taken to ensure the connectivity of gray matter regions

within and across layers. In the algorithm, the quality of the white matter segmentation

directly affects the quality of the final 3D gray matter topology.

In our effort, we address the issue of the white-matter segmentation using an active-

contour based approach, as opposed to the MAP-based approach used in [44]. The improved

segmentation can then be used as an input to the hole-filling and gray-matter-growing steps

of mrGray. The specific goal of this work is to improve the accuracy of segmentation so as

to significantly reduce, if not eliminate entirely, the need for manual postprocessing, and

thus reduce wasted resources both in terms of money and time.

Initialization. We obtain an initial contour for the white-matter segmentation by

thresholding the image, f . The threshold is empirically determined and easy to pick as the

white matter is usually brighter than the gray matter and CSF. Then, a few morphological

operations are performed to eliminate isolated regions in the periphery and retain a mean-

ingful result. This circumvents the need for manual intervention in initializing the contour

(as required for original STACS).

Evolution. The initial contours evolve based on the forces applied on them. Since the

model statistics of the brain MRI image are fairly strong, with the white matter being fairly

distinct from the nonwhite matter, we chose a region-based force to drive the segmentation.

To compute the actual force, we first represent both the white matter and the nonwhite

matter by their respective statistical models. We compute the statistical models by selecting

a few representative slices from the volume as training data and computing the discrimi-

nating statistics for the foreground and background regions. We exclude the images used as

training data later in the testing phase to quantify the algorithm’s performance. The two

statistical models are based on the mean pixel intensities of the white matter (foreground)

and nonwhite matter (background) regions. The foreground and background regions exhibit
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significant intensity variations, with the regions near the edges exhibiting lower or higher

intensities than the means of their respective regions. Therefore, while deriving the model

statistics from the training images, we compute the model mean intensities using only small

windows around the foreground-background edges (specifically, the edge between the white

and non-white matter). The evolution of the level-set function follows (4.1).

This annealing schedule that modulates the region-based force ensures that the contour

changes shape rapidly in the beginning of its evolution and gradually slows down as it

approaches its desired location. Other forces such as the shape and smoothness-based ones

are inapplicable since the white matter region possesses neither smooth edges nor a well-

defined shape that can be used as a template. Moreover, while the edge-based force seems

like a good candidate for inclusion, it actually degrades the quality of our final segmentation

due to a number of spurious edges (such as the edges between the gray matter and CSF

regions) in the edge map of the image. Therefore we exclude the edge-based force from the

algorithm.

Voting. The modified STACS implementation in our discussion so far implicitly as-

sumed segmentation on a 2D data set, while the brain MRI image data set is actually

three-dimensional. We can harness additional information available along the third dimen-

sion to improve the robustness of the algorithm and the results of the 2D segmentation. We

may slice a given 3D image into a collection of parallel 2D images along three orthogonal

axes or planes (commonly referred to as axial, coronal and sagittal planes by biologists).

Although performing segmentation on a collection of 2D slices from any one plane is suf-

ficient to label each voxel as either white matter or nonwhite matter, we can build some

redundancy into the system by segmenting all slices along each one of the three planes.

Since there are three orthogonal planes that pass through each voxel in a 3D image, the

segmentation result of each of these three planes would independently label a voxel as either

white matter or nonwhite matter. The “vote” from each plane can then be combined using

a simple majority voting procedure to yield the final label for that voxel.
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5.3.3 Results

A qualitative assessment of the segmentation outcome is made by visual inspection. Fig. 5.3

shows the segmentation along the three sectioning planes.

Figure 5.3: L to r: Results of segmenting the white matter of the left-hemisphere in the axial, coronal
and sagittal planes. The yellow/red/green labels correspond to true positives/false positives/false negatives,
respectively [16]. (Original images courtesy of Dr. B. A. Wandell and Dr. M. B.-S. Chechik [11].)

Table 5.2 reports a quantitative assessment of four possible implementations: voting-

based segmentation (Voting), segmentation based on axial slices only (Axial), segmentation

based on coronal slices only (Coronal) and segmentation based on sagittal slices only (Sagit-

tal). From the table we note that the voting-based technique achieves the best performance

on each performance measure.

T (+)[%] F (+)[%] AS[%]

Axial 86.26 2.32 82.83
Coronal 89.02 2.55 80.76
Sagittal 86.21 1.79 81.92
Voting 89.13 1.63 85.07

Table 5.2: Segmentation results for the application of white-matter segmentation in brain fMRI images.
Quantitative measures of the segmentation performance of voting-based STACS. T (+) indicates true positives
that is, pixels correctly identified as belonging to the white matter region, F (+) indicates false positives that
is, pixels incorrectly identified as white matter and AS denotes area similarity [16].

Discussion. Typically, for AS given by (4.3.1), AS ≥ 70% is considered excellent agree-

ment with the ground truth [131]. Here we used a more stringent variation of the measure,

AS =
n(HS

⋂
V BSTACS)

n(HS
⋃

V BSTACS)
.

Thus, we note that the outcome of VBSTACS for fMRI images is in good agreement with the

ground-truth provided to us. Further, one of the major advantages of voting-based STACS

over segmentation using only one axis is that the voting scheme is able to pick up white-
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matter regions at the extremities of the MRI image, whereas these are often missed in single-

axis segmentation. Fig. 5.4 shows the segmentation results using (a) coronal segmentation

and (b) voting-based segmentation for one of the peripheral axial slices. Clearly, coronal

segmentation entirely misses the entire white matter region in this slice while voting-based

segmentation is able to identify it quite accurately.

Figure 5.4: A peripheral slice in the coronal plane segmented using (a) coronal segmentation only and (b)
voting-based segmentation [16]. (Original images courtesy Original images courtesy of Dr. B. A. Wandell
and Dr. M. B.-S. Chechik [11].)

It is noteworthy, however, that the algorithm takes nearly 36 hours to segment nearly

600 images (approximately 12 hours per sectioning plane). While this is still faster and

less tedious than three days of manual labor, which is what it takes in the absence of an

automated method, the run time is still quite high.

5.4 Data-Specific Modules and Design Considerations

Above and in the previous chapter, we have seen how an active-contour-based framework,

STACS, can be adapted to segment different imaging modalities. As described in Chapter 1,

this is reminiscent of the problem we are endeavoring to solve. The computational task in

each of these cases—segmentation—is the same, while the specific challenges, and hence

modifications, are different. We can thus think of any instantiation of the framework to

be given by a state vector with appropriate parameters for each of the possible states,

indicating for example, the type of initialization, choice of forces and their weights, the

stopping criterion and auxiliary modules like topology preservation to be used for the task

at hand.

In the sections below we summarize some of these states and possible assignments they
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may take on based on the applications we have discussed so far. For each state, we review

the data-specific issues we have come across in the algorithms presented so far and highlight

a few others. We also briefly discuss a few application-specific modules that use the segmen-

tation outcome as the input and may be included in the system for relevant applications.

As all these considerations provide the impetus for choosing a combination of modules for a

given modality/dataset to best segment the images from it, we also note wherever relevant

some of the limitations in the present design and identify what we would like to incorporate

in a new framework. Finally, we discuss the issue of making these tools available for end

users and algorithm developers to facilitate testing and further development.

5.4.1 Initialization

Active contour models, particularly geometric active contour based methods (see Sec-

tion 3.3.2) are sensitive to initialization. We have seen that in small applications, such

as the original STACS problem, manual segmentation was viable [67]. For fluorescence

microscope cell images that have a parallel DNA channel, or in the case of segmenting the

human heart from chest MRI images or white matter from brain fMRI images, we may use

thresholding and morphological operations to obtain initial contours. In the case of fluo-

rescence microscope images without a parallel channel, it is possible to use MR techniques

to perform blob detection directly on the cell (total protein/membrane protein) image. Fi-

nally, for DIC yeast images as well as tissue-type images that do not have a parallel DNA

image, a more involved initialization procedure may be necessary—one that uses the edges

as well as rules based on a few representative cells—to eliminate spurious detections. Fur-

ther, if the dataset is tractable, particularly for z-stack and time-series images, we note

that the segmentation would benefit from a minimal manual intervention in correcting the

automated initialization. This could be through just clicking a point on a cell that has

not been detected or that is required to be deleted. There have been methods, particu-

larly when topology preservation is not an issue, that have initialized the algorithm with a

uniform set of circles for 2D images (or cylinders for 3D volumes). As the level-set based

approach is capable of adapting to the topology, having a large number of contours is not a
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problem. However, the convergence may be expedited and more accurate with an accurate

initialization.

Ideally, in any further design, we would aim to minimize the dependence of the algorithm

on the initialization.

5.4.2 Topology Preservation

Topology preservation can be used in the sense of respecting the underlying image topology

in terms of statistical homogeneity or some underlying shapes in the image. The formulation

of level-set methods inherently affords this type of topology preservation because a single

level-set function can be used to represent multiple contours and during the course of

evolution, the level-set function gracefully adapts to topological changes in an image by

merging or splitting these contours.

In the case of cell segmentation and heart-wall segmentation from chest MRI images,

we have used topology preservation in the sense of conserving the number of contours from

the initialization phase. The criterion for topology preservation is based on digital topology

that studies a 3× 3 neighborhood around every point on the contour and prevents change

of sign if the point is so-called nonsimple. This does not add a significant overhead to the

evolution procedure itself. However, this procedure overrides the basic advantage of level-set

methods over their parametric counterparts of gracefully adapting to topological changes in

an image. Being an external constraint applied just when the topology is about to change,

it introduces abruptness in the contour. Further, such a topology preservation scheme is

useful only when the initialization accurately provides the desired number and approximate

location of the desired final contours. Otherwise, topology preservation would only serve to

propagate errors in the initialization phase. In this sense topology preservation is closely tied

to the initialization phase and makes it worth investing time to improve the initialization to

facilitate accurate segmentation. An alternative digital topological constraints is topological

flows, which introduces topology preservation as one of the forces that drive the evolution

phase [132]. Topology preservation is not an issue in applications such as MR brain image

segmentation.
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In our further design, if topology preservation is necessary, we would like it to be a part

of the evolution rather than a separate external constraint.

5.4.3 Multiresolution

As seen in Section 3.5.2, MR affords many advantages. First of all, MR can be used to

reduce the runtime of an algorithm, as we demonstrated in Section 4.6. This is done by

appropriately applying the segmentation algorithm designed for the original resolution on a

very coarse approximation of the image and successively refining the result [80]. Next, par-

ticularly in the case of fluorescence microscope images of punctate patterns, the smoothing

built into MR improves the discernibility of cells. This allows us to perform a blob detection

on a channel such as the total protein in the absence of a parallel DNA image. Moreover,

the vast choice of filters as well as the number of levels and extent of redundancy make MR a

powerful module. However, the extent to which MR is used (or not) depends on the nature

of the data and specific task. For example, if are working on a very low resolution image to

begin with, it would not benefit from the downsampling provided by MR. Likewise, if there

is a strong edge-information, then using a coarse (smoothed) version of the image would

not be advisable.

Ideally, MR would be a part of the framework with the choice of parameters determining

the extent and nature of its use for a particular segmentation task.

5.4.4 Evolution Forces

In any active-contour-based framework, forces form the crux of any algorithm. There are

many options for the external force, based on the imaging modality and application. For

example, region-based force can be statistical measures such as the mean number of pixels in

a binary (thresholded) image, mean intensity values or mean and variance of pixel intensity,

or just the variance or texture features derived from a gray-scale image. For vector-valued

images, color can also be used in the region-force [133]. Shape-based forces can be useful

when the object of interest has a shape that can be approximated and parameterized.

Cardiac image segmentation is a candidate for this force (for example, both the original
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STACS as well as MCSTACS benefit from shape-based forces). Some images, such as those

of DIC, have discernable edges and edge-based forces can be useful to attract the contour

to the image boundaries or as a stopping criterion. Examples for the internal force include

smoothness force based on curvature of the contour or total length of the area included in

the contour.

Thus ideally, we would build a vast repertoire of forces based on the particular appli-

cations we deal with so that any combination of forces may be called upon as need-based.

In designing these forces, we would pay particular attention to the specific features of the

objects of interest, particularly for fluorescence microscope images of punctate patterns, to

extract those that will aid in the task segmentation.

5.4.5 Stopping Criterion

Ideally, the forces used to drive the segmentation are designed to balance out, so the al-

gorithm (curve evolution) comes to a natural halt. In practice, however, the large varia-

tion in image properties together with numerical errors introduced due to translating the

continuous-domain theory to a discrete-domain implementation, seldom lets this happen.

The stopping criterion we have used in all the STACS-based algorithms is that of an

iteration number. An optimal number of iterations can be empirically determined a priori

based on training data. Training data would consist of a few representative images, along

with ground truth. However, depending on the specimen, imaging modality, extent of noise

in the images and volume of the data, this can be an involved process. For the segmentation

of a z-stack of 3D images for example, the size of the cells may change along the z-stack,

and hence the iteration numbers have to be appropriately changed.

Another stopping criterion that could be used is the number of pixels that have changed

their state (from “out” to “in” with regard to the evolving curve) between iterations. When

the initial contour is contained in the object of interest, the difference in area between

contours is large in the beginning as the curve expands rapidly. As it gets closer to the

desired object’s boundary, the number of pixels included in the curve or excluded from it

is small. However, this too cannot serve as an exact measure, particularly when multiple
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objects are being tracked and the curves segmenting them are growing at different rates.

Ideally, in our future design forces are constructed based on a digital grid and evolve

in such a way that the algorithm comes to a natural halt (that is, zero pixels change their

state).

5.4.6 Application-Specific Post Processing

As explained in Chapter 2, segmentation is usually the first step after image acquisition.

It is almost never an end in itself. Various post-processing modules are likely, depending

on the application. For example, in the case of brain fMRI, the postprocessing comprises

gray-matter growing and visualization. For PSL images, the processing that succeeds seg-

mentation is classification. We can design some simple postprocessing modules to either

render the segmentation outcome suitable to be input to existing postprocessing systems,

or if simple enough, provide the required postprocessing directly. An example of the latter

category would be counting the number of cells segmented and measuring their volume.

While this is a small step for us, it would be useful to our collaborators who can invest their

time in designing the experiments and inference rather than HS and manual postprocessing.

In our future design, we would endeavor to include a few such postprocessing modules,

suited to the applications we focus on.

5.4.7 Graphical User Interface

Embracing the ideas of reproducible research [134,135], we intend to make the software im-

plementing our algorithms freely available. The prototype scripts used for our publications

are available as reproducible-research compendiums, accompanying our papers on the web

(see for example [136]). While this affords our collaborators as well as other end users and

algorithm developers to test our algorithms, we recognize that providing a software pack-

age with a user-friendly GUI, would especially facilitate the use of the tools we develop.

In particular, as imageJ [137] is popular with biologists and publicly available, we intend

designing plugins for ImageJ.

The advantage of using a popular platform such as ImageJ and providing a graphical
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interface is that it would ease the interaction for a first-time user, as the GUI will provide

example images along with sample results. This way the users can train themselves by

changing the parameters of the algorithm. In the process, they will gain more intuition

than if given the definitions of the underlying concepts, such as the forces. As discussed

in Chapter 1, the GUI will integrate the algorithms with the mathematical core and the

different modules to tackle various data-specific scenarios that we come across.

To elaborate further, for the end users segmentation is typically the first step towards

answering their biological question. They need not concern themselves with all the modules

and understand the state-vector values for a particular configuration etc. All they would

have to do is indicate to the software the experimental conditions, such as the imaging

modality, dimensionality, resolution at which the image was taken (if possible) and the

nature of the image (such as a cell image that has a total protein channel and no parallel

channels). The GUI will also provide auxiliary post-segmentation tasks that the biologists

may find useful such as measuring the cell volume. The GUI will guide them in the process

of assigning the appropriate value to the state vector that will in turn decide the data-

specific modules to be appended. We intend to provide example images from the data sets

on which the algorithm has already been trained, as well as set the default parameters

based on these example images. The user will be guided to tune these parameters based

on intuitive descriptions such as the cell size, for segmenting their images. We do recognize

that in some tasks, such as high-throughput imaging or high-content screening, 2D images

cannot possibly be segmented one at a time. In this core, the user investing a few minutes

to configure the algorithm through the GUI will greatly enhance the quality of the segmen-

tation output of the batch processing. Providing the tool as a plugin to ImageJ would also

be useful to algorithm developers.

5.5 Beyond the Active Contour Framework

While active contour methods are the state-of-the-art tool in the image segmentation com-

munity, the punctate patterns of fluorescence microscope cell images (see, for example,

Fig 4.3 and Fig. 4.7) makes the direct application of such techniques difficult [138]. Multi-
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scale methods, on the other hand, are well suited to extract the significant features of such

images.

The nature of the fluorescence microscope images motivates us to explore the use of

multiscale features for their segmentation. At the same time, our success with the active

contour algorithms discussed in Chapters 3 and 4 encourages us to continue to benefit

from the advantage of the flexibility they afford. Recently, there has been an effort to

formulate multiscale active contours [84]. Our motivation stems from the need for an elegant

framework that has an efficient implementation. Further, the idea of computing forces at

the points on the contour using an FFT implementation has been proposed recently in the

context of topology preserving flows [132]. Yet, this design does not get rid of the time

consuming extension function itself.

In a sense, though these level set formulations are based on the idea of embedding

the contour, the extension function, which keeps track of and accesses the points on the

current contour explicitly, is tantamount to implicitly parameterizing the contour. Thus, we

come up with the novel idea of using multiscale active contour (MSAC) transformations for

segmentation, which does not parameterize the geometrically embedded contour in anyway.

We draw inspiration from works along very similar lines [65, 139]. These algorithms use

the level-set function to keep a track of the foreground and background regions and use a

discrete grid to evolve the contours respectively.
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Chapter 6

Multiscale Active Contour

Transformation

In this section we present a framework that is active-contour based but uses a transform

perspective to improve efficiency, and a multiscale perspective that is particularly suited to

the segmentation of fluorescence microscope images. Our basic goal in this framework is to

eliminate the velocity-extension function that is the bottleneck in the active-contour based

algorithms discussed in Chapters 4 and 5.

When confronted by punctate patterns in images, such as those of fluorescence micro-

scopy, one naturally seeks to connect the dots, that is, to estimate the densities of bright

pixels on local neighborhoods of various sizes. Mathematically speaking, the computation

(a) (b) (c) (d)

Figure 6.1: Multiscale blurs of a fluorescence microscope image. (a) The original image. (b) A slight blur
begins to reveal the cell’s edge. (c) With more blur, the edge of the cell becomes clearly defined. (d) With
too much blur, the edges become rounded.

86



of such local densities may be represented as a multiscale smoothing transformation of the

original image. To be precise, let f : Rd → Rc be a fluorescence microscope image, where

d is typically 2 or 3 and c is the number of channels, with each channel corresponding to a

different fluorescent probe. Although the proposed techniques can be extended to the case

c > 1, for the sake of simplicity, we assume c = 1 for the remainder of this section. Given a

windowing function g of an appropriate degree of smoothness, boundedness, and decay (for

example, a Gaussian), the corresponding multiscale transform of f is Wf : Rd×(0,∞) → R,

(Wf)(x; a) =
∫

RN

f(x)g(
x− y

a
) dy. (6.1)

As depicted in Fig. 6.1 for several particular scale parameters a, such a transform has a

blurring effect, with the blur increasing with a. Although blurring is usually regarded as an

unwanted artifact in image processing, for fluorescence microscope images, a moderate de-

gree of blur is actually useful: edges and shapes become more apparent as the blur resolves

the speckled image. Indeed, more generally, if f were a distribution composed of a weighted

sum of Dirac measures, then for each a > 0, Wf(· ; a) would be the sum of translations of a

dilated version of g. Mathematically speaking, the above transformation (6.1) is relatively

simple, being nothing more than a convolutional operator whose kernel contains a scale pa-

rameter. Today, such transformations are commonly called continuous wavelet transforms.

Although trivial to prove, it is important to note that transform (6.1) preserves the action

of the group of rigid transformations, and therefore preserves the underlying geometry of

the original image. As microscope images are, in general, taken directly from above, and

the vertical axis is the only axis along which we should expect the cells to be aligned, ideally

our algorithms should not be affected by translations, dilations or rotations.

Specifically, given x0 ∈ Rd, a0 > 0 and a d× d orthogonal matrix Θ, the corresponding

translation, dilation and rotation operators are Tx0 ,Da0 , Rθ : Lp(Rd) → Lp(Rd),

(Tx0f)(x) = f(x− x0), (Da0f)(x) = f(a−1
0 x), (RΘf)(x) = f(ΘTx).
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The present day active contour methods are not sensitive to translations, dilations or

rotations of the image. Thus, the MSAC transform that we propose should not introduce

these defects and should at the least do no worse than the existing algorithms. Indeed,

for any windowing function g, the corresponding transformation (6.1) is easily shown to

preserve translations and dilations, according to the following rules:

(WTx0f)(x; a) = (Wf)(x− x0; a), (WDa0f)(x; a) = aN
0 (Wf)(a−1

0 x, a−1
0 a).

Transformation such as (6.1) will also preserve rotations, provided the windowing function g

is itself radially symmetric: g(x) = g̃(‖x‖) for some g̃ : [0,∞) → R. Then, (WRΘf)(x; a) =

(Wf)(ΘTx; a).

Although multiscale transformations have only recently begun to be applied to seg-

mentation problems [83, 84], convolution transformations such as (6.1) (without the scale

parameter) have been exploited by the segmentation community for decades. We argue that

the scale parameter is essential, as the resolutions of the cameras used in the acquisition

process will vary across biological research teams, and, more importantly, as any single

fluorescence microscope image will contain multiple regions in which the marked proteins

appear with varying density. Moreover, as our object of interest was the entire cell and not

just its boundary, we do not want to continue computing only the “contour” as such. This

criterion is in line with our goal of obviating the velocity-extension function. Algorithms

that use a grid to evolve the level-set function or those that use the level-set function only

to keep track of the “masks” of the regions of interest are much more efficient than strictly

using a signed distance interpretation of the level-set function [139–141].

Inspired by these algorithms and to eliminate the extension function, we decided (1)

to use the sign of the values in the embedding function to keep track of the regions of

interest, while the values no longer strictly represented distances from the current contour

and (2) to redesign the computation of forces so they would be computed everywhere. Thus,

we cast the forces as convolutions rather than as differential equations computed only at

the points on the contour. While departing from the distance transform interpretation

88



allowed the segmentation to proceed in large jumps and reduced the number of iterations

required to achieve the desired segmentation, redesigning the forces allowed us to use FFTs

to dramatically improve the computational speed at each iteration.

We called this the Multiscale active-contour (MSAC) transform as force computations

are implemented as transforms and the filters therein have the potential to be used at

multiple scales [15].

6.1 MSAC Transform Segmentation of Fluorescence Microscope Cell

Images

We have already seen that forces used in MSTACS provide an accurate segmentation of

fluorescence microscope cell images, in separating the cells from the background. In this

section, we discuss how the forces in the traditional active-contour framework described

in (4.2) and (4.2.2) can be recast in the MSAC Transform framework to segment fluorescence

microscope cell images.

6.1.1 Dataset

We use a set of 15 z-stacks containing 3-8 HeLa cells provided to us by Dr. A. D. Linstedt

and his team [5]. Each 2D image is of size 1024 × 1344 pixels. The HeLa cells are double

labeled with the COPII subunit Sec13 (a cytosolic protein peripherally associated with the

membrane). As the staining produces a diffused cytoplasmic pattern, the challenge posed by

this data is that the signal is not uniform within the cell. Moreover, this set does not have a

parallel channel of nuclear images that allows for an automated and accurate initialization.

6.1.2 Algorithm

Initialization. We initialize the embedding-function as identically zero. We surmise that

the image statistics and contour properties would drive the segmentation to a reasonable

segmentation outcome despite the inaccurate initialization.

Evolution. We use the region-based and contour smoothness based forces to drive the

segmentation as these have proved to be useful from previous methods. The multiscale
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transform in (6.1) can be combined with the active contour method by suitably coding in

the information of the evolving masks. For example, in TPSTACS, the region-based force

for the fluorescence microscope image in (4.2) is computed as the difference between the

sum of the mean densities (or intensities) around a small neighborhood of every point on

the current contour and the sum of the precomputed mean models. This may be computed

without looping over the number of points on the contour as follows:

Min =

∫
Rd fin(x)g(a−1(x− y)) dy∫

Rd Cin(x)g(a−1(x− y)) dy + ε
,

Mout =

∫
Rd fout(x)g(a−1(x− y)) dy∫

Rd Cout(x)g(a−1(x− y)) dy + ε
,

Fr = Min − M̂in + Mout − M̂out, (6.2)

where d is the dimension of image f , g is a lowpass filter with scale parameter a, Min and

Mout are the mean intensities inside and outside the current contour, M̂in and M̂out are

the model mean intensities inside and outside the object(s) of interest, fin is the portion

of the image contained in the current contour, fout is the portion that is considered as the

background by the current contour, Cin and Cout are the binary masks of the regions inside

and outside the contour, respectively, ε > 0 is a small correction factor to avoid dividing by

zero, and Fr is the region-based force.

As the region-based force alone is insufficient to produce smooth contours, we use a con-

tour smoothness force akin to the curvature force in (4.2.2). The new contour-smoothness

force is computed using the embedding function φ without computing its second order

derivatives (unlike the STACS force described in (4.2.2)) as

Fc =
∫

Rd

φ(x)g(b−1(x− y))dy − φ, (6.3)

where g is a lowpass filter with scale parameter b.

Specific filters in the force computations may be selected based on the objects of interest.

For example, for segmenting HeLa cells, experiments reveal that a Gaussian filter is suitable
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(a) Topology preservation
an issue

(b) Topology preservation
not an issue

Figure 6.2: Segmentation contours on a HeLa image (stained for sec13). The embedding function, φ, was
initialized to be identically zero. (a) The merges are due to the absence of topology preservation. (b) Cells
are sufficiently spaced to prevent merges despite the absence of topology preservation [15]. (Original images
courtesy of Dr. A. D. Linstedt [5].)

for the forces in (6.2.2) and (6.3). 1 Moreover, the filters chosen can be applied at multiple

scales to adapt to different resolutions of the image as well as different scales of the objects

of interest at any given a resolution.

6.1.3 Results

We initialize φ to be identically zero and obtain reasonable contours in 3 iterations, each

iteration taking roughly 8 seconds on an average (on an Intel Pentium M 1.6 GHz platform)

for images of size 1024×1344. Sample results are shown in Fig. 6.2.

Discussion. In essence, the algorithm is similar to MSTACS, other than the fact this

does not require the velocity-extension function because all values of the level-set function

are computed during the force computation phase. Apart from being adaptable and meeting

the basic goal of improving the computational efficiency, the design affords us an additional

benefit: An involved initialization was not necessary for MSAC transform, as the all-zero

embedding function would allow for a satisfactory separation of the region of interest with

as few as three iterations (see Fig. 6.2(b)).

We still need to set the number of iterations a priori as the image statistics are such

that they never actually equal the model statistics and thus (6.2.2) is always a nonzero

quantity, forcing some movement or the other, even if oscillatory.
1The choice of filters used to compute the forces in the MSAC transform framework need not necessarily

be restricted to strictly lowpass filters.
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Further, when topology preservation is an issue as in Fig. 6.2(a), we have to combine this

with a good initialization and topology preserving procedure. Unlike the claim in [15], it

turns out that the digital topology-based constraint cannot be easily combined with MSAC

Transform. This is because the simple-point criterion is tested only in a 3×3 neighborhood

around every point on the current contour, whereas the jumps in each iteration of MSAC

transform could be of the order of hundreds of pixels. Thus, a point which is tested to

be simple at an iteration could actually be crucial when an entire region is changing sign.

However, one could explore other criteria based on thinning [120]. Any topology preserving

module can be expected to increase the run time of the algorithm.

6.2 MSAC Transformation of fMRI Brain Images

This algorithm is, like its predecessor, extendable to other modalities. As a proof of concept

we briefly describe in this section the use of MSAC Transform to segment brain MRI images.

6.2.1 Dataset

The data comprises a brain MRI of 600 2D images, roughly 200 in each sectioning plane

provided by the VistaLab [11]. We are also provided an intermediate segmentation result

obtained using mrGray [130]. This does not allow us to rigorously quantify the performance

of Voting-based MSAC Transform (VBMSAC-T).

6.2.2 Algorithm

We rewrite the VBSTACS algorithm in terms of VBMSAC-T. In essence, the initialization

is exactly the same as discussed in Section 5.3.

The evolution of φ is based on the region-based force and computed in each sectioning

plane as

Fr =
2∑

r=1

(Mr − M̂r); Mr =

∫
Rd fr(x)g(a−1(x− y)) dy∫

Rd Cr(x)g(a−1(x− y)) dy + ε
,

where d is the dimension of image f , g is a lowpass filter with scale parameter a, Mr is

the mean intensity of region r, the region inside (or outside) the current contour, M̂r is the
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model mean intensity, fr is the portion of the image contained in r, Cr is the binary mask

of r and ε > 0 is a small correction factor to avoid dividing by zero.

As Fr is cast as a convolution, we can use a FFT to expedite the computation. The

level-set function at iteration i is evolved as φ(i+1) = φ(i) + λ
(i)
r F

(i)
r .

We use the same voting procedure as in VBSTACS to determine white and nonwhite

regions in a given brain MR image.

6.2.3 Results

Applying Fr at a fixed scale a, we were able to improve the runtime by an order of magnitude,

without any degradation in the segmentation quality. The voting-based segmentation using

MSAC transform completed in roughly 1 hour on the entire volume of nearly 600 2D images

versus the 12 hours taken by the VBSTACS for each sectioning plane [16].

VBMSAC-T is more suited to applications such as brain MR image segmentation rather

than fluorescence microscope cell image segmentation as topology preservation is not an

issue and in fact, merging and splitting of contours based on image topology is advantageous.

Note that although there is a provision of using multiple scales to evolve the contour, we

have only presented the algorithm and results for a fixed value of the scale. We can combine

this algorithm with the multiresolution perspective, that is, smoothing followed by down-

sampling, and iteratively refine the contour to further increase the algorithm’s efficiency.

We can also use multiscale edge detection to improve the algorithm’s efficacy [142].

6.3 Towards Active Masks

The previous discussion raises several issues to be solved:

• From (6.2.2), the region-based force is only zero when the computed statistics match

the model statistics. As this is rarely the case, especially in noisy images, a stopping

criterion such as the number of iterations or the extent of change in the masks between

iterations needs to be used to halt the procedure. Moreover, setting the iterations a

priori would involve some amount of runtime tuning to assess the optimal number to

be chosen.
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• The topology preservation scheme used in TPSTACS was based on the topological

number computed in a 3 × 3 neighborhood of each point on the contour. In the

MSAC transform, the contour evolves in increments of hundreds of pixels. Thus,

the topological numbers and hence their implications are meaningless, eliminating the

topology preservation property. Therefore, the MSAC transform proved to be a useful

approach to problems that did not require topology preservation (see Fig. 6.2(b)), but

it could not be used without further modification for those that did (see Fig. 6.2(a)).

• Most of the segmentation literature in connection with active-contour methods is

phrased in terms of finding a contour. As segmentation is usually performed to choose

the object of interest, that is, the contour and all that is inside it, given a discrete

grid, it is not immediately clear what the contour is.

In summary, our revised goal is not only to retain the advantages of the MSAC transform

of blurring the images to efficiently extract features, having the provision of applying the

method at multiple scales and not being critically dependent on the initialization, but also

to incorporate topology preservation as a force, incorporate MR analysis to mimic the action

of CCD cameras of the microscope, have the algorithm come to a natural stop and have

the ability of generalizing the algorithm easily to segment higher-dimensional data. These

design criteria inspired the design of the AM algorithm which we describe next.

94



Chapter 7

Active-Mask Framework

Level-set-based active contours provide a well-performing and mathematically rigorous

method for image segmentation. In particular, the active-contour framework provides us

with the flexibility to combine specific forces, as in (3.3), to cause the algorithm to simul-

taneously seek several desired goals. For example, a force may cause the contour to seek a

certain smoothness, line up with the inherent edges present within the image, press for a

given texture to be enclosed by the contour, or move towards the final contour of a given

shape.

As described previously, we encountered several problems in applying active-contour

methods to fluorescence microscope data. As no slight modifications to the active-contour

theory proved effective, we turned to the development of new segmentation algorithms that

nevertheless possessed the flexible, force-based framework of active contours. (1) In partic-

ular, whereas active contours segment an image by evolving a curve, we segment by evolving

whole regions. That is, we formulate our algorithm in terms of masks—characteristic func-

tions telling us whether or not a given pixel lies within a given segmented region. Multiple

masks may be used to represent multiple regions within an image. A mask is different from

a contour, in that a contour gives only the boundary of such a region. (2) While forces

are used to evolve a curve to obtain a desired contour, we design functions to distribute

various regions in the image to unique masks, and call these functions distributing functions.
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Figure 7.1: Block diagram of the AM algorithm.

Just like specific forces in the active-contour framework, we can design specific distributing

functions to cause the algorithm to simultaneously seek several desired goals. Since it is the

masks that evolve, we call the framework the active-mask (AM) framework.

A block diagram of the AM algorithm is shown in Fig. 7.1 and the pseudo code in

Algorithm 7. Given an input image, multiple masks are evolved at a resolution k and scale

j, based on a region-based distributing function R and a majority voting-based distributing

function V that are applied repeatedly until the configuration of masks ceases to change1.

The output of the algorithm is a set of masks, each of which represents a segment of the

original image. This section, which describes each of these steps, is organized as follows.

In Section 7.1, we describe the advantage of using masks instead of contours and show

how they can be computed. In Section 7.2, we motivate the need for multiple masks and

explain how we compute them. In Section 7.3, we describe the design of filters used in

the AM algorithm. In Section 7.4, we describe the AM algorithm and, in particular, the

two distributing functions we use to evolve the masks to segment fluorescence microscope
1While iterative voting is at the crux of the AM framework, the voting-based distributing function V

is but an example for the type of function that can be used. Likewise, there can be many different other
functions used instead of or in addition to the region-based distributing function R to skew the voting.
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cell images. Finally, in Section 7.5, we describe the full-blown, MR-MS version of the AM

algorithm.

We begin with how the apparently minor change in perspective from working with

contours to working with masks helped solve some of the problems traditionally associated

with active contours.

7.1 Masks Versus Contours

One problem with the level-set formulation is that it does not easily generalize to digital

images. For a discrete-variable level-set function φ : Zd → R, the zero level-set (contour)

may be empty. To rectify this problem, one usually keeps track of where φ changes sign,

that is, finds the sublevel set {n ∈ Zd
∣∣φ(n) ≥ 0}. This is essentially the approach we shall

adopt in our AM framework. Given a d-dimensional image f , our goal is to find a binary-

valued image ψ of identical size, where ψ(n) = 1 implies that n lies inside the contour while

ψ(n) = 0 implies the opposite. In short, ψ will be the truth table for whether or not a given

pixel lies within the corresponding segmented region—mask.

In addition to simplifying one’s perspective over discrete domains, such a mask-based

formulation easily permits the implementation of MR schemes to speed the algorithm’s

performance. Our choice of a filter—Haar—in such a MR scheme was guided by two prin-

ciples: simplicity and the ability to model the signal readout behavior of the CCD camera

of a fluorescence microscope [143]. Let H be the Haar averaging filter over Zd, that is,

(Hf)(n) = 2−d
∑

m∈[0,1]d

f(2n + m). (7.1)

The result of the above operation is a smoothed, downsampled version of the original

image f . For example, for d = 1, the output Hf is half the size of f and is given by

Hf(n) = (f(2n) + f(2n + 1))/2. Thus, we consider a MR segmentation algorithm in which

we first segment a coarse version of f , namely HKf (H applied to f K times), which is

smaller than f by a factor of 2K in each dimension. Once our segmentation algorithm,

described in detail below, has iteratively produced a segmentation mask ψ(K) for HKf , we
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use this information as a starting point for the segmentation of the slightly more detailed

image HK−1f . The algorithm for HK−1f will begin with the lifted version of the coarsest

mask ψ(K). The lifted version ψ(K−1) is obtained by copying each binary value of ψ(K) into

2d values of ψK−1:

ψ(K−1)(n) = ψ(K)(b2−1nc), (7.2)

where the flooring operation is performed coordinatewise. For example, for d = 1 and if

ψ(K) = 1101, ψ(K−1) = 11110011. Here, a contour-based implementation of this same idea

would be unnecessarily complicated: one would need to first determine the inside of a given

contour to find a mask, then apply (7.2) to this mask to obtain a new one of twice its size,

and finally take the boundary of this resulting mask to find the new contour. In short,

MR segmentation lends itself more naturally to mask-based, rather than contour-based,

segmentation algorithms.

This mask-based approach also retains a classical advantage of level-set methods versus

snakes when dealing with high-dimensional datasets. For example, for a three-dimensional

image f , a corresponding mask ψ will often provide a simpler and more-easily manipu-

lated description of the segmented region when compared to a complicated two-variable

parametrization of its boundary.

We now turn to a more subtle issue, namely our use of binary-valued masks ψ in which

the segmented region such as a cell in f , is defined at ψ−1, the preimage of {1}, as opposed

to the traditional, continuously-valued level-set functions φ in which the segmented region

is defined as φ−1[0,∞). This change was inspired by the traditional level-set theory’s

propensity to adapt gracefully to topological changes, an advantage as contours of multiple

objects can be represented using a single level-set function, but a drawback as it likely merges

distinct cells into a single blob. Using an external constraint, for example based on discrete

topology [119], has some drawbacks such as undesirable abruptness in the contour [132].

Thus, to adapt to topology in a meaningful way, our solution was to permit multiple masks.

That is, use an M -valued ψ to represent a collection of M binary-valued masks {χm}M
m=1

corresponding to M regions in f . We now explain multiple masks in more detail, beginning
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with the relevant details of the level set formulation that inspired the change.

7.2 Multiple Masks

In the discrete domain level-set formulation of active contours, the set {n ∈ Zd
∣∣φ(n) ≥ 0}

is the region inside of the contour, while {n ∈ Zd
∣∣φ(n) < 0} is the region outside. Unfor-

tunately, such a formulation forces one to only have two segmentation regions: in and out.

If the exact number of contours is known beforehand, then the level-set function can be

suitably initialized and an external constraint used to preserve topology. However, when

the exact number of contours is not known and no external constraint is used, the definition

of just two regions causes problems of unwanted merges. Thus, whenever the regions to

be segmented are close to each other (see an example of cells in fluorescence microscope

images in Fig. 7.2(a)), multiple level-set functions have been used [144, 145]. By using

L level-set functions {φk}L
k=1, the domain is divided into 2L distinct regions, correspond-

ing to the possible binary sequences generated as the signs of the φk’s. In our proposed

method, in addition to allowing an arbitrary number of segmented regions, we will have the

ability to completely disregard masks that are superseded by others, thereby reducing the

computational load.

We encountered three major problems when applying level set-based segmentation meth-

ods to fluorescence microscope images. (1) To correctly segment a simple image consisting

of two adjacent cells, the level-set function φ would necessarily be positive inside both cells,

and would need to dive to be negative in a thin region between them. Such thin, delicate

regions of sign change are susceptible to typical errors that arise in the iteration of the level-

set function, making them numerically unstable and sensitive to noise. (2) In reality, there

is often no physical space between the cells: they are adjacent, and a proper segmentation

should discern which pixels lie within the first cell, which within the second, and which

outside of either. (3) Even when the algorithm performs successfully and no unwanted

merges occur, one must nevertheless go through the simple, but tedious post-processing

step of separating the set {n ∈ Zd
∣∣φ(n) ≥ 0} into maximally connected subsets, each of

which represents either a cell or a component of the background. All of these problems may
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be overcome by using multiple masks.

Ideally, we search for an algorithm that iteratively adjusts multiple masks and ultimately

results in each cell being perfectly covered by a single mask, with a final mask for the

background. To simplify the mathematical expression of the algorithm that follows, we

consider the d-dimensional digital image as a function f ∈ `2(Zd) that has the property

that f(n) = 0 whenever at least one coordinate nk of the multi-integer n = (n1, . . . , nd) lies

outside of the interval [0, Nk). That is, f is a member of:

`2(Ω) =
{
f : Zd → C

∣∣ f(n) = 0 for all n /∈ Ω
}
, (7.3)

where Ω =
∏d

k=1[0, Nk) has the characteristic function:

χΩ(n) =





1, 0 ≤ nk < Nk, k = 1, . . . , d;

0, otherwise.

Letting M be a positive integer, a collection of M masks is a function ψ that assigns each

pixel n ∈ Ω a value ψ(n) ∈ {1, . . . , M}. Here, n is an element of the mth mask if ψ(n) = m,

while outside of Ω, ψ is zero. To summarize, a collection of masks is an element of:

SM (Ω) =
{
ψ : Zd → {0, . . . , M}∣∣f(n) = 0 ⇔ n /∈ Ω

}
, (7.4)

where the masks themselves are binary-valued characteristic functions derived from ψ

(see (7.7)). The segmented regions are ψ−1{m} = {n ∈ Zd
∣∣ψ(n) = m}, m = 1, . . . ,M

and ψ−1{m} could denote, for example, a cell in f . Below, we discuss how active-contour-

inspired forces may be designed to iteratively refine ψ so as to ultimately produce an M -

channel segmentation (each channel represents a region) of the original image. Here, the

role of the smoothness force will be recast in terms of a local majority voting that decides

to which mask a voxel belongs taking into account the masks to which voxels in its local

neighborhood belong. The equivalent of other forces will play a role in skewing this voting.

As the role of the local majority voting as well as the functions used to skew the voting
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is that of distributing the masks to various regions in the image, we call them distributing

functions. Thus, distributing functions in the AM framework are the counterparts of forces

in the active-contour or level-set paradigm.

7.3 Local Averaging

A distributing function at the crux of our AM segmentation algorithm draws on the idea of

majority voting based on local averages. For any function f ∈ `2(Zd) and any given pixel

n ∈ Zd, we will need to compute weighted averages of the values f(m) over all m sufficiently

close to n. The weights themselves are taken to be the values of some nonnegative lowpass

filter g ∈ `1(Zd). For example, one may take g to be a truncated version of exp(−b−2|n|2)
for some scale parameter b > 0. The local averages of f with respect to the coefficients in

g may be given in terms of the convolution:

(f ∗ g)(n) =
∑

m∈Zd

f(n−m)g(m). (7.5)

One type of local average of f may be obtained by dividing (7.5) by its DC value
∑

n∈Zd g(n).

However, near the boundary of the image, such averages take into account many values of

the image that were artificially defined to be zero, and as such, are disproportionately small.

This issue may be overcome by symmetrically extending the image across the boundary. An

alternative fix we use, is to compute the averages over only the portion of f that lies within

Ω =
∏d

k=1[0, Nk). In particular, we compute our local averages using the nonstandard,

noncommutative convolution:

(f ? g)(n) =





(f ∗ g)(n)
(χΩ ∗ g)(n) , n ∈ Ω;

0, n /∈ Ω.

(7.6)

If f ∈ `2(Ω), then f ? g ∈ `2(Ω) is well-defined for any nonnegative, nonzero g ∈ `2(Zd).

In practice, we take g to be finite tap, and compute both the numerator and denominator

of (7.6) by FFT-implemented circular convolutions of zero-padded versions of f , g and χΩ.

101



In so doing, the segmentation of even large images may be computed with relative efficiency.

7.4 The AM Framework

The crux of the AM framework is based on the voting-based distributing function (see

Fig. 7.1 and Algorithm 7). At a given resolution and scale, it is iterated until equilibrium

is achieved, at which point, the scale is increased, leading to an another iterating process.

Once the scale has converged, the resolutions is increased and the whole process is repeated

once more. Thus, the basic step of the AM algorithm is as follows: Given a collection of

multiple masks at iteration η, ψη ∈ SM (Ω) as defined in (7.4), we begin by forming the

masks themselves as characteristic functions of the collection, as:

χψ−1
η {m}(n) =





1, ψη(n) = m;

0, otherwise,
(7.7)

for every m = 1, . . . ,M . As
{
ψ−1

η {m}}M

m=1
partitions Ω, its characteristic functions (7.7)

satisfy:

χΩ =
M∑

m=1

χψ−1
η {m}. (7.8)

Next, we allow each mask to spread its influence by passing its characteristic function

through some fixed nonnegative lowpass filter g, performing d-dimensional FFT-based non-

standard convolutions χψ−1
η {m} ? g, as defined in (7.6). Because of (7.8), the values of these

convolutions sum to 1:

∑M
m=1(χψ−1

η {m} ? g)(n)

= 1

(χΩ ∗ g)(n)
∑M

m=1(χψ−1
η {m} ∗ g)(n)

= 1

(χΩ ∗ g)(n)

(∑M
m=1 χψ−1

η {m} ∗ g
)
(n)

= (χΩ ∗ g)(n)
(χΩ ∗ g)(n) = 1. (7.9)
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For any n ∈ Ω, the value

Vm,η(n) = (χψ−1
η {m} ? g)(n), (7.10)

is the voting-based distributing function and it represents the degree to which n wants to

belong to mask m, based upon the influence of its neighboring pixels at iteration η. In

other words, that m producing the largest value of Vm,η(n) represents the new mask to

which pixel n will belong.

For example, consider the ηth iteration of a 2D image with the filter g being 1 on a 3×3

square centered at the origin and is otherwise 0. Further, suppose that we have M = 3

masks and that the values of ψη in a 3× 3 neighborhood of some pixel n = (1, 1) are:

ψη(0, 0) ψη(0, 1) ψη(0, 2)

ψη(1, 0) ψη(1, 1) ψη(1, 2)

ψη(2, 0) ψη(2, 1) ψη(2, 2)

=

2 2 2

2 1 3

2 1 1

.

Computing Vm,η(1, 1) for m = 1, 2 and 3, yields 3/9, 5/9 and 1/9, respectively, implying

that in the next iteration, the pixel (1, 1) will want to change its membership from mask 1

to mask 2.

Indeed, for any d, g and M , if we iteratively define new masks according to this local

majority voting scheme:

ψη+1(n) = argmax
m=1,...,M

(Vm,η)(n), (7.11)

we have essentially pitted the masks against each other; each mask tries to conquer any

neighboring pixels, and may only be stopped by another mask attempting to do the same.

Experiments reveal that iterating (7.11) will eventually result in masks in equilibrium (that

is, further iteration of (7.11) cause no further change). When the masks are in equilibrium,

we say the iteration has converged. The minimum thickness of these masks at equilibrium

seems to be mostly dependent on the size of the support of the filter g. Similarly, the

smoothness of the boundaries between distinct masks at equilibrium seems to depend greatly

on the smoothness of the filter g. If we are looking for smooth boundaries, we should
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avoid the blocky g described in the example above, and instead choose a g weighted in

a more isotropic manner. In this sense, (7.11) is the AM version of the smoothing forces

traditionally associated with active-contour algorithms.

However, iteratively applying (7.11) will not successfully segment the image in question,

as (7.11) does not take the image itself into account. As with active contours, one needs to

combine this smoothness requirement with other requirements to push the segmentation in

the right direction according to the features of the underlying image. In the AM framework,

we regard these as functions which skew the majority voting scheme. The AM iteration is

formally defined to be:

ψη+1(n) = argmax
m=1,...,M

[
Vm,η(n) + Rm(n)

]
, (7.12)

for n ∈ Ω with ψη+1(n) = 0 otherwise, where the functions {Rm}M
m=1 ⊆ `2(Ω) are fixed

functions which depend upon the image alone. In general, these Rm’s may take into account

edges, textures, and morphological features present in the image. Because of (7.9), one

should scale the Rm’s to not exceed 1 in magnitude, as then, their value will completely

override the smoothing action of the majority voting. Note that other R’s are possible (as

well as more than one).

For the purpose of segmentation of fluorescence microscope images, we took the Rm’s

in (7.12) to depend purely on the density of the underlying pixels. For this particular class

of images, pixels inside a cell are fundamentally distinguished from those outside by the

average intensity of the pixels in their vicinity. Having arbitrarily decided to always let

the first mask attempt to represent the background, with the remaining (M − 1) masks

attempting to each realize an individual cell, we therefore constructed a function R1 which

would skew the voting of points of lower image density towards the first mask, and those of

higher image density away from it. In practice, we constructed R1 via a soft-thresholding

of a smoothed version of the original image f (see Fig. 7.1 and Algorithm 7). Letting h be

some lowpass filter:

R1(n) = α sig
(
β
(
(f ? h)(n)− γ

))
, (7.13)
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where α, β, γ ∈ R were experimentally determined parameters and sig : R → R is any

sigmoid-type function which asymptotically achieves the values ±1 at ±∞, respectively.

Here, γ should be taken to be the average intensity of those pixels which lie on the boundary

between being inside every cell and being outside them all. Meanwhile, β determines the

harshness of the threshold, while α should be taken in (−1, 0) and close to −1. Under these

conventions, for a typical pixel n inside a cell, we have (f ? h)(n) > γ, and so R1(n) ≈ α,

which, as α < 0, will skew the voting in (7.12) so as to prefer any mask besides the first.

Similarly, when n lies outside all cells, we have R1(n) ≈ −α, and so the voting in (7.12)

will favor the first mask. As smoothness alone is sufficient to distinguish the cells from each

other, we took Rm(n) = 0 for all m 6= 1 and all n ∈ Zd.

As we will see in Chapter 8, under this definition of the Rm’s, repeated applications

of (7.12) seem to converge to a final segmentation in a reasonable amount of time, even

when the initial segmentation ψ0 is taken to be random. This is possible because, even in the

first iteration, the strong preference that R1 exhibits for the outside will quickly distinguish

foreground from background. With the inside versus outside question settled, the remaining

masks compete for supremacy, in a manner similar to the unbiased voting (7.11). Inevitably,

larger masks will consume smaller ones; if ψη(n) 6= m0 for all n ∈ Zd, then ψη+1(n) 6= m0

for all n ∈ Zd. That is, if a given mask is no longer present at a given iteration, it is

gone forever, and may be treated as such. That is, one may effectively regard the number

of masks M as getting smaller, reducing the number of convolutions one must compute

in (7.12). The successive reduction in the number of masks as the iterations converge is

illustrated in Fig. 7.2. Fig. 7.2(a) shows a fluorescence microscope image of HeLa cells with

eight distinct (and six whole) cells. Fig. 7.2(b) shows the initial state with M = 177 masks.

In the first iteration, R coarsely separates the background from the foreground. Thus, in

the very next iteration, η = 2, the number of masks is drastically reduced and the empty

masks are discarded to yield M = 78 as shown in Fig. 7.2(c). Subsequently, the masks in

the foreground region fight amongst themselves, with the geometry of the cells prevailing.

Thus, in Fig. 7.2(d), at η = 12, we see the masks showing an increased correspondence to
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the cells and the number of masks is steadily decreasing (in this case, M = 17).

Ultimately, the iterations will converge when the remaining masks that correspond to

the cells achieve an equilibrium. This will typically happen when the inherent geometry of

the cells causes a stalemate. In essence, when two round cells touch, a separate mask will

grow to dominate each cell. The boundary between the two masks will coincide with the

boundary between the two cells, as the narrowing of the cells near their boundary creates a

narrow pass which neither side is able to conquer. Thus, the repeated application of (7.12)

will often result in a first mask which contains the background, while the remaining nonzero

masks each describe a nonzero cell. However, as noted in Sections 3.3 and in Chapter 4, no

algorithm is perfect and splits and merges of cells will occasionally occur. In general, these

anomalies depend on the design of the distributing functions and how sensitive the filters are

to the features that distinguish the objects of interest. In particular, for the segmentation

of fluorescence microscope cell images with the distributing functions described above, if

the region-based distributing function has not been smoothed adequately, the masks during

the local majority voting may split a single cell into two or more regions based on kinks

on the surface of single cell. Alternatively, if the scale parameter for the voting-based

distributing function is too small, the function may be too sensitive to small indentations

in the foreground, causing spurious splits. Likewise, if the scale parameters of the filters are

too large, cusps between touching cells may be smoothed out, resulting in spurious merges.

As the scale parameter plays an important role, we try to overcome the problem of spurious

merges and splits automatically by applying the distributing functions at multiple scales.

7.5 The MS-MR-AM Algorithm

We now discuss a MR-MS version of (7.13) in more detail. Here MR refers to the fact that we

first segment a downsampled version of the image as in (7.1), and then lift this segmentation

to the next highest resolution as described in (7.2) for the sake of speed [15,80]. Meanwhile,

MS refers to the fact that at a given resolution, we may very slowly change the scale

parameter a > 0 which scales the lowpass filter h from which the region-based distributing
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(a) Original image (b) k = 3, a = 4, η = 1,
M = 177

(c) k = 3, a = 4, η = 2,
M = 78

(d) k = 3, a = 4, η =
12, M = 17

(e) k = 3, a = 4, η =
52, M = 12

(f) k = 3, a = 3.5, η =
58, M = 12

(g) k = 3, a = 3, η =
66, M = 12

(h) k = 2, a = 5, η =
135, M = 11

(i) k = 2, a = 5, η =
150, M = 10

(j) k = 2, a = 4, η =
180, M = 10

Figure 7.2: An illustration of the evolution of AM with random seeds [17]. Note that unlike in pseudocode
Algorithm 7, here we report iteration number η cumulatively. (a) A COPII image (enhanced). (b) In the
first iteration η = 1, with an initial number of masks, M = 177, decomposition level, k = 3 and scale of the
smoothing filter, a = 4. (c) At η = 2 and k = 3, the foreground is separated coarsely from the background,
with M = 78 and a = 4. (d) At η = 12, k = 3 and a = 4, M = 17. (e) At η = 52, k = 3 and a = 4,
M = 12. As zero pixels change at this stage, the scale parameter is annealed, at the same resolution, k = 3.
(f) At η = 58, k = 3 and a = 3.5, M = 12. As zero pixels change, the scale parameter is further annealed.
(g) At η = 66, k = 3 and a = 3, M = 12. As zero pixels change at this stage, the resolution is pulled back
to k − 1. (h) At η = 135, k = 2 and a = 5, M = 11. (i) At η = 150, k = 2 and a = 5, M = 10. (j) At
η = 180, k = 2 and a = 5, M = 10. Zero pixels change at this stage. We may anneal the scale parameter
and pull the resolution back to the original resolution; however, we note that a satisfactory segmentation
has already been achieved at this stage. It takes ≈ 1.7min, including writing the resulting mask at each
iteration, to evaluate. The exact time taken each time the algorithm is rerun depends on the initial random
configuration. Note: Images at different resolutions have been scaled to the same size for display purposes.
This final result is shown in pseudo color in Fig. 8.5(a). (Original image courtesy of Dr. A. D. Linstedt [5].)
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function (7.13) is computed. For example, with

h(n) = exp(−a−2|n|2), (7.14)

experiments revealed that choosing a to be large results in a quickly converging algorithm

whose ultimate masks nevertheless overestimate the size of the cells in addition to over-

smoothing their boundaries. While choosing a to be small yields better masks, it slows

convergence. For the best of both worlds, we took a simulated annealing approach.

Specifically, a is initially taken to be large to rapidly obtain a coarse segmentation.

Then, after (7.12) has converged for this specific a, these masks form the initial guess for

the rerunning of (7.12) with a slightly smaller a. When the change in a is slight, the second

iteration will converge in a few steps. This process is then repeated, gradually pulling a

down to a point where experimentation has revealed the ultimate segmentation as being

a good match to the ground truth. This annealing may occur at any resolution, that is,

we pass through a decreasing sequence of scale factors {ak,j}Jk
j=1 for any fixed resolution

k and downsampling Hkf of the original image f . The complete MS, MR AM algorithm,

beginning with some randomly chosen ψ
(K,1)
1 ∈ SM (Ω), is shown in Fig. 7.1 and Algorithm 7,

with index k referring to the MR loop, and index j referring to the MS loop.

The evolutionary behavior of AM algorithm is illustrated in Fig. 7.2. For any fixed

k and j, we iteratively apply (7.12) until the masks are in equilibrium. We then use

these masks as the starting point for the next step in the annealing. When the annealing

for a given resolution is completed, we lift the resulting masks up to a higher resolution

and begin the process again. The final masks are given by the function ψ
(K0,JK0

)
ηmax . When

K0 = 0, the masks given by the function ψ
(0,J0)
ηmax provide a full-resolution, multiscale-annealed

multiple-mask segmentation of the original image. The scale b of the filter g used in the

voting-based distributing function, chosen to be a fixed constant here, can also be annealed.

The annealing can either be explicit, as it is for a, or implicit, as merely some function of

resolution k. The smaller the scale b, the longer it takes for ψ(k, jk) to converge, but

the boundaries between the foreground masks are more accurate. The parameters α, β
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and γ are fixed constants which are experimentally determined for optimal performance.

Experimental results detailing the performance of this algorithm, both in terms of speed and

accuracy, are given in the following section. We are currently mathematically investigating

the convergence of the algorithm; some of these are outlined in the following section.

7.6 Convergence Issues

AM achieves experimental convergence, that is, the evolving masks actually arrive at a zero

change state, at which point the procedure comes to a halt. This section describes briefly

some of the approaches we have taken in investigating the theoretical convergence of the

distributing functions described above in the AM framework.

Objective function. Unlike forces in the active-contour framework, we do not for-

mulate distributing functions in the AM framework as energy functionals or the problem

of segmentation as a minimization problem. Hence, we do not have an objective function

as such whose properties can be studied/are known. As AM achieves experimental conver-

gence for a lowpass filter under the conditions mentioned in Section 8.2, we start with the

premise there is an underlying objective function that is being optimized. As a first step in

identifying such an objective function, we computed the change in some of the boundary

properties. If the change of a property (or a combination of properties) is monotonic, it

would act as our lighthouse in proving the procedure’s convergence. The properties we have

investigated so far include: total curvature, mean curvature, maximum curvature, length

of the boundary, area of the blobs, and various combinations of these properties. However,

experiments have revealed that none of these is monotonic.

Is AM a fixed-point algorithm? For the sake of simplicity, we consider the number

of masks to be M = 2. Without loss of generality, we suppose that one of the masks is

−1 and the other +1 and that d = 2. The majority-voting function is replaced by the sign

function, T : L2(Πd) → L2(Πd). Further, as the region-based function R serves to skew the

voting, we disregard R, in a first attempt to understand the behavior of iterative smoothing

and thresholding (in this case, applying T and G)2 on ψ. In essence, the AM algorithm given
2Gψ = g ∗ ψ.
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by (7.11) is captured in a simple form by TG
(
(TG)η−1ψ

)
. To prove convergence of this

procedure, it is sufficient to show that the number of zero-crossings in ψ is monotonically

nonincreasing with iteration.

The action of iterative smoothing is well studied as the maximum (or minimum) prin-

ciple [146] (see [82] for a discrete version of the maximum principle). The conditions under

which a lowpass filter produces a coarse version of the image have been presented in the

formulation of the diffusion equation [147]. It has been rigorously proved that a version of

the maximum principle from the theory of parabolic differential equations is equivalent to

the condition of applying such a lowpass filter on an image so as not to produce any new

zero-crossings (or edges) in the image [148].

The challenge in applying these ideas to AM, stems from the fact that T is not con-

tinuous. Although it continues to be nonlinear, we may approximate T by a sigmoid,

σθ(u) = exp(θu)−1
exp(θu)+1 as σθ

θ→∞−−−→ T . Thus, for some x ∈ Rd, we have T (Gx) ≈ σθ(Gx).

A function Λ has a fixed point x, if Λ(x) = x for some x. In particular, let Λ = σθ(G).

If the set of fixed points of all θ is denoted by Fθ, we ask, Fθ
θ→∞−−−→ F? In other words, does

the iteration converge?

If Λ(η)(x) = Λ
(
Λ(η)−1(x)

)
, exists, it is exponential. A sufficient condition to prove

convergence would be to prove ‖Λ(Λ(x)) − Λ(x)‖ ≤ c‖Λ(x) − x‖, for some c < 1. This

condition implies Λ is a contraction, which further implies the existence of a unique fixed

point for Λ. However, in the case the Λ we are studying, uniqueness is not desirable because

we know that TG(0) = 0 is a fixed point. For some x 6= 0, we notice convergence happens

and the iteration stops. We want to investigate such nontrivial fixed points of Λ. Thus we

have to weaken the conditions for unique fixed points to allow for multiple fixed points. As

Λ depends on G, it is desirable to describe our objective in terms of properties of G. In

other words, what are the conditions on G so that TG(x) is a fixed point?

Most of the fixed point literature deals with conditions for existence of a unique fixed

point in the context of investigating the existence of a unique solution to a differential

equation. Our difficulty in calling upon the vast literature on fixed point algorithms is that
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the conditions for existence of a unique fixed point are generally much stronger than the

conditions for just the existence of a fixed point [149]. As we do not have an objective to

begin with (and coming up with one requires an understanding of the fixed points of Λ),

the problem of weakening the conditions to obtain the objective, is circular.

Convergence in 1D. In the following discussion, we define convergence as that state

of ψ which remains unaltered on operating TG any number of times on it.

Here, we consider the action of T but simplify the problem to d = 1, and restrict the

lowpass filter g to a train of finitely many δ’s. That is, G is of the form

Gψ = ψ ∗ g; g =
1
N

bN
2
c∑

n=−bN
2
c
δn,

where N ≤ length(ψ) and mod (N, 2) = 0 so G has an odd number of δ’s. Trivially, when

N = 0, TGψ = ψ. We will now consider a few nontrivial examples for the case N = 2. In

these examples, we assume a circular signal extension. In practice, we do not use such a

signal extension but rather use a modified convolution as described in (7.5).

N = 2 Case 1: ψ 1 1 1 1 1

TGψ 1 1 1 1 1

Case 2: ψ 1 1 −1 −1 −1

TGψ 1 1 −1 −1 −1

Case 3: ψ 1 −1 1 −1 1

TGψ 1 1 −1 1 1

(TG)2ψ 1 1 1 1 1

Case 4: ψ 1 −1 1 −1 1 −1

TGψ −1 1 −1 1 −1 1

(TG)2ψ 1 −1 1 −1 1 −1

Based on the above example, we make a few observations. (1 ) When the ψ contains

points of the same sign, TGψ is trivially ψ. (2 ) When ψ contains more than N/2 consecutive

111



points of the same sign, iterating TG any number of times will not alter their sign. (3 )

When ψ contains more than N/2 consecutive points of the same sign that flank N/2 (or

fewer points) of a different sign, repeated application of TG will eventually alter the sign

of the N/2 or fewer points to the sign of the majority that surrounds them. (4 ) When the

length of every subsequence of points in ψ that has the same sign is equal to N/2, iterating

TG on ψ results in the points in ψ alternating their signs. Studying a few examples with

N = 4 and N = 6 lend further insight and a few more interesting observations.

N = 4 Case 1: ψ 1 1 1 −1 −1 −1 1

TGψ 1 1 1 −1 −1 −1 1

Case 2: ψ 1 1 −1 −1 1 1 −1

TGψ 1 −1 1 1 −1 1 1

(TG)2ψ 1 1 1 1 1 1 1

Case 3: ψ 1 1 −1 −1 1 1 −1 −1

TGψ −1 −1 1 1 −1 −1 1 1

(TG)2ψ 1 1 −1 −1 1 1 −1 −1

Case 4: ψ 1 −1 1 −1 1 −1 1 −1

TGψ 1 −1 1 −1 1 −1 1 −1

Case 5: ψ 1 −1 1 1 −1 −1 1 −1 1 1 −1 −1

TGψ −1 1 1 −1 1 −1 −1 1 1 −1 1 −1

(TG)2 1 −1 1 1 −1 −1 1 −1 1 1 −1 −1

Cases 1-4 are consistent with the examples considered for N = 2. In short, from Case

1, we see that if the length of every subsequence of points in ψ is greater than N/2, then

iterating TG on ψ produces no change in ψ.

Case 2 lends strength to the observation that if there is at least one subsequence of

points of the same sign in ψ of length greater than N/2 adjacent to a subsequence of points

of a different sign and of length N/2 or smaller, then ψ converges to the sign of the majority
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subsequence in one or more steps. Henceforth we refer to the majority subsequence as a

stable region. Thus, by our understanding, a stable region is a set of sequences of greater

than N/2 adjacent points whose sign does not change regardless of the number of iterations

of TG on ψ. A stable point is a member of the stable region. Further, the length of a

sequence of adjacent stable points may remain the same or increase under the action of TG

by consuming points from the adjacent unstable region/s. Thus, an unstable region is a set

of points which changes its sign under the action of TG. A question this raises is: for a

given initial sequence of points in ψ, how many iterations of TG on ψ will it take for ψ to

converge? We will revisit this question shortly. We note here that the above definitions of

stable and unstable regions do not account for subsequences of fewer than N/2 adjacent

points of the same sign, which may not change their sign under the action of TG (such as

in Case 4 above).

Finally, Case 3 and Case 4 seem to combine to make a stronger statement than ob-

servation (4 ), which is, when the length of every subsequence of points in ψ that has the

same sign is less than or equal to N/2, iterating (TG)η, 0 < η < ∞ on ψ either makes

no difference or results in the points in ψ alternating their signs3. Also, it appears that

when the length of every subsequence of points in ψ that has the same sign is less than

N/2, iterating TG on ψ makes no difference to the values of ψ. However, we will examine

a few examples of N = 6 and N = 8, before making these statements. Case 5 points to an

altogether new combination for an alternating sequence (it is easier to see this by focusing

on the lengths of the subsequences of points having the same sign). We can expect to more

interesting cases as N increases.
3For instance, in Case 4, η = 1 and corresponds to the sequence being invariant and in Case 3, eta = 2

and corresponds to the case of alternating signs or periodic invariance (or “convergence with a period 2”.)
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N = 6 Case 1: ψ 1 −1 1 −1 1 −1 1 −1 1 −1

TGψ −1 1 −1 1 −1 1 −1 1 −1 1

(TG)2ψ 1 −1 1 −1 1 −1 1 −1 1 −1

Case 2: ψ 1 1 −1 −1 1 1 −1 −1 1 1 −1 −1

TGψ −1 −1 1 1 −1 −1 1 1 −1 −1 1 1

(TG)2ψ 1 1 −1 −1 1 1 −1 −1 1 1 −1 −1

Case 3: ψ 1 1 1 −1 −1 −1 1 1 1 −1 −1 −1

TGψ −1 −1 −1 1 1 1 −1 −1 −1 1 1 1

(TG)2ψ 1 1 1 −1 −1 −1 1 1 1 −1 −1 −1

N = 8 Case 1: ψ 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1

TGψ 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1

Case 2: ψ 1 1 −1 −1 1 1 −1 −1 1 1 −1 −1

TGψ 1 1 −1 −1 1 1 −1 −1 1 1 −1 −1

Case 3: ψ 1 1 1 −1 −1 −1 1 1 1 −1 −1 −1

TGψ −1 −1 −1 1 1 1 −1 −1 −1 1 1 1

(TG)2ψ 1 1 1 −1 −1 −1 1 1 1 −1 −1 −1

Clearly, we see a pattern emerging. We note that for this simple case of M = 2 and

a point p ∈ Z+ such that ψ(p) ∈ {−1, 1} and subject to the action of G, the smoothing

operator described above with the length of the filter g being N +1 and T , the sign function,

some of the previous claims can be captured by the theorems below.

Theorem 1 Any subsequence4 of more than N/2 points with the same sign forms a stable

region.

Proof Suppose ψ contains a subsequence of N/2+1 points of the same sign. Without loss

of generality, let us say these points are +1’s and are adjacent to subsequences (on both
4Subsequence refers to a set of adjacent points of ψ.
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sides) of -1’s. Then, by definition, repeated application of the filter should result in the

points of this set not changing their signs. Let us center the filter G at any point a of this

region of +1’s. As more than half of the points within G overlaps with points of the same

sign as a, the sign of a stays the same. Consequently, we conclude this region is invariant

under the repeated application of TG on ψ. Therefore this sequence satisfies the definition

of a stable region.

Theorem 2 In any ψ that has at least a stable region, the iteration will converge and any

unstable regions in the initial ψ will be eliminated.

Proof Suppose ψ contains a subsequence of adjacent points of the same sign that forms a

stable region. Without loss of generality we may assume the points in the stable region are

+1’s. Let us further assume that the subsequence shares a border with an unstable region.

Thus, at the border, point b of the stable region has the value +1. b has at least N/2 (+1)’s

to one side of it and a point a with the value -1 to its other side with no more than N/2− 1

(-1)’s adjacent to a. (These assignments follow from the previous theorem.) Now, if we

center our filter at this a, there happen to be N/2 (+1)’s to one side that forms the stable

region and at least one +1 in the N/2 points that are on the other side of a. This results

in the sign of a being changed from -1 to +1. Thus, the stable region of +1’s grows by a

point. Extending the argument along these lines, we end up with the consequence stable

sequence grows till there remain no more unstable regions in ψ.

Theorem 3 Assume ψ is composed only of alternating subsequences of length L ≤ N
2 with

as many points of one sign in ψ as there are points of the other sign. ψ is invariant

under TG or it transforms into its negative. The effect of TG is the same as TĜ where Ĝ

corresponds to the filter of length N̂/2 ≡ N
2 mod2L. TG has the opposite effect of TĜ on ψ,

if N̂ −N is an odd multiple of 2L.

Proof As the general proof is very cumbersome, we will first discuss the case for L =

2, N = 4 and N̂ = 6 or 8. In the table above for N = 4, ψ in Case 3 corresponds to L = 2.

Let us center the filter G on any point a in ψ. Clearly, there are as many points of one sign
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as the other sign adjacent to a. These equal number of adjacent points of opposite sign

cancel out the effect of each other. Thus, the only unbalanced point is a and hence the sign

of a stays the same. Let us now consider a filter Ĝ with length N̂/2 = 8 and center the

filter Ĝ at any arbitrary point a in ψ. We notice that this filter considers a pair of points

on either side of a in addition to the points considered by G. Any point in a subsequence

of points of the same sign in ψ repeats after every (multiple of) four points. Consequently,

adding four points to G adds two points of both signs. They cancel out the effect of each

other and as before, the sign of a remains unaltered. Let us now consider a filter Ĝ with

length N̂/2 = 6 and center the filter Ĝ at any arbitrary point a in ψ. We thus consider

only two points (or a length equal to half a period) in addition to the points considered by

G. In effect, Ĝ overlaps with only two additional points of the same sign as a whereas it

overlaps with four points of the opposite sign. This causes the sign of a to change. The

example is illustrated in the table of examples for N=6 as Case 2. This argument can be

generalized for all L < ∞ as follows.

Suppose ψ consists of alternating subsequences of length L ≤ N
2 and is invariant under

the action of TG. This means that when G is centered at any point in ψ, G overlaps with

as many points of one sign as it does with points of the other sign. When 2kL, k ∈ Z
points are added to G, or length(Ĝ) = 2kL, k ∈ Z, the filter continues to overlap with as

many points of one sign as the other. This is because kL points of each sign have been

included. They cancel out the effect of each other, leaving ψ unaltered under the action of

TĜ. Alternatively, when we add (2k + 1)L, k ∈ Z points to G or consider a filter Ĝ such

that length(Ĝ) = (2k + 1)L, k ∈ Z, we include as many points as half the period of the

alternating subsequence. In effect, we include L points of one sign in excess of the other.

This causes point on which the filter is centered to change its sign. This argument holds for

point in ψ and hence every point in ψ changes its sign. Thus, TĜ has the opposite effect

as TG on ψ.

The above theorems state only some of the many properties and sufficient conditions for

convergence. For an exhaustive listing of the sufficient conditions for convergence, together
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with the number of steps required for the given sequence to converge, requires a rule-based

approach for each case. It turns out that we cannot solve all the possibilities by hand for

even a 7−tap filter. Working out the convergence rules on the computer leads to more than

800 cases. Moreover, the action of the skewing function has not been accounted for in this

formulation. At one extreme, if the skewing function is identically zero, then there would

be no change in the current formulation. At the other extreme, if the skewing force is so

large, that the voting hardly makes a difference, then the masks align themselves purely

according to the skewing function. In between the extremes are many possibilities which

would depend on the specific skewing function as well as the voting function (dimension of

ψ, properties of G and type of T ) being used. The formulation would be closer to the actual

problem but far more complicated to solve if we considered different weights applied to the

smoothing filter g or used a different form of g (such as an exponential function). Finally,

extending the analysis from 1D to 2D and higher dimensions is nontrivial.

Experimental convergence based on zero crossings. As we noted earlier, it is

well established that iterative smoothing, using a lowpass filter such as a Gaussian (similar

to the one used by V (7.11)) does not produce any new zero crossings. It is the action

of the nonlinear majority-voting function in combination with the smoothing that has not

been investigated. We used the same simplification as before, which is M = 2 and ψ(p) ∈
{−1, 1}, p ∈ (Z+)d and ran experiments for d ∈ 1, 2, 3. In 1D, a zero-crossing is a change in

sign from +1 to -1 or vice versa. In 2D and 3D we can easily extend the number of masks

M to greater than 2 and define zero crossings as follows. In 2D, a point (p1, p2) has as

many zero crossings as the number of its 4-adjacent (or 8-adjacent) neighbors that belong

to a different mask. Similarly, in 3D, a point (p1, p2, p3) has as many zero crossings as the

number of its 6- (or 18- or 26-) adjacent neighbors that belong to a different mask. If the

total number of zero crossings Γ, measured as the sum of the zero crossings of each point in

ψ, is monotonically nonincreasing, then it forms the experimental proof of convergence of

the procedure and establishes we are indeed studying the right property (or one of the right

properties) to mathematical convergence. Indeed, computer simulations have revealed that
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Γ is monotonically nonincreasing and, in fact, decreases with iteration at a very rapid rate.

As this is still under investigation, we do not report these results here.

Other lines of investigation include drawing parallels to problems in areas such as graph

theory, gaming theory and coding theory, where the action of majority voting or dynamical

systems has been rigorously studied. Understanding the convergence of the distributing

functions R and V described in this chapter, will help us characterize the properties of

these functions rigorously as well as aid in designing other distributing functions for the

AM framework. Thus, this is an important focus of our ongoing work in further developing

the AM framework.
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Algorithm 7: [AM Segmentation]
Input: Image f , initial number of masks M , maximum decomposition level K, the
desired level of refinement K0, smoothing filter scale parameters ak,j , weight of the
force to skew voting α, harshness of the threshold β, average intensity of pixels that
lie on the foreground-background border γ and size of the voting window b.
Output: A collection of masks, ψ.

ActiveMasks(f ,M ,K,K0,a,α,β,γ,b)
Initialization
k = K, j = 1, ψ

(k,j)
1 (n) = rand(M)

Beginning of multiresolution loop
while k ≥ K0 do

Compute smoothing filter for voting-based
distributing function
g(k)(n) = exp(−(2−kb)−2|n|2)
Beginning of multiscale loop
while j ≤ Jk do

Compute smoothing filter for
the region-based distributing function at scale ak,j

h(n) = exp(−a−2
k,j |n|2)

Soft threshold the smooth image
G1(n) = α sig

(
β
(
(f ? h)(n)− γ

))

Compute a smoothed coarse version of the image and
the region-based distributing function
R1 = HkG1

Rm = 0 for m = 2, . . . , M

Beginning of majority-voting loop
Iterate (and update M) until the mask ψ(k,j) converges
while ψ

(k,j)
η+1 6= ψ

(k,j)
η do

ψ
(k,j)
η+1 = argmax

m=1,...,M

[
(χ

(ψ
(k,j)
η )−1{m} ? g) + Rm

]

M = max({m ∈ {1, . . . , M} : ψ
(k,j)
η+1 (n) = m})

end while
ψ

(k,j+1)
1 = ψ

(k,j)
ηmax

j = j + 1
end while
Lift mask ψ to the next higher resolution k − 1
ψ

(k−1,1)
1 (n) = ψ

(k,Jk)
ηmax (b2−1nc)

k = k − 1
end while
return ψ
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Chapter 8

AM for Fluorescence Microscopy

In this chapter we report the results we obtain on applying the active mask algorithm to the

application described in Section 2.1.2. We discuss how the parameters of the algorithm can

be tuned to adapt to the images to be segmented. Further, we compare the performance of

the AM algorithm to that of the SW (as the SW algorithm is widely considered the most

accurate segmentation algorithm in fluorescence microscopy). Finally, we discuss briefly

the broader impact of the AM algorithm and some of the future directions of research and

development of the AM framework.

8.1 Datasets

The data was generated in two experiments and are courtesy of Dr. A. D. Linstedt [9].

DS-1. The first dataset consists of 15 z-stacks containing 3− 8 cells each. Each stack

contains 40 2D slices of size 1024×1344 pixels. The HeLa cells were double labeled with the

COPII subunit Sec13 (a cytosolic protein peripherally associated with the membrane), and

the Golgi marker protein, giantin, in two parallel channels (see Fig. 7.2(a) and Fig. 8.5(b)).

Sec13 staining has a diffuse cytoplasmic background, which is used to mark the boundary

of the cell (see Fig. 4.7 and Fig. 7.2(a)). The resolution was 0.05µm in x/y directions

and 0.3µm in z direction. These images were used in the study and the findings based on

hand segmentation were reported in [36]. We developed the cell-volume computation and
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Golgi-body segmentation algorithm based on two of the stacks and tested it on others [19].

DS-2. The second dataset consists of 5 z-stacks containing 2− 4 cells each. Each stack

contains 20 2D slices of size 1024 × 1344 pixels. The HeLa cells were labeled with Sec13.

While the cells imaged in DS-2 belong to the same cell line as cells imaged in DS-1—the

HeLa cell line—they are thinner, and thus a fewer slices per stack. The resolution was

0.05µm in x/y directions and 0.3µm in z direction.

Hand Segmentation. To assess the performance of the algorithm, we used the hand

segmented (HS) version of the DS-2 set as ground truth. The HS version of the DS-1 set was

not consistent enough to allow a rigorous comparison. The images were hand segmented

in three separate sessions by two experts to minimize the effect of an individual’s bias on

a given day and giving them sufficient respite to segment as accurately and precisely as

possible (see Fig. 8.2(a)-(b)).

8.2 Algorithm—Parameter Selection

We now discuss the considerations behind selecting parameters input to Algorithm 7. A

table summarizing all the parameters, including image dependent ones, is given in the

reproducible-research compendium that accompanies the paper [17].

Dimension d. In Section 8.3.1, we report the results when d = 2 in (7.3). In Fig. 8.4,

we demonstrate the result when d = 3.

Masks M . We initialized the algorithm with M = 256 random masks. The larger the

M , the lower the possibility of unwanted merges or of a single mask representing multiple

regions.

Image resolutions K and K0. In this work, we decomposed to K = 3 levels (that

is, one-eighth the original resolution), lifting the result as per (7.2), to K0 = 2 (that is,

one-fourth the original resolution). We did not lift the result to the original resolution and

refine any further as we obtained a satisfactory segmentation at k = 2. In our experiments,

the two values of k adequately demonstrate the advantage of using multiple resolutions in

anomalous cases where just the coarse segmentation at one-eighth the original resolution is
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not accurate enough (see Fig. 7.2(g)-(j)). Thus we report our final results on images of size

256× 336 pixels.

Filter h, and scale parameter a. Filter h is taken as,

h(n) = exp(−n2/a2
k,j), (8.1)

at resolution k and scale j.

For the MS evolution phase, we did not overly tune the parameters. We determined the

scale parameter aK,1 for filter h in (8.1) based on the resolution k as well as the approximate

size of a cell at the coarsest resolution, k = K and annealed the value at a fixed k. Thus, we

began with a3,1 = 4 at one-eighth the original resolution of the input image and pulled back

to a3,3 = 3 in decrements of 0.5. At K − 1, that is, one-fourth the original resolution, we

used just one value, a2,1 = 5. In practice, the more gradual the annealing is, the faster the

convergence is for different j at a fixed k. Further, while it is not necessary to decrement

the values during the annealing process (that is, they can even be incremented), a larger

a allows us to obtain a faster and coarser segmentation, whereas smaller scale values take

longer to compute but provide a finer segmentation. We used the same values of a on all

the images, without tuning this per image or even per stack. Scaling ak,j by the size of the

image enables us to use the values without having to adjust the values of ak,j for different

decomposition levels K that may be input to the algorithm.

Filter g and scale parameter b. Filter g may be taken to be any nonnegative lowpass

filter. In particular, we have

g(n) = 0.5


1− 2√

π

∫ n2−b2

b2+c

0
exp(−t2/2)dt


 . (8.2)

We set the scale parameter b = 1 for the voting window g in (8.2). We annealed this value

based on k. In particular, for k = 3, b = 2 and for k = 2, b = 4. In selecting the parameter

we were guided by the twin goals of expediting convergence while not compromising on the

quality of the boundary.
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c = 0.125 ¿ b2. Since b2 + c ≈ b2, c may be neglected.

Region-based function R and weight α. We may use any sigmoid-type function in

R. In particular, we use the error function, erf(x) = 2√
π

∫ x
0 exp(−t2/2)dt. Thus, we have

Rm(n) = α

(∫ β(f̂(n)−γ)

0
exp(−t2/2)dt

)
, (8.3)

where m = 1 and f̂ = f ∗ h, is a smoothed (and downsampled) version of f .

α = −0.9 is the weight of Rm’s given by (8.3).

Image-Dependent Parameters, β and γ. We determined the constants β and γ as

per the considerations described in Section 7.5. While the tuning was minimized to a large

extent through annealing, tuning is not entirely eliminated. Indeed, as β and γ in (8.3)

represent the harshness of the threshold and average value of pixels on the foreground-

background border, they have to be adapted to each stack. We determined them based on

one image from each stack and used the same numbers for all the other images from that

stack.

These coarse adjustments are possible in our framework because the performance of the

algorithm is robust within a small range of the parameter values and hence the values do

not necessarily need to be highly tuned. It may be possible to obtain better results than

we report with a more involved tuning procedure, if desired. However, it is not practical to

expect an involved tuning of the parameters in high-throughput applications, and thus, we

did not want to resort to such a tuning. The parameter values used for each stack as well as

the scripts used to obtain the results reported the reproducible-research compendium that

accompanies the paper [17].

8.3 Results

An example of the evolution behavior of AM algorithm is shown in Fig. 7.2. In summary, at a

given k and ak,j , the region-based distributing function (7.13) first separates the background

coarsely from the foreground in one iteration and the number of masks drops drastically.
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Thereafter, the masks are refined based on the voting-based distributing function (7.11),

with empty masks being eliminated at each iteration. The segmentation outcome at a given

resolution k and scale j is successively refined by annealing a and updating k.

8.3.1 Competing Algorithm: SW

We compared the performance of our AM algorithm to that of the SW algorithm. While the

general idea of a region-growing method underlies its framework, various paradigms of the

watershed algorithm abound in literature requiring the tuning of the algorithm. This tuning

of the preprocessing or postprocessing modules for SW is involved and necessary for SW to

perform well. Further, it is often tedious as it is rule-based and the rules are not easy to

generalize. As the algorithm’s performance critically depends on these pre/postprocessing

modules, we spent a fair amount of time tuning them to get the best possible performance.

When we use the watershed algorithm described in [18], the algorithm bins regions in the

image based on their gray scale values. We obtain a large number of regions (spurious

splits) despite blurring the fluorescence microscope images to reduce the effect of shot noise

(see Fig. 8.1(a)). This result requires a heavy postprocessing of defining rules to merge

these highly fragmented regions to provide a reasonable number of regions [18]. Thus, we

resorted to using perfect seeds drawn by hand to initialize the algorithm and used the classic

region-growing paradigm of the SW to segment the image [102], whereby SW produced the

same number of segmented regions as that of the seeds. However, even this proved to be

insufficient as the entire image was assigned to one region or another (see Fig. 8.1(b)).

Thus, the resulting masks for the cells were not tight and included a significant portion

of the background. We then further tuned the seeding procedure to seed regions in the

background to prevent the foreground regions from expanding to the image borders. The

result produced tighter masks (see Fig. 8.2(c)) which we used for comparison with results

produced by AM.

We discuss the performance of the algorithm in terms of a qualitative assessment (visual

inspection), quantitative assessment, as well as a report of the runtime.
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(a) Random seeds (b) Perfect foreground
seeds

Figure 8.1: SW results: (a) SW with random seeds results in 5179 regions that need to be merged based
on rules [18]. (b) SW using perfect foreground seeds (light gray) but no background seeds results in regions
that include a significant portion of the background with each cell. (Original image courtesy of Dr. A. D.
Linstedt [5].)

8.3.2 Qualitative Evaluation

We performed a qualitative assessment of the algorithmic results by comparing them with

the HS masks (see Fig. 8.2). Very often, both SW as well as AM seemed to include a slightly

larger area than that marked by the hand segmentation.

The results of AM seemed to match the area marked by the hand segmenters better than

the masks produced by SW (see Fig. 8.2(c)-(e)). Further, it appeared that AM initialized

with random seeds performed almost as well as when it was initialized with perfect seeds.

Although this is the case for a majority of the images, due to a random initial configuration,

there are some anomalous results as well, as the one shown in Fig. 8.3(a). If indeed the

problem was only that of an unfavorable initial configuration, often just rerunning the

algorithm without changing any parameter produces a better result. If the problem resulted

from insufficient information or a choice of parameters that induced the masks to split a

cell at a particular scale, annealing the scale parameters of the filter(s) in the distributing

function(s) eliminates spurious splits during the course of the evolution itself (see Fig. 7.2(b)-

(j)). Introducing details available in a higher-resolution version of the image can also help

recover from such spurious splits. However, these techniques built into the mask evolution

phase do not help in recovering from a spurious merge during the course of the evolution.

As it is not always possible to rerun the algorithm, if seeds are available in the form of

reliable information from a parallel channel, for example, they do help in limiting anomalies

resulting from the initial randomness (see Fig. 8.3(b)).
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(a) Original image (b) HS and perfect
seeds

(c) SW (perfect seeds) (d) AM (random
seeds)

(e) AM (perfect seeds)

Figure 8.2: (a) An image of HeLa cells marked with COPII at one-fourth the original resolution. (b) HS
masks, together with “perfect seeds” (drawn by hand). (c) SW initialized with perfect seeds and overlaid on
the HS masks for comparison. AO = 95.86% and AS = 82.48%. (d) AM initialized with random seeds and
overlaid on the HS masks for that image. AO = 94.60% and AS = 91.80%. (e) AM initialized with perfect
seeds and overlaid on HS masks. AO = 94.60% and AS = 91.80% [17]. (Original image courtesy of Dr. A.
D. Linstedt [5].)

(a) (b)

Figure 8.3: AM results: (a) A merge—two cells covered by the same mask. (b) Given reasonable seeds,
the anomaly from (a) disappears [17].

8.3.3 Quantitative Evaluation

To quantify the performance of the algorithm, we computed performance measures for each

cell in each of 80 different 2D slices. As the density of cells varies per image, to account for

the influence of neighboring cells on the performance of the algorithm for a cell, we averaged

the performance measures per image before computing the overall average for the dataset.

Further, HS masks were provided for only whole cells whereas AM segmented every cell

in the image, whether it was in the periphery or at the center, while SW tended to include

peripheral cells in the same region as a neighboring central cell. For SW, this required
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seeding the incomplete cells to avoid leakage of watershed regions of valid whole cells in the

image. However, to compute the numbers, we considered only those cells that were chosen

in the HS mask.

We did not compute performance measures for SW algorithm using random seeds as

numbers would be meaningless since the performance was dismal without an involved post-

processing to merge the highly oversegmented regions.

We used two standard performance measures—area overlap (AO) and area similarity

(AS). Summaries of the results averaged per image and per cell respectively are presented

in Tables 8.1 and 8.2.

AO[%] AS[%]

Mean Std. Dev Mean Std. Dev.

Random seeding

SW NA NA NA NA

AM 89.13 8.58 84.73 7.90

Perfect seeding

SW 94.66 6.04 72.94 13.90

AM 89.35 7.67 86.06 7.15

Table 8.1: Performance measures: area overlap (AO) and area similarity (AS) measures (means and
standard deviations) for the active mask (AM) algorithm and seeded watershed (SW). Averages are first
computed for the cells in each image and then averaged over the entire set of test images [17].

AOc =
(
n(HSc ∧ AMc)

)
/n(HSc), for cell c gives the percentage of overlap between the

HS and the algorithm (AM or SW) masks for c. It can be thought of as a measure of

true positives. Considering the performance measures averaged per image, we see SW had

an average AO = 94.66% with a sample standard deviation, s = 6.04 for perfect seeding.

This is higher than that of AM which had an average AO = 89.13% with s = 8.58 and

AO = 89.35% with s = 7.67 for random seeding and perfect seeding respectively. Thus, SW

has a tendency to pick out more true positives than AM, which is relatively conservative.

However, AO does not give an accurate measure of how similar in area the masks

produced by the algorithms are to the hand segmentation. It does not penalize an algorithm
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AO[%] AS[%]

Mean Std. Dev. Mean Std. Dev.

Random seeding

SW NA NA NA NA

AM 89.26 12.38 85.11 11.34

Perfect seeding

SW 94.90 6.80 73.10 15.17

AM 89.96 8.85 86.20 9.09

Table 8.2: Performance measures: AO and AS measures (means and standard deviations) for AM and
SW. Averages are computed over the entire collection of cells. This does not take into account there may
be more cells in some images than others or the cells may be more closely packed in some images compared
to others [17].

that does not produce tight contours or includes a significant portion of the background. For

example, the mask in Fig. 8.1 may yield an AO = 100%, but that does not reflect how closely

the mask matches the ground truth. Including a significant portion of the background in the

cell mask may negatively influence further automated analyzes such as feature extraction.

Thus, we also compute a more stringent measure called the area similarity AS.

AS normalizes twice the area that is common to the masks by the sum of the areas of HS

and the algorithm, and thus penalize the algorithm that produces larger regions. For SW,

AS = 72.94% with s = 13.90 for perfect seeding, while for AM, AS = 84.73% with s = 7.90

and AS = 86.06% with s = 7.15 for random seeding and perfect seeding, respectively. Ac-

cording to literature, an AS ≥ 70% implies a good agreement of the algorithm’s result with

the ground truth [131]. By this token, both SW and AM algorithms perform satisfactorily,

though the large standard deviations give AM a bit of an edge. Moreover, according to

the numbers, AM has a lesser chance of detecting false positives in the image. The per-

formance of AM with random seeding is, as highlighted even in the qualitative assessment,

not significantly different from that of perfect seeding. This indicates that the algorithm

almost always performs just as well with random seeding as it does with perfect seeding.

Exceptions to this premise (see Fig. 8.3) have been discussed earlier in Section 8.3.2.
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8.3.4 Runtime

While our AM implementation was in MATLAB (version 2007a) for flexible design and pro-

totyping [150], we used library functions for SW available in C++. Thus, while the runtime

numbers of the two algorithms cannot be compared, we list them here for completeness.

In our future work, we expect at least an order of magnitude decrease in the runtime of

AM once implemented in C/C++. Further optimization of the C code may yield anywhere

between a 10x to a 1000x speedup, if the problem is not memory bound (that is, a lot of

data and very few computations) [151].

AM Runtime. The runtime of AM depends on the initial random configuration, as well

as the number of regions to be segmented and the size of the window over which the majority

voting is performed. On an Intel Pentium M 1.6GHz Processor with 1.5GB memory, for a

images of size 1024× 1344, it took AM 0.8− 1.6 min on average at one-fourth the original

resolution. Since the algorithm is moderated by the number of changing pixels, rather than

a fixed number of iterations, we note that most of the changes towards the end are on the

order of 10 pixels (which is less than 0.1 × 10−3 times the total number at one-fourth the

resolution and nearly one-millionth of the pixels in the original resolution). As there is

no significant difference between the segmented regions corresponding to masks with such

small changes between iterations, one could terminate the algorithm when the number of

changing pixels reaches a sufficiently small fraction of the total number of pixels in the

image. Further, from [19] we know that the processing time for a stack can be drastically

reduced if the mask from one image is used to initialize the segmentation of a neighboring

image in the stack. As expected, while not by much, the convergence time for each image

is further reduced if perfect seeds rather than random ones are used.

SW Runtime. For an images of size 256×336, it took SW 0.2 sec on average. Recall again

that was using C++ precompiled library functions (although we designed the preprocessing

of the images for SW in MATLAB 2007a).
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8.4 Application-Specific Processing

In Section 2.1.2, we introduced a specific application that motivated the design of an auto-

mated segmentation algorithm for a class of biological images. As cell-volume computation

and Golgi-body segmentation were of particular interest, we report how these quantities

were computed, given the segmentation outcome of the AM algorithm. We note that these

are just two of the application-specific postprocessing modules that may be used. One could

imagine many other applications for which postprocessing modules, such as tracking masks

in time-lapse images, could be designed.

8.4.1 Cell-Volume Computation

Given the AM segmentation outcome, each χψ−1{m} in (7.7) represents a distinct region. If

we set d = 2 in (7.3), and segment the images of a stack in 2D, to obtain an approximation

of the cell volume, we can simply sum the areas of the 2D masks, as it is done when

hand segmentation of the 2D images is used to process the images. To ensure the cells

along a stack are assigned the same mask number, we may initialize one of the slices in a

stack where the cells are fairly discernible with an initial M À C masks, where C is the

expected number of cells. The segmentation outcome of this slice can be used to initialize the

neighboring masks and so on. Post-processing to match a region in one mask with the most

overlapping region in a successive mask may also be used in computing the volume from

a 2D segmentation procedure [19]. This pseudo-3D segmentation (as the 2D segmentation

benefits from the information in 3D) also speeds up segmentation of a stack over segmenting

each image in the stack independently.

Alternatively, we could instantiate dimension d = 3 in (7.3) and segment in 3D. Such

a segmentation affords an elegant way of visualizing the cells in the z-stack and the seg-

mentation outcome is not hampered when a cell is occluded by another cell in a 2D section

(see Fig. 8.4). Further, segmentation masks are contiguous and the volume of each cell can

be computed in a straight-forward manner based on the number of pixels contained within

each mask.
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Figure 8.4: AM results: 3D segmentation of a z-stack [17].

8.4.2 Golgi-Body Segmentation

The Golgi-body is a double-membraned organelle that is comprised of cisternae stacked to

increase its surface area to facilitate secretion. Thus, though there is only one Golgi-body in

each cell, in a 2D section, a Golgi-body may appear as multiple fragments (see Fig. 8.5(b)).

If the cells are close, then by using the Golgi channel alone it is not easy to associate the

different pieces of the organelle in 2D with others that belong to the same cell. Given

the AM segmentation of cells for the COPII channel of an image, we may use the masks

to initialize the segmentation of the corresponding Golgi channel. The advantage is that

multiple pieces of the Golgi body belonging to a cell are marked by the same mask (see

Fig. 8.5(d)). Moreover, such a Golgi mask matches the cell to which the different Golgi

fragments belong (see Fig. 8.5(c)). This facilitates the computation of the Golgi-volume

and, subsequently, the ratio of the Golgi volume to the cell volume as required by the

application.

Due to the low quality of images in the peripheral slices of DS-1, HS was not reliable

enough to rigorously compute quantitative measures of performance for this application.

However, visual inspection (see Fig. 8.5) establishes the use of this method. The code to

reproduce this result is provided on the web page of the reproducible-research compendium

that accompanies the paper [17].
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(a) Cell image (b) Golgi image (c) Cell mask (d) Golgi mask

Figure 8.5: (a) Original HeLa cell image (COPII, also shown in Fig. 7.2(a)). (b) Original HeLa Golgi image
(giantin). (c) AM segmentation of the parallel cell image (in pseudo color). (d) AM segmentation of the
corresponding Golgi image [19]. Cell segmentation helps associate the different fragments of the Golgi-body
in a 2D slice of a cell to their corresponding cells. (Original images courtesy of Dr. A. D. Linstedt [5].)

8.5 AM Segmentation of DIC Stem Cell Images for Tracking

Like all its predecessor frameworks, AM can be extended to segment other modalities by

suitably incorporating new forces. Here we present the results of a preliminary study on ap-

plying AM to the segmentation of DIC stem cell images used in a tracking application [152].

We use the same distributing functions as those used to segment fluorescence microscope

images with appropriately chosen scale parameters. The segmentation is preceded by a

preprocessing stage to render the images suitable for segmentation with AM.

Stem cells are cells that proliferate thorough mitosis and can differentiate into various

types of specialized cells. The enormous potential of stem cells in treating diseases like

Alzheimer’s (neuro-stem cells) and in applications such as regenerative medicine (as skin

or bone cells) among others, has escalated the significance of understanding the behavior

of stem cells under various experimental conditions such as the presence of growth factors,

other enzymes and the matrix on which they grow [153].

The most common imaging modalities used to study these cells are DIC and phase-

contrast microscopy as they do not require introducing probes into the specimens, which

might interfere with the pristine nature of these cells. DIC and phase-contrast micro-

scopy also provide the necessary information of cell morphology and thus prove useful for

studying stem cells. Imaging studies on stem cells are usually conducted as time-lapse ex-

periments that enable biologists to observe the rate of proliferation and nature of migration

of these cells with time. Understanding these properties of stem cells requires that the cells
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be tracked with time. As the number of cells in each frame can be enormous and the number

of frames, depending on the resolution in time and duration of the imaging, very large, the

problem is intractable for manual processing. Even when a small frame is selected for the

study, in the interest of efficacy, efficiency and reproducibility, automating the tracking of

cells proves advantageous.

To be able to track a stem cell, it is necessary to first detect it in the image. As these

cells are motile and deform both during motion as well as proliferation, detecting just the

centroid of the cell or a cluster of points within the cell is insufficient. As segmentation

provides the entire object of interest, it is one of the necessary processes that precede the

tracking step. Among the segmentation algorithms, active contours or snakes provide the

boundaries of these cells with a high degree of accuracy and are thus, popularly used. As we

have discussed in Chapter 7, the AM framework is tailored to digital image segmentation

and, by design, would like it to perform no worse on an application than the active-contour

framework adapted to it. Moreover, if the AM algorithm is applied on an image and the

outcome used to initialize an image at a later time point, there is an added advantage.

When cells that have been segmented in a frame proliferate, the daughter cells inherit the

same mask number as the parent cell and inherently, provide tracking information. As DIC

is a popular imaging modality, we describe below some of a very preliminary effort towards

applying the AM algorithm to this problem.

8.5.1 Dataset

DIC microscope images from NIH and phase-contrast microscope images from MRTC at

Carnegie Mellon University, were made available to us by Dr. T. Kanade et. al. [20]. These

consist of nearly 1000 time-series images of stem cells, taken five minutes apart. Sample

images of stem cells from DIC and phase-contrast microscopy are shown in Fig. 8.6.

As seen in the images, a major challenge in this problem is either the cells are too many

and the contrast too low or the complete extent of the cells is not clear.
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(a) Phase contrast (b) DIC

Figure 8.6: Same images of stem cells as seen under (a) DIC and (b) phase contrast microscopy. (Original
images (from two separate studies) courtesy of Dr. T. Kanade and his team [20].

8.5.2 Algorithm

Rather than design a new algorithm (distributing functions), we applied a few preprocessing

steps to the DIC images. The aim of the preprocessing is to render the DIC images suitable

to be segmented by the distributing functions designed for fluorescence microscope images

(with appropriately chosen parameters).

Preprocessing. In DIC images, rather than the mean, the local variance distinguishes

the foreground from the background. So instead of computing local averages, we first

compute a local variance map for the image. Each pixel is replaced by the variance of the

grayscale values in a small neighborhood around it. Then, we perform adaptive, nonlocal

filtering to eliminate high variances in the background or shot noise that might lead to

spurious detection. The adaptivity refers to fact the smoothing filter is oriented to smooth

along the edges and not across them. Thus the edges in the image are preserved. We

then threshold the image and apply morphological operations to further eliminate spurious

detections. This binary image can be applied on the original image to extract the foreground

information relevant for segmentation and eliminate the background. The resulting image

can be used to compose the region-based distributing function that can be used to skew the

local majority voting distributing function used by AM to segment it.

AM Segmentation. We initialize φ for an image in the time series with a large number

of random masks. In the case of DIC images that have fewer cells, we could take M = 256.

The disadvantage of starting with a very large M is that the algorithm would have a higher
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chance of getting stuck in a local optimum (a single cell is split into multiple regions). We

segment the image based on the region-based distributing function obtained from the above

preprocessing step and the local majority voting-based distributing function described in

Chapter 7, but with very small scale parameters. This is because stem cells are much

smaller than the fluorescence microscope images of HeLa cells. Moreover, stem cells are

comparatively distinct, unlike the punctate patterns of protein location images, obviating

the need for aggressive blurring. As in the case of fluorescence microscope cell images, the

algorithm comes to a natural halt.

We use the segmentation outcome ψ of this image to initialize the ψ for the subsequent

image in the time series. This allows us to track the movement of the cell if the time

resolution is such that a cell in one frame is spatially closer to itself in the succeeding frame

rather than any other cell. Moreover, at such a resolution, if the cell undergoes division,

then the daughter cells inherit the same mask label as the parent. These implicitly afford

tracking information for the cells.

8.5.3 Results

We computed the validity of cell detection based on HS as reference. This is summarized

in Table 8.3. A true positive is any cell that has been detected by AM and by HS. A false

positive is the detection of any spurious (noncell) object and finally, a false negative is an

object marked as a cell by a manual segmenter but undetected by AM.

Cell detection Quantity[%]

True positives 76.47

False positives 17.65

False negatives 5.88

Table 8.3: Quantitative assessment of AM segmentation of DIC stem cell images.

Discussion. The result we report is for an image with relatively few cells (as shown in

Fig. 8.6(b)). We note that this result is a very preliminary one as we have barely tuned the

algorithm for this problem. However, this is promising in that we achieve a true detection
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rate of more than 75%. In practice, as the number of cells is very large, especially in phase

contrast images, rarely are all the cells in a frame tracked. Usually, studies focus on a

small frame in the image. Further, we have a false positive rate that is rather high. While

we would endeavor to minimize this number in our future design, we note that for the

particular application of tracking stem cells, a higher false positives are considered better

than a higher false negative rate.

8.6 Future Directions

The theory of AM and experimental results have opened up various venues of further ex-

ploration. One of our first steps would be to investigate mathematical convergence of the

distributing functions described in Chapter 7. This would be crucial for rigorously char-

acterizing the behavior of these functions and lend insight to designing new functions for

different applications.

There are various different functions that we could use in addition to (or instead of) the

R and V described in Chapter 7. For instance, the R we have described distinguishes only

the foreground from the background. There are many applications (such segmentation of

tissue images or color images), where there are multiple regions of interest with different

properties. Thus, R would be vector-valued and could include an edge-map or texture

features relevant to the problem. Likewise, V may take on various different forms. The V

we have used takes into account for the voting only points along the interface between two

masks within a neighborhood given by the scale parameter b and gives equal weight to each

of these points. A simple experiment of weighting the vote of each point based on different

functions of its distance from the interface (or the mask’s center) revealed highly different

behavior. One could well imagine different functions, such as one that takes into account

the total size of a mask itself, for the voting procedure for different applications.

As described in Chapter 1, there are a host of other data-dependent issues such as

different types of initialization procedures and application-specific postprocessing modules,

which could be designed to be used with the AM framework. In addition to expanding the
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Figure 8.7: A screen shot of the user interface of a preliminary version of the ImageJ plugin of the active
mask algorithm.

algorithm itself, we are also working in parallel to design into a plugin for ImageJ, so the

algorithm is accessible to end users as well as other tool developers for testing and further

development. Fig. 8.7 shows a screen shot of the preliminary version of this plugin.
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Conclusions

We have introduced the task of segmentation in the context of biomedical imaging. In

particular, we have focused on segmentation of punctate patterns in fluorescence micro-

scope images. We have demonstrated the benefit of a flexible mathematical framework

at the segmentation core and data-specific modules, through various instantiations of an

active-contour based framework—STACS. Thereafter, we have highlighted the advantage

of multiscale transformations, particularly for the segmentation of fluorescence microscope

images and those that do not require topology preservation. These design considerations

and results inspired the change in perspective from “contours” to “masks”.

In this work, we have proposed a novel automated segmentation framework for fluore-

scence microscope images based on active masks, suited to digital images of any dimension,

particularly those with punctate or diffuse staining patterns. By the same token, the AM

algorithm may also be used to segment data exhibiting similar properties (punctate patterns

with some underlying structure) such as, satellite images of the earth taken at night. AM is

able to achieve almost as good a segmentation outcome with random seeding as it does with

perfect seeding. This framework lends itself naturally to the incorporation of multiscale and

multiresolution techniques. These facilitate segmenting fluorescence microscope cell images

as well as increase the algorithm’s computational efficiency. While the parameters to be

tuned are intuitive, AM experimentally converges to a zero change state, eliminating the

need for setting the number of iterations (or any other stopping criterion) a priori. All of

these add to AM’s flexibility and ease of use.

We compared the AM algorithm to the SW one, and shown AM to be highly competitive,
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both qualitatively and quantitatively. We have also shown how the segmentation results may

be used with application-specific postprocessing modules using the example of cell-volume

computation and Golgi-body segmentation for the study of the influence of Golgi protein

expression on the cell size. Thus, we have demonstrated that AM is a viable alternative to

hand segmentation or any standard algorithm (such as SW or level set based methods) of

such images.

We have highlighted some of the issues in proving theoretical convergence. In the short-

term, we envisage to rigorously characterize the behavior of the algorithm to lend a deeper

insight into its capabilities and limitations. We have also highlighted one of the next steps

of further developing the AM framework by way of expanding the repertoire of distributing

functions. Akin to forces in the active-contour framework, different distributing functions

can be used to segment a wider range of images such as those of tissues as well as images that

possess features such as edges, that have been traditionally relied upon for segmentation.
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[31] E. Bengtsson, C. Wählby, and J. Lindblad, “Robust cell image segmentation meth-

ods,” Pattern Recogn. and Image Anal., vol. 14, no. 2, pp. 157–167, 2004.

[32] M. Aridor and L. Hannan, “Traffic jam: a compendium of human diseases that affect

intracellular transport processes,” Traffic, vol. 1, no. 11, pp. 836–51, 2000.

[33] ——, “Traffic jams II: an update of diseases of intracellular transport,” Traffic, vol. 3,

no. 11, pp. 781–90, 2002.

[34] J. Donaldson and J. Lippincott-Schwartz, “Sorting and signaling at the Golgi com-

plex,” Cell, vol. 101, no. 7, pp. 693–6, 2000.

[35] M. Puthenveedu and A. Linstedt, “Subcompartmentalizing the Golgi apparatus,”

Curr. Opin. Cell Biol, vol. 17, no. 4, pp. 369–75, 2005.

[36] Y. Guo and A. Linstedt, “COPII-Golgi protein interactions regulate COPII coat as-

sembly and Golgi size,” Journ. Cell Biol., vol. 174, no. 1, pp. 53–56, 2006.

[37] F. Sherman, The Encyclopedia of Molecular Biology and Molecular Medicine. Wein-

heim, Germany: VCH, 1997, vol. 6, ch. Yeast genetics, pp. 302–325.

[38] R. Howson, W. Huh, S. Ghaemmaghami, J. Falvo, K. Bower, A. Belle, N. Dephoure,

D. Wykoff, J. Weissman, and E. O‘Shea, “Construction, verification and experimental

143



use of two epitope-tagged collections of budding yeast strains: Research papers,”

Comparative and Functional Genomics, vol. 6, pp. 2–16, Feb. 2005.

[39] B. Wandell, A. Brewer, and R. Dougherty, “Visual field map clusters in human cor-

tex,” Philosoph. Trans. of the Royal Soc. B: Biol. Sci., vol. 360, no. 1456, pp. 693–707,

2005.

[40] R. F. Dougherty, V. M. Koch, A. A. Brewer, B. Fischer, J. Modersitzki, and B. A.

Wandell, “Visual field representations and locations of visual areas V1/2/3 in human

visual cortex,” Journ. Vision, vol. 3, pp. 586–598, 2003.

[41] B. A. Wandell, “Computational neuroimaging of human visual cortex,” Ann. Rev.

Neuroscience, vol. 10, no. 22, pp. 145–173, 1999.

[42] N. Gogtay, J. N. Giedd, L. Lusk, K. M. Hayashi, D. Greenstein, A. C. Vaituzis,

T. F. N. III, D. H. Herman, L. Clasen, A. Toga, J. Rapoport, and P. Thompson,

“Dynamic mapping of human cortical development during childhood through early

adulthood,” Proc. Nat. Acad. Sci. of USA, vol. 101, no. 21, pp. 8174–8179, 2004.

[43] H. Zaidi, T. Ruest, F. Schoenahl, and M. L. Montandon, “Comparative assessment

of statistical brain MR image segmentation algorithms and their impact on partial

volume correction in PET,” NeuroImage, vol. 32, pp. 1591–1607, 2006.

[44] P. C. Teo, G. Sapiro, and B. A. Wandell, “Creating connected representations of cor-

tical gray mater for functional MRI visualization,” IEEE Trans. Med. Imag., vol. 16,

no. 6, pp. 852–863, 1997.

[45] R. Gonzalez and R. Woods, Digital Image Processing, 2002.

[46] K. Fua and J. Muib, “A survey on image segmentation,” vol. 13, no. 1, pp. 3–16,

1981.

[47] N. Pal and S. Pal, “A review on image segmentation techniques,” vol. 26, no. 99, pp.

1277–1294, 1993.

144



[48] P. Sahoo, S. Soltani, A. Wong, and Y. Chen, “A survey of thresholding techniques,”

Comp. Vis., Graph. and Image Proc., vol. 41, no. 2, pp. 233–260, 1988.

[49] P. Rosin and E. Ioannidis, “Evaluation of global image thresholding for change detec-

tion,” vol. 24, no. 14, pp. 2345–2356, 2003.

[50] D. Pham, C. Xu, and J. Prince, “Current methods in medical image segmentation,”

vol. 2, pp. 315–337, 2001.

[51] D. Ziou and S. Tabbone, “Edge detection techniques-an overview,” vol. 8, no. 4, pp.

537–559, 1998.

[52] L. S. Davis, “A survey of edge detection techniques,” Comp. Graphics and Image

Proc., vol. 4, pp. 248–270, 1975.

[53] R. C. Hardie and C. G. Boncelet, “Gradient-based edge detection using nonlinear

edge enhancing prefilters,” IEEE Trans. Image Proc., vol. 4, no. 11, pp. 1572–1577,

1995.

[54] V. Berzins, “Accuracy of laplacian edge detectors,” Comp. Vis., Graphics and Image

Proc., vol. 27, pp. 195–210, 1984.

[55] J. Canny, “A computational approach to edge detection,” IEEE Trans. Patt. Anal.

and Mach. Intelligence, vol. 8, pp. 679–698, 1986.

[56] K. S. Fu and J. K. Mui, “A survey on image segmentation,” vol. 13, no. 1, pp. 3–16,

1981.

[57] R. M. Haralick and L. G. Shapiro, “Image segmentation techniques,” Comp. Vis.,

Graphics and Image Proc., vol. 29, no. 1, pp. 100–133, 1985.

[58] L. Najman and M. Couprie, “Watershed algorithms and contrast preservation,”

Discrete Geometry for Computer Imagery in the Lecture Notes in Computer Science,

vol. 2886, pp. 62–71, 2003, http:/citeseer.ist.psu.edu/najman03watershed.html.

[Online]. Available: http:/citeseer.ist.psu.edu/najman03watershed.html

145



[59] T. R. Reed and J. Buf, “A review of recent texture segmentation and feature extraction

techniques,” vol. 57, no. 3, pp. 359–372, 1993.

[60] R. Nock and F. Nielsen, “Statistical region merging,” IEEE Trans. Patt. Anal. and

Mach. Intelligence, vol. 26, no. 11, pp. 1452–1458, 2004.

[61] M. Kass, A. Witkin, and D. Terzopoulos, “Snakes: Active contour models,” Int.

Journ. of Computer Vision, vol. 1, no. 4, pp. 321–331, 1988.

[62] L. Cohen, “On active contour models and balloons,” CVGIP: Image Understanding,

vol. 53, no. 2, pp. 211–218, Mar. 1991.

[63] R. Malladi, J. Sethian, and B. Vemuri, “Shape modeling with front propagation: A

level set approach,” IEEE Trans. Patt. Anal. and Mach. Intelligence, vol. 17, no. 2,

pp. 158–175, Feb. 1995.

[64] C. Xu and J. Prince, “Snakes, shapes and gradient vector flow,” IEEE Trans. Med.

Imag., vol. 7, pp. 359–369, Mar. 1998.

[65] T. Chan and L. Vese, “Active contours without edges,” IEEE Trans. Image Proc.,

vol. 10, no. 2, pp. 266–277, Feb. 2001.

[66] V. Caselles, R. Kimmel, and G. Sapiro, “Geodesic snakes,” Int. Journ. of Computer

Vision, vol. 22, pp. 61–79, 1997.

[67] C. Pluempitiwiriyawej, J. Moura, Y. Wu, and C. Ho, “STACS: A new active contour

scheme for cardiac MR image segmentation,” IEEE Trans. Med. Imag., vol. 24, no. 5,

pp. 593–603, May 2005.

[68] S. Osher and J. Sethian, “Fronts propagating with curvature-dependent speed: Al-

gorithms based on Hamilton-Jacobi formulations,” Journ. of Computational Physics,

vol. 79, pp. 12–49, 1988.

[69] C. Xu, A. Yezzi, and J. Prince, “On the relationship between parametric and geometric

active contours,” vol. 1, Oct. 2000, pp. 483–489.

146



[70] J. A. Sethian, Level Set Methods and Fast Marching Methods. Cambridge University

Press, 1999.

[71] V. Caselles, C. Francine, C. Tomeu, and D. Françoise, “Image segmentation tech-

niques,” Numer. Math., vol. 66, no. 1, pp. 1–31, 1993.

[72] C. Pluempitiwiriyawej, “Cardiac MR image segmentation: STACS, a new active con-

tour scheme,” Ph.D. dissertation, Carnegie Mellon University, Pittsburgh, PA, Sep.

2004.

[73] F. Jensen, An Introduction to Bayesian Networks, 1st ed., 1996.

[74] J. Shi and J. Malik, “Normalized cuts and image segmentation,” IEEE Trans. Patt.

Anal. and Mach. Intelligence, vol. 22, no. 8, pp. 888–905, 2000.

[75] P. Felzenszwalb and D. Huttenlocher, “Efficient graph-based image segmentation,”

Int. Journ. Comp. Vis., vol. 59, no. 2, pp. 167–181, 2004.

[76] S.-C. Chen, T. Zhao, G. Gorden, and R. Murphy, “A novel graphical model approach

to segmenting cell images,” in Proc. BMES Annual Fall Meeting, 2006.

[77] I. Daubechies, Ten Lectures on Wavelets. Philadelphia, PA: SIAM, 1992.

[78] S. Mallat, “Multiresolution approximations and wavelet orthonormal bases of L2(R),”

Trans. Amer. Math. Soc., vol. 315, pp. 69–87, Sep. 1989.
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invariant texture classification with local binary patterns,” IEEE Trans. Patt. Anal.

and Mach. Intelligence, vol. 24, no. 7, pp. 971–987, 2002.
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