
bimagicLab
Center for Bioimage Informatics
Dept. of Biomedical Engineering

Carnegie Mellon University

Charles Jackson

Intelligent Acquisition and Learning
of Fluorescence Microscope

Data Models

Charles Jackson

Advisor: Prof. Jelena Kovačević

Department of Biomedical Engineering
Carnegie Mellon University, Pittsburgh, PA 15213

Thesis Manuscript

Submitted in partial fulfillment of the requirements towards the Ph.D.
degree awarded by the

Department of Biomedical Engineering, Carnegie Inst. of Tech., Carnegie
Mellon University.

Thesis Committee Members

Jelena Kovačević (Advisor)
Carnegie Mellon University

Frederick Lanni
Carnegie Mellon University

Robert F. Murphy
Carnegie Mellon University

Gustavo K. Rohde
Carnegie Mellon University

To my beloved parents,
for instilling in me the confidence,

to pursue my interests and dreams.

Abstract

This thesis presents a new acquisition framework that models fluo-
rescence microscope data during acquisition, and uses these learned
models to intelligently guide future acquisitions. This framework
results in significant time savings, as well as in reducing the photo-
bleaching and phototoxicity incurred during acquisition.

Fluorescence microscopy is a popular tool for live-cell imaging,
and in recent years, there has been an explosion in the amount of
data acquired with this technique. Visual inspection of this data is
time-consuming and not reproducible, motivating the goal of auto-
mated image analysis. Furthermore, we would ideally like to acquire
all types of cells under all conditions, but standard acquisition meth-
ods are too time-consuming to achieve this feat. This work proposes
to address these problems with a new acquisition framework that
builds models of the data while it is being acquired, and uses these
models to carry out intelligent acquisition. The goal is to reduce to-
tal acquisition time by identifying and acquiring only the data that is
necessary for building the model, as well as to acquire in a way that
reduces photobleaching and phototoxicity—two fundamental limita-
tions associated with fluorescence microscopy.

We evaluate the framework experimentally on synthetic and real
data. First, we present a possible method to build models of a single
object within a cell, of multiple objects in a cell, and of a popula-
tion of cells. Then, we present intelligent acquisition algorithms to
determine where to acquire in a cell, when to acquire in a cell, when
to stop acquiring from a cell, and how many cells to acquire from a
population. We show that the combination of model building and in-
telligent acquisition results in time savings, reduced photobleaching,
and reduced phototoxicity, without loss of accuracy.

i

Acknowledgments

This thesis required much more than four years of study to com-
plete. It could not exist without the support, technical assistance,
and friendship, of countless others. These few pages of acknowledge-
ment do not even begin to do those people justice.

I would like to express the deepest appreciation for my advisor,
Jelena Kovačević. Her outstanding support has been the foundation
of a fun and rewarding four years. When I first came to Pittsburgh,
we had only exchanged one phone call, but I quickly became aware
of my good fortune in an advisor, and I cannot imagine doing a
Ph.D. without her. Her flexible approach gave me the freedom to
explore different approaches and ideas, and to discover the research
path best suited to me. Her help ranged from technical assistance
to critical paper reviews (not least, this thesis!) to general life and
career advice. In addition, I will always have fond memories of our
lab dinners, group meetings, insightful discussions, and of course,
‘Dance Dance Revolution’ at the CBI holiday parties!

I would like to thank my committee members for the big time
investment that they have been willing to make. Robert Murphy
first proposed the idea for intelligent acquisition of fluorescence mi-
croscope images. He provided the data set used in this work, and this
research draws heavily on the prior work of his group. As a co-author
on all of my publications, his editing and feedback have been invalu-
able. I would also like to thank him for his help in my application
to the Machine Learning department, and finally, to acknowledge his
lab party as my first-ever karaoke performance!

Gustavo Rohde brought a new and insightful perspective to every
discussion, continually pushing this work to a higher level. His office
door was always open, and he was always been willing to bounce
around ideas.

Frederick Lanni, too, was ever-ready to help. His extensive knowledge—

ii

iii

biological and otherwise—never failed to expand my horizons, and
his infectious enthusiasm invigorates any discussion.

I would like to thank Estelle Glory, a postdoc in CBI, for all of
her patient explanations and brainstorming sessions, as well as for
being instrumental in finding and processing the data set used in this
work. It was a pleasure to have her as a neighbor, and I will miss
our discussions.

I would like to thank my fellow teammates from CBI, both past
and present, for their company and valuable input. In particular,
I wish to acknowledge my predecessors Amina Chebira and Gowri
Srinivasa, for showing me the light at the end of the tunnel. They
welcomed me from the day I arrived and remained great friends
throughout. My sadness at seeing these two depart helped spur me
to finish myself. Also, I want to give Ramu Bhagavatula the credit
for the formatting of the figures in this thesis.

Many others in Pittsburgh have contributed to this work by
virtue of their friendship, helping to keep me sane during the more
trying times: Richard Pelikan, with our weekly squash games; the
climbing gang—Stefanie Hassel, Phil Tilman, Nel de Jong, and others—
for our weekly rock-climbing; Steve Sun, Paul Glass, Pablo Hennings,
and Justin Newberg, for the chances to muse about life and gradu-
ate school over beers at the Sharp Edge; Mike Crawford, for having
an accent that reminds me of home; the many others, whom I am
afraid to list for fear of leaving one out, but whose friendship means
so much.

An extra special thanks to Sally Hollister, who has been a steady
source of support, enouragement, and fun, and has made Pittsburgh
a much brighter place. She is probably as happy as I am that this
thesis is finally finished, and that I can be a normal person again.

To friends from afar, Nick Butcher and William Connor, my life
would not be the same without your friendship.

Most of all, I wish to thank my parents and my family, for always
being there, and for the support, encouragement, and opportunities
that they have given me. It goes without saying that I would not
have made it here without them, and I will always owe them a debt
of gratitude.

Contents

1 Thesis Contributions and Outline 1
1.1 Thesis Contributions 4
1.2 Thesis Outline . 4

I Background 6

2 Fluorescence Microscopy 7
2.1 Physics of Fluorescence 7
2.2 Fluorescent Probes . 9
2.3 Types of Microscopes 10
2.4 Photobleaching and Phototoxicity 12

3 Model Building and Intelligent Acquisition 14
3.1 Model Estimation . 14

3.1.1 Maximum Likelihood Estimator 14
3.1.2 Bayes Estimators 15
3.1.3 Information Measures 16

3.2 Particle Filters . 18
3.2.1 State-Space Approach 18
3.2.2 Estimation Process 19

3.3 Classification . 20
3.3.1 Overview of Classification Systems 20
3.3.2 Classifiers . 21
3.3.3 Validation of Classification Systems 23

3.4 Active Learning . 24
3.4.1 Uncertainty Sampling 24
3.4.2 Query by Committee 24

3.5 Related Work . 25

iv

CONTENTS v

3.5.1 Subcellular Protein Location Pattern Analysis 25
3.5.2 Efficient Acquisition in Fluorescence Microscopy 28
3.5.3 Efficient Acquisition in Magnetic Resonance

Imaging . 29
3.5.4 Compressed Sensing 29

II Model Building 31

4 Single Object 33
4.1 Data Set: Generated Synthetic Tracks 34
4.2 Building the Model . 35
4.3 Validating the Model 37
4.4 Discussion . 38

5 Multiple Objects 42
5.1 Data Set: 3T3 Time Series 43
5.2 Object Detection and Feature Extraction 44
5.3 Cell Models . 47

5.3.1 Modeling Displacement 47
5.3.2 Modeling Distance Instead of Displacement . . 52
5.3.3 Modeling Object Types 53

5.4 Class Models . 58
5.4.1 Building the Model 58
5.4.2 Validating the Model 59

5.5 Classification . 60
5.6 Discussion . 63

III Intelligent Acquisition 69

6 Where to Acquire in a Frame 71
6.1 Cost Evaluation . 72
6.2 Reward Evaluation . 73
6.3 Choosing the Pixels 75
6.4 Discussion . 80

7 When to Acquire Frames 81
7.1 Method and Results 81
7.2 Discussion . 83

CONTENTS vi

8 When to Stop Acquiring Frames 85
8.1 Single Object . 85
8.2 Multiple Objects . 86

8.2.1 Maximizing Likelihood 88
8.2.2 Maximizing Classification Accuracy 89
8.2.3 Class Models 94

8.3 Discussion . 96

9 How Many Cells to Acquire 99
9.1 Maximizing Likelihood 99
9.2 Maximizing Classification Accuracy 102
9.3 Discussion . 106

IV Conclusions 108

List of Figures

1.1 A diagram of the proposed research. The model-building
module constructs a model from the microscope data,
and the intelligent acquisition module determines which
acquisitions to make to efficiently improve on this model. 2

2.1 Excitation and emission of a fluorophore. An incom-
ing photon collides with an electron and promotes it
to a higher energy state. This electron subsequently
relaxes back to its ground state, causing the emission
of a photon. Some vibrational energy is lost, thus the
emitted photon is of lower energy. 8

2.2 Generic fluorescence microscope. The excitation light
is reflected by the dichromatic mirror onto the spec-
imen. The emitted light is of a lower frequency and
able to pass through the mirror, thus separating it
from scattered excitation light. 11

2.3 A confocal microscope schematic. The small pinhole
aperture ensures that only fluorescence from the focal
plane reaches the detector. 12

2.4 Photobleaching. This shows pictures of the same spec-
imen at 2-minute intervals. The photobleaching is
clearly visible during this time. 13

3.1 A generic classification system. 21

4.1 Model building (single object, synthetic data). This
figure shows the model estimate improving through-
out the duration of acquisition (although not mono-
tonically), converging on the entropy. 39

vii

LIST OF FIGURES viii

5.1 Two successive frames from a Cav time series. Al-
though we have a 3D image for each frame, only a 2D
cross-section is shown in these figures. 45

5.2 Two successive frames from a Cav time series. Al-
though we have a 3D image for each frame, only a 2D
cross-section is shown in these figures. 46

5.3 Finding nearby objects. The white circles represent
objects in frame 1, and the gray circles represent ob-
jects in frame 2. The arrows indicate the nearby ob-
jects for object A within a radius of dmax. 48

5.4 Displacement model. This image shows the xy-intensity
distribution of mx,y,z for z = 0 for a Cav cell of 23
frames. Objects in t + 1 are typically found within 2
pixels of an object in t. Motion in the y-direction is
more probable than motion in the x-direction. 50

5.5 Model building (multiple objects, real data). This fig-
ure shows the model accuracy increasing, and then
leveling off, as more frames are acquired. 52

5.6 Model building (multiple objects, real data). This fig-
ure shows the model accuracy when frames are added
in forward order, and when frames are added in re-
verse order. 53

5.7 Type transition model. This image shows mλ,λ′ for
a Tctex1 cell. Only 13 of the 18 types are found in
this cell, and mλ,λ′ tends to be highest when λ = λ′

because objects tend to remain the same type between
frames. 55

5.8 Model building with object types (multiple objects,
real data). Although the model accuracy is initially
lower with object type information due to the extra
parameters that must be learned, this accuracy even-
tually surpasses that of the model built without object
type information. 57

5.9 Model building with complete model (multiple ob-
jects, real data). This figure shows the model accuracy
increasing, and then leveling off, as more frames are
acquired. 58

LIST OF FIGURES ix

5.10 Model building (class models, real data). This figure
shows the model accuracy increasing as more training
cells are used to build the model. As expected, the
accuracy is much higher when the training cells are
from the same class as the testing cell. 61

5.11 Number of object types. This graph shows the result-
ing classification accuracy when objects are grouped
into a different number of types. The highest accuracy
of 84.5% occurs with 18 types. 65

5.12 Alternative model-building method with weighted dis-
placements (multiple objects, real data). This figure
compares models built using Algorithm 1 with two
non-adaptive methods. The learned model quickly
surpasses the non-adaptive models 68

6.1 Reward associated with a pixel acquisition. Plot (a)
shows the probability of finding the object in a given
pixel, and the reward associated with acquiring this
pixel. Plot (b) shows the ratio of reward to cost. . . . 76

6.2 10 Gaussian probability distributions, each with a dif-
ferent variance. These curves all come near two dis-
tinct points. If we observed a sample at one of these
points, we would have little information about from
which probability distribution the sample was drawn. . 77

6.3 Where to acquire (single object, synthetic data). These
curves show the rate at which a model is learned un-
der different acquisition strategies. Plot (a) shows log-
likelihood against frame number. Plot (b) shows log-
likelihood against photobleaching cost. 79

7.1 When to acquire (single object, synthetic data). These
curves show the rate at which a model is learned under
different acquisition strategies. Plot (a) shows log-
likelihood against frame number. Plot (b) shows log-
likelihood against photobleaching cost. 84

8.1 When to stop acquiring (single object, synthetic data).
We see that the first intelligent algorithm gives the
highest average log-likelihood for any given average
number of frames acquired. 87

LIST OF FIGURES x

8.2 When to stop acquiring (multiple objects, real data,
maximizing likelihood). We see that the intelligent al-
gorithm gives a higher average accuracy for any given
average number of frames acquired, but the improve-
ment is small. 90

8.3 When to stop acquiring (multiple objects, real data,
maximizing classification accuracy). We see that the
two intelligent methods outperform the standard method,
with the best results in the global scenario. 95

8.4 When to stop acquiring (class models, real data, max-
imizing classification accuracy). We see that the two
intelligent methods outperform the standard method,
with the best results in the global scenario. 97

9.1 How many cells to acquire (class models, real data,
maximizing likelihood). We see that acquiring with
the intelligent method results in a higher average log-
likelihood for the same number of cells. 101

9.2 How many cells to acquire (class models, real data,
maximizing classification accuracy). We see that ac-
quiring with the intelligent method results in a higher
average classification accuracy for the same number of
cells. 107

List of Tables

3.1 Classification accuracy for different configurations . . 27
3.2 List of static subcellular object features (SOF) defined

to describe objects in 3D [46]. 28

4.1 Sample probabilities for matching 4 objects in frame
t with 4 objects in frame t+ 1. Each row corresponds
to frame t, and each column corresponds to frame t+
1. The bolded numbers represent the combination of
matches with the highest joint probability (0.014). . . 41

5.1 Overview of the experimental dataset composed of 12
cell lines [26]. 44

5.2 List of the 7 static subcellular object features (SOF)
used in this work. The complete set of 11 features is
shown in Table 3.2 [46]. 47

5.3 Classification accuracy for different configurations. . . 62
5.4 Confusion matrix of the best classifier. Each row cor-

responds to the true class, and each column corre-
sponds to the predicted class. All numbers are per-
centages. 63

xi

1

Thesis Contributions and
Outline

Fluorescence microscopy is a popular tool for live-cell imaging. In
recent years, as the trend in biology has moved more and more to-
wards high-throughput applications, there has been an explosion in
the amount of data being acquired and analyzed with this technique.
The first bottleneck is visual inspection; it is time-consuming, sub-
jective, and not reproducible, motivating the goal of automated anal-
ysis. A second bottleneck is the acquisition process itself. Ideally, we
would like to acquire all types of cells under all conditions, repeating
multiple times to assess the variance in the resulting data. However,
we are limited by the prohibitive time required for this feat, as well
as photobleaching and phototoxicity in the acquisition process.

To address these issues, we build automated models of fluores-
cence microscope data. These models, which may be application-
specific, can describe either a single cell or a whole class of cells. Their
goal is to capture all information required for the end-application,
thus removing the need for visual inspection. What makes our pro-
posal unique is that we do not build these models as a post-processing
step. Instead, we build them while we are acquiring the data. This
allows us to use the models to guide future acquisitions, in a process
which we call intelligent acquisition. Our framework is summarized
in Fig. 1.1.

When we are building models of a single cell, intelligent acqui-
sition is helpful in two ways: First, we can automatically determine
when to stop acquiring the cell. With naive acquisition, we cannot

1

1. THESIS CONTRIBUTIONS AND OUTLINE 2

Intelligent acquisition

Model building ModelComplete?
Yes

No

Figure 1.1: A diagram of the proposed research. The model-building
module constructs a model from the microscope data, and the intel-
ligent acquisition module determines which acquisitions to make to
efficiently improve on this model.

usually determine in advance how many frames to acquire, and thus
we risk stopping too early and not gaining sufficient information, or
acquiring more frames than necessary and wasting time. Second,
intelligent acquisition can optimize how we acquire. It can choose
where to acquire, when to acquire, at which resolution to acquire,
and even the intensity of the excitation light and the length of each
exposure. This capability is useful when we consider two fundamen-
tal limitations of fluorescence microscopy: photobleaching and pho-
totoxicity. In fluorescence microscopy, images are acquired by shining
excitation light onto the cell to activate fluorescence. However, this
excitation light damages both the fluorescent signal (photobleaching)
and the cell itself (phototoxicity). Such effects limit the duration over
which we can view the cellular process. Hence, there is strong moti-
vation to acquire in a way that maximizes information gain relative
to photodamage, resulting in the most accurate model possible when
the fluorescent signal or cellular function are destroyed.

When we wish to build models of a whole class of cells, the role of
intelligent acquisition takes on even greater importance. In addition
to optimizing the acquisition of each individual cell, we must now
determine how many cells to acquire from that class. We wish to
acquire enough cells to characterize the class well, but we do not
want to waste time by acquiring more than we have to. In addition,
we must determine how many frames to acquire from a cell before
moving onto the next cell. Generally speaking, if we determine that a
cell is similar to previous cells of that class, we want to stop acquiring
and move onto a different cell that contains new information.

All of these intelligent acquisition algorithms hinge around the

1. THESIS CONTRIBUTIONS AND OUTLINE 3

ability to build models of what we are acquiring. It is the recognition
that the end goal of acquisition is a model rather than an image that
lets us choose which data is most relevant to our task. Furthermore,
the models give an estimate of the future state of a cell, which is
critical to the intelligent acquisition module’s ability to choose how
to acquire.

Hence, the overall goal of this work is to:

Develop a new acquisition framework that
models fluorescence microscope data during acquisition

and uses these learned models
to intelligently guide future acquisitions.

We evaluate this framework on both a synthetic data set and a
real data set. For the synthetic data set, we look at the simplified case
where we have a single object moving in a cell. We present a method
which, given a reasonable model, learns the model parameters of this
object. We then validate our method by comparing the output to the
ground truth model used to construct the data set. For real data,
we develop a method to model a cell containing multiple objects.
Additionally, we describe how to model a whole class of cells. We
validate these models in two ways: first, by predicting the locations
and types of objects in a frame prior to acquiring that frame; second,
by classifying a cell into its appropriate class.

We then describe a set of intelligent acquisition algorithms to
learn model parameters efficiently. For cell models, these intelligent
acquisition algorithms dictate where to acquire, when to acquire,
and when to stop acquiring. For class models, the algorithms dictate
when to stop acquiring new cells from that class, and when to stop
acquiring each individual class. We test our methods by acquiring a
cell or class intelligently and measuring the accuracy of our resulting
model. We then acquire the same amount of data from that cell
or class using a naive algorithm, and show that the accuracy of the
resulting model is lower than if we had acquired intelligently.

In this thesis, model building refers to estimating the parameters
for a given class of models, which will typically depend on the end-
application. To demonstrate and evaluate our acquisition framework,
we define a class of models and develop an assoicated model-building
procedure. We then show how intelligent acquisition algorithms can
be used to build such models more efficiently. Although the specific

1. THESIS CONTRIBUTIONS AND OUTLINE 4

algorithms are tied to the class of models being used, the general
principles behind them are applicable to a wide range of modeling
scenarios.

1.1 Thesis Contributions

1. Framework. We present a new acquisition framework for the
intelligent acquisition and learning of fluorescence microscope
data sets, and demonstrate its applicability on synthetic and
real data.

2. Model Building. We present example model-building meth-
ods for both a single cell and a class of cells. We validate their
accuracy on synthetic and real data. As part of this, we ap-
ply the models to classification of 3T3 cells, and demonstrate a
slightly higher accuracy than previous results on this data set.

3. Intelligent Acquisition. We describe a set of algorithms
for intelligent acquisition, and show that we can build more
accurate models when data is acquired intelligently rather than
naively. The specific operations we cover include:

• Where to acquire in a frame

• When to acquire frames

• When to stop acquiring frames

• How many cells to acquire

1.2 Thesis Outline

The thesis is divided into three main parts. In the first part, we
provide the background necessary both for understanding this work,
as well as placing it in a larger context. In the second part, we explain
our model-building procedure, along with methods to validate its
accuracy both on synthetic and real data. The third and final part
presents our intelligent acquisition algorithms and validates them
experimentally. Parts II and III are original work, with the exception
of the object detection and feature extraction methods in Section 5.2.
We detail the outline of this thesis as follows.

1. THESIS CONTRIBUTIONS AND OUTLINE 5

• Part I consists of Chapters 2 and 3, and presents all the neces-
sary background for our work as well as an overview of related
methods. Chapter 2 overviews fluorescence microscopy, the
mode of acquisition at which this work is targeted. This in-
cludes a discussion of photobleaching and phototoxicity, which
are two of the drawbacks of fluorescence microscopy that helped
motivate this work. Chapter 3 provides background on model
estimation and particle filters, both essential for our model-
building methods. This is followed by an overview of classifi-
cation and some common algorithms, as well as a discussion of
active learning. Finally, we survey related work both in model
building and intelligent acquisition.

• Part II consists of Chapters 4 and 5, and describes the model-
building algorithms that we use to evaluate our proposed ac-
quisition framework. Chapter 4 explains how we build models
for the case of a single object moving in a cell. The presented
method can be used for a wide range of motion models, and we
validate it on synthetic data. Chapter 5 explains how we build
models for the case of multiple objects moving in a cell, and
validates this on real data. In addition to predicting the loca-
tions and types of objects in future frames, we also show how
these models can be used to classify, and compare the results
with another classification method.

• Part III consists of Chapters 6 through 9. Each chapter covers
a different aspect of intelligent acquisition. Chapter 6 discusses
which pixels to acquire in each frame. Chapter 7 discusses when
to acquire each frame. Chapter 8 discusses when to stop ac-
quiring frames. Chapter 9 discusses how many cells to acquire.
We validate the intelligent acquisition algorithms from Chap-
ters 6 and 7 on synthetic data, those from Chapter 8 on both
synthetic and real data, and those from Chapter 9 on real data.

Part I

Background

6

2

Fluorescence Microscopy

Fluorescence microscopy is a rapidly expanding microscopy tech-
nique, and is especially popular for live cell imaging. Because cellular
components are colorless, they are difficult to view unless they are
stained. In fluorescence microscopy, subcellular components of in-
terest are labeled with fluorescent components called fluorophores.
These fluorophores absorb excitation light at a certain wavelength,
and subsequently emit light at a longer wavelength. By filtering the
emission light from the excitation light prior to detection, the loca-
tions of the fluorophores and the components of interest are revealed.

An understanding of fluorescence microscopy is important for this
thesis. In this chapter, we provide details on the physics of fluores-
cence, fluorescent probes, types of microscopes, and the associated
problems of photobleaching and phototoxicity.

2.1 Physics of Fluorescence

A fluorophore is a functional group in a molecule that absorbs exci-
tation light at a specific frequency and subsequently emits light at a
lower (also specific) frequency. As shown in Fig. 2.1, excitation takes
places when a photon of a specific energy collides with an electron
in an atom and excites it to a higher energy level. The energy of
this incoming photon must be close to the required energy for this
electron transition. If the photon is of higher energy, then it is usu-
ally converted into vibrational and rotational energy instead. If the
photon is of lower energy, it has insufficient energy to cause the tran-
sition. Photon energy is proportional to the frequency of the light,

7

2. FLUORESCENCE MICROSCOPY 8

Figure 2.1: Excitation and emission of a fluorophore. An in-
coming photon collides with an electron and promotes it to a
higher energy state. This electron subsequently relaxes back to
its ground state, causing the emission of a photon. Some vibra-
tional energy is lost, thus the emitted photon is of lower energy
[http://media.wiley.com/CurrentProtocols/CY/cy1210/cy1210-fig-
0001-1-full.jpg].

and the excitation light must be in the appropriate frequency range,
typically in the blue or ultraviolet part of the spectrum.

Fluorescence occurs when the excited electron relaxes back to its
ground state and emits a photon. Because vibrational energy is lost
during this process, the emitted photon is of a lower energy than the
photon that was originally absorbed, and hence the emitted light is
of lower frequency than the excitation light. This shift in frequency
is called Stoke’s shift; it allows the emitted light to be separated
from the excitation light. Such a separation is important because
the excitation light may be up to a million times brighter than the
emitted light. Hence, it is desirable to have the Stoke’s shift be as
large as possible. The exact Stoke’s shift, as well as the frequencies of
the excitation and emitted light, depend on the type of fluorophore.

The time lag between photon absorption and its subsequent emis-

2. FLUORESCENCE MICROSCOPY 9

sion is extremely small (on the order of nanoseconds). The sensitivity
is such that as few as 50 fluorophores per cubic micrometer can be
detected [44]. We can increase fluorescence, and thus improve con-
trast, by increasing the intensity of the excitation light. However,
this may result in saturation, where all the fluorophores within the
focal volume become excited. We can also increase fluorescence by
lengthening the exposure time, but, as we discuss in Section 2.4, this
could apply too much excitation light to the specimen.

We now discuss ways of introducing fluorescence into a specimen,
thereby allowing fluorescence microscopy to be used.

2.2 Fluorescent Probes

Although some specimens exhibit autofluorescence (fluorescence with-
out added fluorophores), techniques to artificially introduce fluo-
rophores into a sample have greatly increased the value of fluores-
cence microscopy. When we refer to labeling components of interest,
we mean the introduction of fluorophores specifically configured to
attach to these components. One way to achieve target-specific la-
beling is through immunoflourescence. Here, a protein of interest is
labeled by a fluorophore attached to an antibody of that protein. Un-
fortunately, this method requires that the cells are first fixed (killed)
and permeabilized, meaning that immunofluorescence cannot be used
for live cell imaging.

For live-cell imaging, we can use green fluorescent protein (GFP).
This protein was originally isolated from the jellyfish Aequorea victo-
ria, which fluoresces green when exposed to blue light. Its advantage
is that it is not species specific, and so can be configured, from the
gene level, to bind to almost any target protein with no observed
effect on cell growth or function.

Jarvik et al. introduced Central Dogma (CD)-tagging [29], a
method that can randomly label and study proteins in living cells.
This method inserts a specially designed DNA sequence (the CD
cassette), into genomic DNA. If the insertion occurs in the intron of
an active gene and in the correct orientation, the protein function of
that gene will be annotated by that of the CD cassette. By putting
GFP in the CD cassette, the tagged proteins become fluorescent.
Hence, CD-tagging can be used to create a data set in which different
proteins are fluorescently labeled. We use such a data set in Chapter

2. FLUORESCENCE MICROSCOPY 10

5.

2.3 Types of Microscopes

We show a generic fluorescence microscope in Fig. 2.2. Its main task
is to shine excitation light on the specimen to excite the fluorophores,
and then to stop this excitation light from reaching the image capture
device. The key component to achieve this is the dichromatic mirror,
which is designed to efficiently reflect light above a certain cutoff fre-
quency, while transmitting light below that frequency. The mirror is
chosen such that the cutoff frequency lies between the frequencies of
the excitation light and the emission light. Accordingly, excitation
light passes through the excitation filter (which ensures that only
a specific frequency hits the mirror) and this light is then reflected
downwards onto the specimen. The emission light that is then re-
leased by the fluorophores in the specimen is able to pass through the
dichromatic mirror (because it is below the cutoff frequency), but any
scattered excitation light is reflected away. In practice, some of the
excitation light still passes through, and the barrier filter is needed
to block this remaining excitation light. The fluorescence emission
can then be projected onto an image capture device.

In a widefield microscope, the whole image plane is excited all
at once, and all the emission from that plane is collected simultane-
ously (or viewed by eye). The problem with widefield microscopy,
especially for thick specimens, is that fluorescence from image planes
that are out of focus can interfere with the primary fluorescence. Al-
though image quality can be improved using deconvolution, a more
direct method to reduce out-of-focus fluorescence is to use a confocal
microscope.

In a laser-scanning confocal microscope (LCSM), images are ac-
quired line-by-line, pixel-by-pixel. This is done by moving a single-
point laser beam across the sample (or, alternatively, moving the
sample), exciting one pixel at a time. As shown in Fig. 2.3, out-
of-focus fluorescence is eliminated by the use of a small pinhole that
ensures only fluorescence from the focal plane reaches the detector.
As a result, an LCSM provides better resolution than a widefield
microscope, but acquisition speed is slower. Because each pixel is
excited individually, we can no longer view the resulting image by
eye, and thus we must capture the pixel value with an image capture

2. FLUORESCENCE MICROSCOPY 11

Figure 2.2: Generic fluorescence microscope. The excitation light
is reflected by the dichromatic mirror onto the specimen. The
emitted light is of a lower frequency and able to pass through
the mirror, thus separating it from scattered excitation light
[http://web.uvic.ca/ail/techniques/epi-fluorescence.html].

device such as a photomultpilier tube.
An alternative confocal microscope is the spinning disk confocal

microscope. This acquires multiple pixels simultaneously using a
spinning disk that contains multiple sets of pinholes and a rotating
array of lenses that focuses the excitation light on the corresponding
pixels. It has a much faster acquisition time than the LSCM, but
spatial resolution is lower.

For all of these microscopes, we obtain 3D images by adjusting
the plane of focus, and thus acquiring a set of 2D images at different
heights. Because height is usually denoted by the z-dimension, a 2D
image at a particular height is often called a z-slice, and a set of such
z-slices (a 3D image) is often called a z-stack.

2. FLUORESCENCE MICROSCOPY 12

Figure 2.3: A confocal microscope schematic. The small pinhole
aperture ensures that only fluorescence from the focal plane reaches
the detector [http://www.olympusconfocal.com/theory/index.html].

2.4 Photobleaching and Phototoxicity

Photobleaching and phototoxicity can occur whenever a fluorophore
is subjected to excitation light. Normally, fluorophores are excited
from the ground state to an excited singlet state, and then relax back
to the ground state. However, there is a certain probability that they
will instead move from an excited singlet state to an excited triplet
state. While in this state, they can react with molecular oxygen
and undergo an irreversible covalent modification that destroys their
ability to continue fluorescing. As a result, the fluorescent signal
fades over time, as shown in Fig. 2.4. Some techniques, such as
fluorescence recovery after photobleaching, exploit photobleaching to
gain useful information. However, in general, photobleaching limits
the duration over which we can acquire.

Phototoxicity also occurs when a fluorophore in the excited triplet
state reacts with molecular oxygen. This reaction releases a free rad-
ical, which can damage proteins, nucleic acids, and other cellular
components [30]. Phototoxicity may only be obvious when it is suffi-

2. FLUORESCENCE MICROSCOPY 13

Figure 2.4: Photobleaching. This shows pictures
of the same specimen at 2-minute intervals. The
photobleaching is clearly visible during this time
[http://micro.magnet.fsu.edu/primer/java/fluorescence/photo bleach-
ing/].

cient to cause cell death, but prior to this, there may be more subtle
effects on cellular function.

Both photobleaching and phototoxicity can be reduced by de-
creasing the amount of excitation light applied to the specimen,
whether by reducing the intensity of that light, or by reducing the
duration of exposure. Unfortunately, this also reduces the strength
of our fluorescent signal. A primary motivation of this work is to gain
as much information as possible from each application of excitation
light, thereby ensuring that we learn as much as possible before pho-
tobleaching and phototoxicity force us to cease acquisition.

3

Model Building and
Intelligent Acquisition

In this chapter, we provide an introduction to some basic model
estimation techniques, along with the more advanced technique of
particle filtering (used heavily in Chapter 4). We then provide an
overview of classification, as one of the primary validation methods in
this thesis, as well as an introduction to active learning, the topic in
the machine learning literature that most overlaps with the concept
of intelligent acquisition. Finally, we present related work both for
model building and for intelligent acquisition.

3.1 Model Estimation

In this section, we discuss how to estimate a model given some ob-
served data. We assume that we know the form of the model, but
that we must estimate its parameters. In particular, we discuss two
common methods for model estimation: the maximum likelihood es-
timator and Bayes estimators. We then discuss information measures
that help evaluate the quality of our estimation.

3.1.1 Maximum Likelihood Estimator

The maximum likelihood estimator chooses the model parameters
that make the observed data more likely than they would be with any
other choice of model parameters. If X = {x1, ..., xN} is the observed
data, then `(m), the likelihood of a vector of model parameters m,

14

3. MODEL BUILDING AND INTELLIGENT ACQUISITION 15

is defined by `(m) = P (X|m). For example, suppose our model is a
Bernoulli distribution, which means that a random variable xi takes
the value 1 with probability m, and 0 with probability (1 −m) (in
this instance, m is a scalar rather than a vector, because the model
has only one parameter). The likelihood of m is then given by:

`(m) = mSN (1−m)N−SN , (3.1)

where:

SN =
N∑
i=1

xi. (3.2)

Our goal is to find m such that this likelihood is maximized.
Instead of maximizing the likelihood directly, it is often more con-

venient to maximize the log-likelihood. The logarithm is a monotonic
transformation, and so the maximum of the log-likelihood occurs at
the same point as that of the likelihood. Taking the logarithm of
each side in (3.1), we get:

log(`(m)) = SN log(m) + (N − SN) log(1−m) (3.3)

To maximize this expression, we must set its derivative to zero. Dif-
ferentiating each side, we get:

∂ log(`(m))
∂m

=
SN
m
− N − SN

1−m
, (3.4)

which is equal to zero at the maximum likelihood value, m̂:

m̂ =
SN
N
. (3.5)

Hence, the maximum likelihood estimator for a Bernoulli distribution
is simply the proportion of observations that are 1.

3.1.2 Bayes Estimators

Bayesian inference is an approach to model estimation that differs
from maximum likelihood estimation in that it also considers the
prior distribution on the model parameters, π(m). The prior distri-
bution reflects our belief about m before we have observed any data,
whereas our belief after observing data is described by the poste-
rior distribution. The relationship between the prior probability, the

3. MODEL BUILDING AND INTELLIGENT ACQUISITION 16

posterior probability, and the likelihood function, can be expressed
with Bayes’ theorem:

p(m|X) =
p(X|m)π(m)

p(X)
, (3.6)

where p(m|X) is the posterior probability of m, p(X|m) is equiv-
alent to the likelihood `(m) from Section 3.1.1, and the marginal
probability of X, p(X), acts as a normalizing constant.

A Bayes estimator for m tries to minimize the posterior expected
value of a cost function (also known as the loss function, or the Bayes
risk). This cost function, C(m, m̂), associates a cost with estimating
the true parameter vector m with the estimated parameter vector
m̂. The Bayes estimator then seeks to minimize E(C(m, m̂)), where
the expectation is taken over the posterior distribution of m. A
common choice of cost function is the mean square error, C(m, m̂) =
(m−m̂)(m−m̂)T, in which case the best estimator of m is the mean
of the posterior distribution.

Taking the example of a Bernoulli distribution from Section 3.1.1
and assuming a uniform prior (m is equally likely to occur anywhere
between 0 and 1), this estimator gives:

m̂ =
SN + 1
N + 2

. (3.7)

We can see that this lies between the maximum likelihood esti-
mate (SN/N) and the prior mean (0.5), and that it moves closer
to the maximum likelihood estimate as the number of observations
increases. It is a general property that Bayesian and maximum like-
lihood results converge with a large enough data set. In this case,
the convergence happens quickly because we chose a weak prior—
one which did not favor any choice of m over any other. However,
the convergence would be slower had we chosen a strong prior—one
that significantly favored some choices of m over others.

3.1.3 Information Measures

We now discuss two information measures that help evaluate the
quality of model estimation: entropy and the Kullback-Leibler di-
vergence.

3. MODEL BUILDING AND INTELLIGENT ACQUISITION 17

Entropy

Entropy is a measure of the uncertainty associated with a random
variable. If p(x) is the distribution of a discrete random variable x,
then the entropy H(x) is defined as:

H(x) = −
∑
x

p(x) log p(x). (3.8)

We can see that this is the negative of the expected value of log p(x),
and thus it gives an indication of how well we can predict future
values of x if we know the true distribution p(x). Such predictions are
hardest when all events are equally probable, and thus the highest
possible entropy (highest uncertainty) is obtained with a uniform
probability distribution.

If x is a continuous random variable, we can use the differential
entropy, defined as:

H(x) = −
∫
x
p(x) log p(x). (3.9)

Entropy is an important concept in model estimation because
it provides an upper bound on how well we can predict future ob-
servations even when the true distribution of those observations are
known. Specifically, it is the negative of the expected log-probability
of future observations.

Kullback-Leibler Divergence

The Kullback-Leibler (KL) divergence is an assymetric measure of
the difference between two probability distributions p(x) and q(x),
defined as:

KL(p||q) = −
∫
p(x) log q(x)dx− (−

∫
p(x) log p(x)dx)(3.10)

= −
∫
p(x) log(

q(x)
p(x)

)dx. (3.11)

The KL-divergence equals zero if and only if p(x) = q(x).
If x is governed by the true probability distribution p(x), the KL-

divergence measures the cost of predicting x using q(x) instead of
p(x). Specifically, it measures the resulting decrease in the expected
log-probability of those predictions.

3. MODEL BUILDING AND INTELLIGENT ACQUISITION 18

3.2 Particle Filters

Having introduced the general concepts of model estimation, we now
discuss a specific simulation-based technique: particle filters. These
filters, also known as sequential Monte Carlo methods [17], require
neither linearity nor Gaussian noise, and their performance often
exceeds that of the extended Kalman filter (a nonlinear version of
the Kalman filter [20]). In this section we review the state-space
approach upon which particle filters are based, and then outline the
estimation process.

3.2.1 State-Space Approach

By using the state-space approach, we assume that our system has
a true underlying state, and that our observations give some inter-
pretation of this state [48]. The state-space equations in their most
general form are given by:

xt+1 = g(t,xt,νt), (3.12)
zt = h(t,xt,wt), (3.13)

where xt is the state vector—the set of state variables that can rep-
resent the entire state of the system at time t. For example, if we
were modeling objects within a cell, then the state vector could in-
clude the positions, shapes, and motion models of these objects. The
vector zt refers to the observed vector. The first equation, (3.12), is
the state-update equation, with the function g describing how the
state of the system evolves with time. This includes a noise term νt
to reflect that the model of the state evolution will not be exact, and
that the actual state will differ from the predicted state. In the mea-
surement equation, (3.13), h relates the system state to the observed
measurement at time t, with wt allowing for measurement noise.

The reader may be more familiar with the linear forms of these
equations:

xt+1 = Gtxt + νt, (3.14)
zt = Htxt + wt, (3.15)

which can be used when the dynamics of the system are known and
linear.

3. MODEL BUILDING AND INTELLIGENT ACQUISITION 19

3.2.2 Estimation Process

The basic approach in particle filtering is to represent the posterior
distribution of the state vector using a set of sample states known as
particles. We begin by generating N particles drawn from the prior
distribution of the state space. At each time step, we propagate the
particles forward according to the state update equation, (3.12). As
observations are made, those particles consistent with the observa-
tions are given high weights, and inconsistent particles are given low
weights. To avoid a concentration of particles in low-likelihood re-
gions, a resampling procedure then duplicates those particles with
high weights and eliminates those with low weights. There are many
ways of doing this [34, 3, 39], and in this work we use sampling-
importance-resampling [20]. When an observation is made, we as-
sign each particle a weight according to the posterior probability of
the particle given the observation. We then resample the particles
with probabilities proportional to their weights—that is, we draw N
particles with replacement from the current particle set.

The main limitation of particle filters is that high accuracy re-
quires high computation time. This is especially true when the prob-
lem is high-dimensional or when there are unknown static parameters
in the state space. Because the latter situation occurs frequently in
our work, we draw special attention to an enhancement given by Gor-
don et al. [20], known as roughening, which treats these unknown
static parameters as though they were dynamic, by adding a small
amount of random noise to them at each iteration of the algorithm.
The random noise makes some particles move closer to the truth,
and others further away. Those that move closer are more likely to
agree with future observations, and thus more likely to be duplicated.
Hence, the particles eventually converge on the true parameter val-
ues.

Particle filters are attractive because they make few assumptions
about the dynamics of the state space model and they are easy to
implement even for complex models [1]. We do not need to derive
equations to calculate the model likelihood for any given observation.
Instead, we only need to simulate multiple instances of particles fol-
lowing different models, and the likelihood function reveals itself.

3. MODEL BUILDING AND INTELLIGENT ACQUISITION 20

3.3 Classification

The goal of classification is to take an item and assign it to a par-
ticular category. For example, we may wish to assign an image of
a biological cell to the category ‘cancerous cell’ or to the category
‘non-cancerous cell’. The first stage of a classification system is to
somehow represent the input item as set of numbers, which we call
the input vector. For the image of a biological cell, the input vector
would be the set of pixel values that make up that image. The out-
put categories are called classes. Hence, a classification system can
be viewed as a black box that takes an input vector and outputs a
class.

The term classification implies that there are a finite number of
discrete classes. If instead we wanted to output a continuous variable,
then the task would be regression. If we did not have a set of target
values, but wanted to group together similar input vectors, the task
would be clustering.

3.3.1 Overview of Classification Systems

A classification system tries to learn a function that maps an input
vector to an output class. The form of this function depends on the
particular classifier being used (see Section 3.3.2) and its parameters
are learned during a training phase. This training phase requires
a training set, which is a set of examples for which both the input
vector and the true class are known. Typically, the classifier tries to
learn a function that gives a high accuracy on this training set.

It is often impractical for a classifier to operate on the input
vector directly because it may be very large. For example, if the
input vector contains all pixels of a 1024 × 1024 image, then it has
over a million numbers. To deal with this, most classification systems
have a stage called feature extraction, in which a much smaller set
of numerical features are extracted from the input vector. For the
case of a cellular image, examples of such numerical features could
be the size or eccentricity of the cell. More such examples can be
found in Section 3.5.1. Fig. 3.1 gives a block diagram of a typical
classification system.

3. MODEL BUILDING AND INTELLIGENT ACQUISITION 21

Classifier
Feature

extraction

This is
cancerous

Generic classification system

Figure 3.1: A generic classification system.

3.3.2 Classifiers

There are many different ways to learn a mapping from a feature
vector to a classification decision. Some associate a probability with
each possible class label, whereas others are decision machines and
make hard choices. We outline two examples of possible classifiers—
Bayes classifiers and support vector machines. Additional classifiers
include decision trees [40], k-nearest neighbor classifiers [14], logistic
regression [24], and neural networks [22].

Bayes Classifiers

Bayes classifiers assume that the feature vector x1, ..., xn captures
all probabilistic values associated with the problem. If there are k
possible classes C1, ..., Ck, then we can find the probability that x
comes from class Ci using Bayes’ theorem:

p(Ci|x1, ..., xn) =
p(Ci)p(x1, ..., xn|Ci)

p(x1, ..., xn)
(3.16)

We find this probability for all classes C1, ..., Ck, and then choose the
class of highest probability as our classification decision. Because the
denominator in (3.16) is the same for all classes, we can remove it
from the calculations.

The training phase consists of learning the values of p(Ci) and
p(x1, ..., xn|Ci) for each class Ci. The values of p(Ci) are typically (1)
known a priori, (2) assumed to be identical, or (3) learned based on
the frequency of each class in the training set. If the feature vector is
discrete, we can also learn the joint probability p(x1, ..., xn|Ci) based
on the frequency with which that feature vector occurs for each class
in the training set. If the feature vector is continuous then we can

3. MODEL BUILDING AND INTELLIGENT ACQUISITION 22

model the joint probability using a multivariate Gaussian, or some
other distribution.

In most real-world situations, the number of features n is large
and the training set is small. This makes it difficult to accurately
learn p(x1, ..., xn|Ci). In such cases we can make the naive conditional
independence assumption that:

p(x1, ..., xn|Ci) = p(x1|Ci)p(x2|Ci)...p(x3|Ci). (3.17)

The resulting classifier is called a naive Bayes classifier [37]. Even
in cases where the conditional independence assumption is clearly
invalid, the results from this classifier are often surprisingly accurate
[49].

Support Vector Machines

A support vector machine (SVM) [13, 7] is fundamentally a two-class
classifier. It views the training data as points in an n-dimensional
space and then looks for a hyperplane that separates the points from
each of the two classes. The n-dimensional space could be the feature
space, or it could be a transformation of the feature space. There
may be many different hyperplanes that would separate the points
from the two classes. In this case, an SVM chooses the hyperplane
that maximizes the margin, where the margin is defined to be the
smallest distance between the hyperplane and any of the training
points.

In some cases, there may be no hyperplane that can separate the
points in the feature space. There are two ways to deal with this:
First, the feature space can be transformed to a different (usually
higher-dimensional) space where linear separation is possible. Sec-
ond, we can introduce the idea of a soft margin, which allows some
training set data points to be misclassified, but penalizes misclassifi-
cation based on how far from the margin the misclassified data point
lies.

There are several methods for extending a support vector machine
to be a k-class classifier (where k > 2). A common method is to
construct k separate SVMs, each of which separate one class from
all the remaining classes. Another method is to construct k(k− 1)/2
SVMs on all possible pairs of classes. Hsu & Lin give a review of
these and other methods [25].

3. MODEL BUILDING AND INTELLIGENT ACQUISITION 23

3.3.3 Validation of Classification Systems

To evaluate a classification system, we take the full set of data for
which we know the true class labels. We then split this data into two
sets—the training set, and the testing set. We train the classification
system using all the examples in the training set, and then we test
the trained classifier on the examples in the testing set. Because we
also know the true class labels of the testing set, we can measure the
classification accuracy as the proportion of classification decisions
that agree with those true labels.

Suppose that we had 100 examples for which we knew the true
labels. We could use examples 1-50 as the training set, and examples
51-100 as the testing set. We can gain an even more accurate estimate
of classification accuracy if we then train with examples 51-100, and
test on examples 1-50. In this way, every example gets tested on once,
and the final classification accuracy is based on the testing results of
all examples 1-100. This scheme is called two-fold cross-validation,
because the validation process is performed two times.

The problem with this scheme is that we are validating our classi-
fication system with a classifier that is only trained with 50 examples,
whereas the final classification system will be trained with 100 exam-
ples. We can improve this by using ten-fold cross-validation. Here,
we would first train with examples 1-90, and test on examples 91-100.
We would then train with examples (1-80, 91-100) and test on exam-
ples (81-90), and then train with (1-70, 81-100) and test on (71-80),
and so forth. By rotating the testing set through all the samples, we
are still testing on every example exactly once, but the classifier is
being trained with 90 examples instead of 50.

In the limit, this process leads to the leave-one-out cross-validation.
Here, we train with all but one example, and then test on that one
example. We rotate the testing example through the entire data set.
In the case above, where we had 100 examples, leave-one-out cross-
validation would be synonymous with 100-fold cross-validation. The
only problem with such a scheme is that it involves training a clas-
sifier 100 times, which may be impractical if the training process is
slow.

3. MODEL BUILDING AND INTELLIGENT ACQUISITION 24

3.4 Active Learning

The problem of intelligent acquisition comes under the framework
of active learning, which refers to any form of learning in which the
learning program has some control over the inputs on which it trains
[12]. Assuming that data acquisitions are expensive, the goal is to
request the data that is most informative. This is typically framed in
the context of classification, where we have a set of input vectors for
training but do not know the class labels of these vectors. Assuming
that a class label can be acquired at a cost, the goal is to choose which
input vectors to request labels for such that an accurate classifier can
be trained at the lowest cost.

Perhaps the best known examples of active learning frameworks
are uncertainty sampling and query by committee, which we now
outline. Settles [42] provides a more detailed survey of these and
other active learning frameworks.

3.4.1 Uncertainty Sampling

Uncertainty sampling [31] requests class labels for training instances
whose class the learner is least certain about. This method requires
that we can estimate the certainty of our classifications. One prob-
lem with this approach is that a single classifier is not necessarily
representative of all the classifiers that are consistent with the la-
beled data. Nonetheless, uncertainty sampling has been shown to
greatly reduce the number of instances that an expert need label.

3.4.2 Query by Committee

Query by committee (QbC) [43] takes all classifiers that are con-
sistent with previously labeled instances, and then requests labels
for training instances that cause the most disagreement among these
classifiers. This is generally better than uncertainty sampling: all
classifiers might be equally uncertain about a particular class label,
and thus attaining that label (as uncertainty sampling would do)
may not be helpful. However, the QbC approach of attaining a label
that causes disagreement among classifiers is guaranteed to elimi-
nate some potential candidates, thus drawing us closer to the true
classifier.

3. MODEL BUILDING AND INTELLIGENT ACQUISITION 25

3.5 Related Work

3.5.1 Subcellular Protein Location Pattern Analysis

The field of proteomics is the study of proteins and their role and
functions in cellular mechanisms. Location proteomics is a recent
subfield of proteomics that focuses on the location of proteins within
cells. Murphy et al. have pioneered the use of automated and ob-
jective methods for interpreting protein subcellular location images
[5, 6, 19]. Because we rely on aspects of this work heavily, we outline
their methods for two specific tasks: recognition of protein subcellu-
lar location images and recognition of subcellular objects.

Recognition of Protein Subcellular Location Images

We described general classification systems in Section 3.3. Murphy et
al. have designed such a system for recognizing subcellular patterns
in a number of cell types. These systems use a set of numerical
features called subcellular location features, which are designed to
be insensitive to the position, rotation, and total intensity of a cell
image. Static features have been developed for 2D and 3D images,
and temporal features for 2D time series and 3D time series.

Systems have been built to recognize all major protein subcellu-
lar location patterns in both two-dimensional and three-dimensional
HeLa cell images with high accuracy (over 95% and 98%, respectively)[5,
6, 35, 10]. Of special interest to this thesis is a similar system applied
to a set of 3T3 cell time series images, because we also attempt to
classify this same data set (described in Section 5.1). We now outline
the features used, and then summarize the classification results on
the 3T3 data set.

Subcellular Location Features The major features used are:

• Morphological features [6, 36, 47]. These features are mainly
based on the characteristics of objects within a cell, where an
object is defined as a group of connected pixels that are above
some threshold. Examples include the number of objects per
cell, average number of pixels per object, and average distance
of objects to the center of fluorescence. These can be defined
both in 2D and in 3D.

3. MODEL BUILDING AND INTELLIGENT ACQUISITION 26

• Edge features [6, 11]. These include features such as the frac-
tion of pixels distributed along edges, the homogeneity with
which edges are aligned, and the total fluorescence of the edge
pixels. Edges are places in the image with discontinuities in
the intensity (where the intensity changes sharply). For a 3D
image, the total set of edges consists of the edges from each 2D
slice of that 3D image.

• Haralick texture features [21, 6, 36, 11]. These features summa-
rize the relative frequency with which one gray level appears ad-
jacent to another. For 2D images, adjacency can occur in four
directions (horizontal, vertical, and two diagonal directions).
In 3D images, adjacencies can be found in 13 directions.

• Other static features include geometric features [6], DNA fea-
tures [6], Zernike moment features [5], skeleton features [36],
Daubechies-4 wavelet features [28], and Gabor texture features
[28].

• Temporal texture features [26]. These are the same as the Har-
alick texture features, except that they summarize the relative
frequency with which one gray level appears adjacent to an-
other in time. These can be defined both for 2D time series
and for 3D time series.

• Normal flow features [26]. The normal flow field is based on
the gradient of pixel intensity in time. Several statistics can be
calculated on this field.

• Fourier transform features [26]. By considering each pixel at
the same position over time as a time series signal, we can
calculate a Fourier transform of this signal. Fourier transform
features are statistics based on the first four coefficients of this
transform.

Results for 3T3 Time Series A classification system using these
features was applied to 3T3 time series by Hu et al. [27, 26]. The
system used a support vector machine as the classifier (see Section
3.3.2). Although the data set contains 3D time series, initially clas-
sification was done with only the middle slice from each time point,
using 2D static features and 2D temporal features as described above.

3. MODEL BUILDING AND INTELLIGENT ACQUISITION 27

This gave an accuracy of 83.9%. Interestingly, when the entire 3D
image at each time point was used and classified with 3D static and
temporal features, the accuracy actually dropped to 81.6%. When
only static features were used to classify, the accuracy was 71.1% for
2D images, and 77.3% for 3D images. These results are summarized
in Table 3.1.

Input Features Classification Accuracy

2D images static 71.1%

3D images static 77.3%

2D images static and temporal 83.9%

3D images static and temporal 81.6%

Table 3.1: Classification accuracy for different configurations

Recognition of Subcellular Object Types

Whereas the previous section looked at classification on a cell level,
Murphy et al. also studied the object level. Here, the goal is to take
subcellular objects and to group them into types. Because there are
no ground truth labels for the objects, and the number of types is
unknown, a clustering approach is chosen rather than a classification
approach.

Object Detection The first stage is object detection. This aims
to find sets of connected pixels in 3D which display a higher intensity
level than their local environment. Because the background intensity
is not uniform, a multi-threshold approach is used. First, the most
common pixel value is found from those pixels whose intensity is
below the mean intensity of the image. This value is subtracted
from every pixel. Second, the pixels are smoothed with a Gaussian
filter. Third, an object is defined as the biggest set of 3D-connected
pixels that contains only one maximum intensity.

Object Features Having determined the locations of the objects,
and the voxels assigned to them, the next step is to calculate static
features on each of the objects. The list of features are shown in Table

3. MODEL BUILDING AND INTELLIGENT ACQUISITION 28

3.2 [46, 50]. Many of these features are adapted from the features
mentioned in the previous section, except that they are applied on
each object individually.

Index Feature Description

3D-SOF1.1 Number of voxels in the object

3D-SOF1.2 Distance between object center of fluorescence and DNA center

of fluorescence

3D-SOF1.3 Fraction of object voxels overlapping with DNA

3D-SOF1.4 A measure of the eccentricity of the object

3D-SOF1.5 Euler number of the object

3D-SOF1.6 A measure of the roundness of the object

3D-SOF1.7 The length of the object’s skeleton by homotopic thinning

3D-SOF1.8 The ratio of skeleton length to the area of the convex hull of

the skeleton

3D-SOF1.9 The fraction of object voxels contained within the skeleton

3D-SOF1.10 The fraction of object fluorescence contained within the skeleton

3D-SOF1.11 The ratio of the number of branch points in the skeleton to the

length of skeleton

Table 3.2: List of static subcellular object features (SOF) defined to
describe objects in 3D [46].

Object Types Finally, the objects are grouped into types [46, 50].
An object type is defined as a group of objects with similar charac-
teristics that form a cluster in the feature space. These clusters are
learned by applying k-means clustering to all the objects. The op-
timal number of clusters, k is determined by minimizing the Akaike
Information Criterion (AIC), which specifies a tradeoff between com-
plexity of the model (number of clusters) and goodness of the model
(compactness of the clusters).

3.5.2 Efficient Acquisition in Fluorescence Microscopy

Efficient acquisition for fluorescence microscopy is a recent problem.
Related work on efficient acquisition for fluorescence microscopy was
done by Merryman & Kovačević [33]. They presented an algorithm
to reduce the number of pixels acquired in a 2D or 3D image when

3. MODEL BUILDING AND INTELLIGENT ACQUISITION 29

using a laser scanning confocal microscope, with the end applica-
tion being recognition of proteins based on their subcellular location
[5, 6, 19, 10]. The goal was to reduce the time spent acquiring low
fluorescence regions, which presumably contain little useful informa-
tion. The algorithm begins by scanning the field at low resolution.
Each scanned value is examined, and if found to be significant, the
area around it is scanned at a higher resolution. The process is re-
peated iteratively. The limitation of this technique is that it cannot
adapt to specifically seek out information required for the end appli-
cation, nor can it use knowledge of the cellular dynamics.

Hoebe et al. introduced controlled light-exposure microscopy
[23], which can use a different exposure time for each pixel. If no
significant fluorescent signal is detected at a pixel, the exposure time
for that pixel is reduced. Similarly, if the signal is very strong, the
exposure time will also be reduced because the signal-to-noise ra-
tio will still be high. As a result, this method allows images to be
acquired faster and with less overall light exposure, thus reducing
photobleaching and phototoxicity. This technique could be included
within our proposed framework.

3.5.3 Efficient Acquisition in Magnetic Resonance
Imaging

Work on efficient acquisition is also found in the field of magnetic res-
onance imaging (MRI). For example, Liang & Lauterbur [32] present
a method to efficiently acquire a time series of images by observing
that the high-resolution image morphology does not generally change
from one image to another. Then, using a generalized series model,
they eliminate the repeated encodings of this stationary information
in the conventional Fourier methods. An alternative approach uses
a singular value decomposition of the first (base) image to design
excitation sequences that efficiently acquire the data in subsequent
images [38]. A more comprehensive overview of efficient acquisition
in MRI is given by Tsao et al. [45].

3.5.4 Compressed Sensing

Compressed sensing [8, 9, 16, 2] is a technique that allows sub-
Nyquist image acquisition provided that (1) the signal is sparse in
some target basis, and (2) we can acquire in a basis that is mu-

3. MODEL BUILDING AND INTELLIGENT ACQUISITION 30

tually incoherent with this target basis. A popular choice of inco-
herent basis is to acquire random projections of the signal. Only a
small number of such projections are acquired, and so the task of
converting these into the target basis is an underdetermined set of
linear equations. Typically such equations are solved by minimiz-
ing the L2 norm, however, the compressed sensing approach exploits
the sparsity property and instead minimizes the L1 norm. This can
be expressed as a linear program, for which efficient solutions exist
(whereas, say, the L0 norm would give even sparser solutions but is
computationally infeasible for large data sets).

We investigated using compressed sensing for our application by
acquiring random linear combinations of pixels instead of individual
pixels. However, to acquire such projections while holding photo-
bleaching and acquisition time constant, we were forced to dramat-
ically reduce the exposure time of each acquisition. We found that
the resulting increase in noise offset the benefits.

Part II

Model Building

31

32

The goal of this part is to construct a model by using the raw
data acquired from the microscope along with any prior knowledge.
We assume that the class of models is known, and thus model build-
ing refers to estimating the parameter values. Our models are based
on the dynamics of objects between frames. We split this part into
two chapters: Chapter 4 discusses model building for the case of a
single object moving between frames. This chapter is based entirely
on synthetic data, providing us with a ground truth to validate our
model-building procedure. Chapter 5 discusses model building for
the case of multiple objects moving between frames. This chapter
is based entirely on real data, providing us with a real-world experi-
mental validation of our methods.

There are two types of models we consider: (1) Cell models are
based solely on a single cell. (2) Class models are based on all cells
from a particular class. Our discussion of single-object modeling
focuses only on the first type—cell models—but for multiple-object
modeling we consider both cell and class models.

4

Single Object

This chapter discusses model building for the case of a single object.
All models are cell models, meaning that they are based solely on
a single cell (rather than on a group of cells). Experiments in this
chapter are performed on synthetic data. This allows us to assess
the potential of our methods objectively, because we have accurate
ground truth.

The synthetic data is generated using specific motion models,
described in Section 4.1, and this choice of motion models is known
by the model-building module. However, because model building is
done using particle filters (see Section 3.2), our methods should work
equally well for most other choices of motion models.

When designing the model-building module, we must consider
the form of the input data. As we describe in Part III, our intel-
ligent acquisition methods include acquiring only a subset of pix-
els in a frame, as well as varying the frame rate. Therefore, the
model-building method must be able to model such data. We also
make some simplifications regarding the acquisition and detection
processes: First, we assume perfect object detection provided that
the appropriate region of the image is acquired. Second, we assume
that all pixels in a frame are acquired at precisely the same instant.
We discuss these assumptions further in Section 4.4.

We begin this chapter by providing more details on the synthetic
data set used for our single-object experiments. Then, in Section
4.2 we describe how to build the model, and in Section 4.3 how to
validate that the model is learned correctly.

33

4. SINGLE OBJECT 34

4.1 Data Set: Generated Synthetic Tracks

Each cell in our synthetic data set contains a single object. We as-
sume that this object is a point source, meaning that it only occupies
one pixel, and that it moves between frames according to its motion
model. There are two motion models that we consider, which subcel-
lular objects are commonly observed to follow: random walk (RW)
and constant velocity (CV).

Random Walk Motion Model In the RW model, objects move
in a random direction between frames. The position of an object in
a frame depends only on its previous position, and thus velocity and
acceleration of the object are not conserved. Its position at time t, yt,
is simply its previous position, yt−1, perturbed by the displacement
dt of additive Gaussian noise of mean 0 and covariance Σ, N(0,Σ).
The parameters of the covariance matrix Σ are often known as rate
parameters because they govern the rate at which the objects move
in each dimension. The RW model is thus described by:

yt = yt−1 + dt. (4.1)

Constant Velocity Motion Model In the CV model, objects
move with a constant velocity µ between frames. Once again, we
have displacement dt as additive Gaussian noise, which determines
the extent to which velocity is conserved. The CV model is governed
by:

yt = yt−1 + µ + dt. (4.2)

We can see from this equation that the RW model is a special case
of the CV model, with µ = 0. Therefore, both of these models can
be characterized by (µ,Σ), where µ is a three-dimensional vector.
Note that a general symmetric covariance matrix Σ has D(D+ 1)/2
independent parameters [4], where D is the dimension, and thus for
D = 3 we have 6 independent parameters. Combining this with the
3 parameters of µ, the model has 9 independent parameters in total.

When considering motion models, we must also consider the
boundary conditions. The behavior at the boundary has no sig-
nificant effect on our experiments, and so for simplicity we assume
that an object cannot move outside the image boundary and that it
bounces back upon hitting this boundary.

4. SINGLE OBJECT 35

Therefore, to generate a synthetic track, we randomly choose
a motion model and corresponding parameters, drawn from some
prior distribution. We assume that this prior distribution is also
known to the model-building module. Our prior distribution gives
equal probability to RW and CV models, and equal probability to
all parameter values within these models, with an upper bound. For
the CV velocity parameters, this upper bound was 2 pixels/frame in
each dimension. Because Σ must be positive semi-definite to be a
valid covariance matrix, we initially chose variances for (x, y, z) in the
range (0, 10), and created a diagonal matrix from these values. We
then randomly rotated it in (x, y, z) to create a general covariance
matrix. The range of parameter values was based on observations
of the 3T3 data set that we use in Chapter 5. However, the model-
building methods are not sensitive to this range. Finally, we initialize
the position of the object to a random pixel in the image, and begin
propagating it between frames according to its motion model.

4.2 Building the Model

In this scenario, there is just a single point-source object, and so
the only goal of model building is to learn the motion model that
describes that object. We do this using particle filters, outlined in
Section 3.2. Particle filters are a useful choice because they make few
assumptions about the model, and are easy to implement even for
complex models [1]. We do not need to derive equations to calculate
the model likelihood for any given observation. Instead, we only need
to simulate multiple instances of particles following different models,
and the likelihood function will reveal itself.

For the synthetic data set described, learning the motion model
just consists of learning the parameters (µ,Σ). It may seem that
particle filters are unnecessarily complicated for such a task. A sim-
pler method would be to record the displacement of the object in
each frame, and then use the sample mean and covariance of these
displacements as our model parameters. Even with the small error
introduced by pixelation, this closed-form method is fast and accu-
rate. However, we use particle filters for two reasons: First, the
closed-form method cannot handle the case where the intelligent ac-
quisition module chooses to acquire only a subset of pixels in a frame,
or to skip a frame entirely. Second, we want a method that can, with

4. SINGLE OBJECT 36

little or no modification, be used for a wide range of motion models
other than those outlined in Section 4.1.

To use particle filters, we must first define the state vector. This
consists of the position, yt, as well as the motion model parameters µ
and Σ. These last two variables are static parameters and the goal of
the model building is to learn them. We initialize the particle filter by
generating N particles from the state space. Each particle is assigned
values for (µ,Σ), using the same prior distribution that was used to
create the synthetic data. We also assign initial positions to each of
the particles. Rather than assign these positions to random parts of
the image, we instead assume that we begin acquisition by acquiring
a complete frame and that we observe the pixel of the object’s true
position. Thus, the initial positions of the particles can be set to
random positions within the actual initial pixel of the object.

Following an observation of the object, we use the following sim-
ple weighting procedure: If a particle is at the same pixel as the
observed object, we keep it; if a particle is at a different pixel, we
eliminate it (assign it zero weight). If we acquire a set of pixels and
do not observe the object, then we eliminate the particles in the ac-
quired set of pixels, and retain all other particles. In either case,
the surviving particles all have equal weight, and so the resampling
procedure just involves duplicating these particles to keep the overall
number at N . We could improve efficiency and reduce degeneracy
by giving fractional weight to particles that are in neighboring pixels
of the observed object; we leave such considerations for future work.

Using this procedure, the likelihood of any model is given by
the distribution of the models of the surviving particles. As N ap-
proaches infinity, this distribution converges to the true likelihood
function. Furthermore, as the number of observations increases, the
likelihood function converges to the object’s true model.

When acquisition is complete, we can take the models of all the
surviving particles and use them to make a point estimate of the final
model. If the parameters of the model of particle i are µi and Σi

respectively, we choose the parameters of the final model as follows:

µ =
1
N

N∑
i=1

µi (4.3)

Σ2 =
1
N2

N∑
i=1

Σi
2 (4.4)

4. SINGLE OBJECT 37

These parameters represent the Gaussian distribution that best ap-
proximates the mean of the distributions of each surviving particle’s
model.

4.3 Validating the Model

We now seek to validate the effectiveness of our model-building pro-
cedure. A good way to do this is to see how well the final model can
predict future frames. We do this by finding the log-probability with
which those future frames occur under the final model, or equiva-
lently, the log-likelihood of the final model given those future frames.
The goal is to choose the model that maximizes this log-likelihood.

When we consider real data in Chapter 5 we will measure this log-
likelihood based on actual observations of future frames. However,
with synthetic data we know the true underlying model, and so we
can compute the expected log-likelihood in closed form. If the true
model follows some distribution p(x, y, z), and our estimate of the
model follows q(x, y, z), then the expected log-likelihood is given by:

log(l) =
∫
x,y,z

p(x, y, z) log(q(x, y, z)). (4.5)

Note that this quantity is maximized when p = q (remembering that
p and q are probability distributions, and thus each sum to one). Also
note that the expected log-likelihood is related to the KL divergence
K(p||q) of q from p, and the entropy Ep of p, as shown (see Section
3.1.3):

log(l) = −Ep −K(p||q). (4.6)

This means that maximizing log(l) is equivalent to minimizingK(p||q).
The KL-divergence between two Gaussian distributions, K(mt||me),

and the entropy of a Gaussian distribution, Emt , are as follows [15]:

K(mt||me) =
1
2

[log(
|Σe|
|Σt|

) + (µt − µe)TΣe
−1(µt − µe)

+ tr(Σe
−1Σt)− 3]

Emt =
1
2

(3 + 3 log(2π) + log(|Σt|)

Combining these two facts with (4.6), we conclude that the log-
likelihood of the true model mt = N(µt,Σt) given the estimated

4. SINGLE OBJECT 38

model me = N(µe,Σe
2) is given by:

log(l)t,e = −1
2

[ln(|Σe|) + tr(Σe
−1Σt) + (µe − µt)TΣe

−1(µe − µt)

+3 ln(2π)].

We can then use log(l)t,e to measure how well our model is predicting
future frames, with the upper bound being given by the entropy Emt .

In Fig. 4.1, we simulate an object moving between frames as
described in Section 4.1. We then use our model-building method to
learn a model of this object. For this experiment, we assume that we
acquire every pixel in the frame, but in Chapter 6 we show examples
where we only acquire a subset of pixels in each frame. The solid
red line shows the log-likelihood increasing as the model is learned.
The dotted black line shows the entropy of the true model, which
represents the maximum log-likelihood achievable. We can see that
the log-likelihood converges to this entropy, thereby validating our
model-building procedure.

4.4 Discussion

Because particle filters are very general, this method works for a
wide range of motion models. The same is true of the correspond-
ing intelligent acquisition algorithms that we introduce in Part III.
For this reason, we have not focused on finding motion models that
exactly mimic real object motion, but rather on finding a model-
building method that has broad applicability. We also did not con-
sider computation time extensively, but will pay more attention to
it in Chapter 5 when working with real data. Typically, however, we
used around one million particles, which resulted in a processing time
of about a second between frames (Intel Core Duo 2.2GHz processor
with 1.96GB of memory).

We can make several extensions to the model building. We can
expand the state space to include static features such as the size of
the object, and then similarly expand the model to include changes
in these static features. We can also account for imperfect detection.
For example, when we acquire a set of pixels and do not find the
object in those pixels, the current implementation eliminates all the
corresponding particles. Instead, it could simply reduce the weight
of these particles to reflect that the object may still lie within the set
of pixels but not have been detected.

4. SINGLE OBJECT 39

10 20 30 40 50 60 70 80 90 100

−2.6

−2.4

−2.2

−2

−1.8

−1.6

Frame number

Lo
g−

lik
el

ih
oo

d

Figure 4.1: Model building (single object, synthetic data). The
solid red line shows the log-likelihood of the estimated model at every
frame, given the true model. The dotted black line shows the entropy
of the true model, which is the maximum log-likelihood achievable.
We can see that the model estimate improves throughout the dura-
tion of acquisition (although not monotonically), converging on the
entropy.

Although the pixels in a frame are all acquired at slightly different
times, the model building is mainly affected by the time between
two successive acquisitions of an object. Assuming that objects do
not move far between frames, this time should be close to the time
between frames, and hence the assumption that all pixels in a frame
are acquired at the same instant should not greatly affect the model
accuracy. Nevertheless, an extension to the model building would
be to more accurately account for the exact time at which a pixel is
acquired.

Perhaps the biggest limitation with the method described in this
chapter is that it is restricted to the case of a single object. We
could extend to multiple objects by using a separate particle filter
for each object, but then we would have to find which objects in
a frame t match to which objects in the subsequent frame t + 1.

4. SINGLE OBJECT 40

This is easy under some conditions, such as when the objects can be
distinguished by their static features, when the motion of the objects
can be precisely predicted, or when the objects are sufficiently far
apart and do not move far between frames. This last scenario is
applicable when we only wish to model a small number of objects: If
only modeling a few objects, we do not need to acquire many pixels
in each frame. This in turn would allow for high temporal resolution,
which means objects do not move too far between frames, thereby
allowing us to find the object matches with high accuracy.

In situations where the object matches are not clear, we can use
the distribution of particles to determine the probability that an ob-
ject in frame t matches to a given object in frame t+1. We determine
this with the proportion of particles from the object in t that move to
the object in t+1. We can then use the the Hungarian algorithm [18]
(also known as the Kuhn-Munkres algorithm or Munkres assignment
algorithm) to find the most likely combination of matches between
all objects in t and t+ 1. An example of this is shown in Table 4.1.
The problem with this algorithm is that it makes hard matches, and
the motion modeling is very sensitive to a single mistake. Alterna-
tively, methods such as the multiple hypothesis tracker [41] try to
keep track of all possible match combinations, which works better,
but the number of possible combinations grows exponentially and so
eventually hard matches must still be made.

We have had the most success with a different approach, which
is to have only one particle filter, and after each frame to retain par-
ticles in the same pixel as any object. As a result, object matches
do not need to be found. This method does not output the motion
model of each individual object in the cell, but rather the distribu-
tion of motion models, which is often all that is needed. We can
improve the resampling procedure further by considering combina-
tions of particles that can occur together: In Table 4.1 we showed the
combination of matches with the highest joint probability. However,
other combinations of matches also have a given joint probability,
and so the marginal likelihood of an individual match can be com-
puted as the sum of the joint probabilities of each combination in
which that individual match occurs. Therefore, if we have a particle
that moved from a particular object in frame t to a particular object
in frame t+ 1, we can weight this particle according to the marginal
likelihood of the corresponding match.

Despite these solutions to the multiple-object problem, real data

4. SINGLE OBJECT 41

still poses many challenges. These include appearing and disappear-
ing objects, changing shapes and sizes of objects, objects that change
motion models, and global cell motion. Although the proposed ex-
tensions to multiple objects work well in simple simulations, and may
work for certain data sets, more work is needed before they can be
used for the 3T3 data set described in Chapter 5. For this reason, and
for other reasons that we describe shortly, we did not use a particle
filter-based method for multiple-object model building.

1 2 3 4

1 0.1011 0.2595 0.3325 0.3070

2 0.0349 0.4208 0.3865 0.1578

3 0.2804 0.1272 0.2230 0.3694

4 0.1095 0.4194 0.3145 0.1566

Table 4.1: Sample probabilities for matching 4 objects in frame t
with 4 objects in frame t+ 1. Each row corresponds to frame t, and
each column corresponds to frame t + 1. The bolded numbers rep-
resent the combination of matches with the highest joint probability
(0.014).

5

Multiple Objects

This chapter discusses our method for building models of cells con-
taining multiple objects. This method is tested exclusively on real
data. Although Section 4.4 described ways to extend the particle
filter method to work with multiple objects, we do not continue this
approach. There are two main reasons for this: First, real data
presents us with challenges such as changing sizes and shapes of ob-
jects, as well as the appearing and disappearing of objects, and more
work is needed to enhance the particle filter method to adequately
meet these challenges. This is especially true of the data set that we
use in this chapter, where objects can change size and shape dramat-
ically, and can be difficult to track even by eye. Second, we began
this work with the main focus of deciding where and when to acquire
in cells. The particle filter method is very useful there because it is
difficult to build models in closed-form when only a subset of pix-
els are acquired in each frame, or when the time between successive
frames changes. Increasingly, however, the focus of our work shifted
towards determining when to stop acquiring a cell, and in the case
of class models, determining how many cells to acquire. For this,
we assumed that all pixels in a frame were acquired, and that the
frame rate was constant. This removed one of the main motivations
for using particle filters. Hence, instead of extending the particle
filter method, this chapter focuses on faster and simpler closed-form
methods for multiple-object model building.

An important aspect of model building is the ability to validate
the accuracy of the constructed models. We want to show that the
accuracy of cell models improves as more frames are acquired, and

42

5. MULTIPLE OBJECTS 43

that the accuracy of class models improves as more cells are acquired.
With synthetic data (Chapter 4), we measured accuracy with the log-
likelihood of the true underlying model given the estimated model.
With real data, we do not know the true underlying model; instead,
we can use the log-likelihood of future observations (which will fol-
low the true underlying model). Alternatively, we can validate the
models by attempting to classify a cell model into its correct class
model. We use both of these methods as validation of our model
building (and later our intelligent acquisition) algorithms.

This chapter begins by describing the data set used for our exper-
iments in multiple-object scenarios. Then, in Section 5.2, we explain
how objects are detected in this data set and how static features are
computed on those objects. Section 5.3 discusses how to build cell
models and validates this process using the log-likelihood method.
Section 5.4 discusses how to build class models and also validates
this process with the log-likelihood method. Finally, we discuss our
alternative method of choice for validation—classification—in Sec-
tion 5.5.

5.1 Data Set: 3T3 Time Series

We perform our experiments on a collection of 304 3D time series
of GFP-tagged proteins in NIH 3T3 cells over 12 different cell lines,
with a different protein labeled in each cell line. The proteins were
tagged with the CD-tagging protocol described in Section 2.2. Pro-
teins included in this study are located among 7 major organelles.
We define each cell line/protein as a class.

Each time point of the time series contains a single channel stack
of 15 z-slices, 1280× 1024 pixels each. The x,y-resolution is 0.11µm,
and the distance between pixels in the z-direction is 0.5µm. There
is a 45s interval between frames. Further acquisition parameters are
described by Hu et al. [27]. Table 5.1 summarizes the gene/protein
labeled for each cell line, along with the subcellular location where
the protein is expressed, the number of time series for each cell line,
and the number of frames in each time series. The number of frames
varies depending on the amount of photobleaching incurred during
acquisition.

Figures 5.1 and 5.2 each show two successive frames from different
Cav cells. Although we have a 3D image for each frame, only a 2D

5. MULTIPLE OBJECTS 44

Gene Protein Location # cells # frames

Dia1 Cytochrome b-5 -
reductase

cytoplasm 20 19-24

Anxa5 Annexin A5 nucleus,
cytoplasm

18 11-25

Sdpr Serum deprivation
response protein

vesicles,
cytoplasm

23 20-31

Adfp Adipose differentiation -
related protein

vesicles 51 21-27

Timm23 ADP-ATP translocase 23 mitochondria 40 16-22

Atp5a1 ATP synthase mitochondria 20 21

Hspa9a Mitochondrial stress-70
protein

mitochondria 24 9-46

Glut1 Glucose transporter 1 plasma
membrane

17 13-82

Cav Caveolin plasma
membrane

16 11-49

Tctex1 t-complex testis ex-
pressed 1

cytoskeleton 30 13-36

Actn4 Actinin, alpha 4 cytoskeleton 29 9-25

Cald1 Caldesmon 1 cytoskeleton 16 12-34

Table 5.1: Overview of the experimental dataset composed of 12 cell
lines [26].

cross-section is shown in these figures.

5.2 Object Detection and Feature Extraction

Our model-building method is based only on the objects present
within a cell. Therefore, the first step is to detect those objects and
compute their static features. For this, we follow the prior work sum-
marized in Section 3.5.1, detecting objects using the multi-threshold
approach described in that section. Because we do not have access
to a DNA channel, we calculate only 7 of the 11 static features listed
in Table 3.2. This subset is shown in Table 5.2.

As was also done in the prior work, we reduce the static features
into a single object type. The method is to take all objects across
all frames and time series, and use the batch k-means algorithm

5. MULTIPLE OBJECTS 45

(a)

(b)

Figure 5.1: Two successive frames from a Cav time series. Although
we have a 3D image for each frame, only a 2D cross-section is shown
in these figures.

5. MULTIPLE OBJECTS 46

(a)

(b)

Figure 5.2: Two successive frames from a Cav time series. Although
we have a 3D image for each frame, only a 2D cross-section is shown
in these figures.

5. MULTIPLE OBJECTS 47

to cluster them based on their static features. Prior to running this
algorithm, we normalize the features to unit standard deviation. The
object’s type is determined by the cluster into which it falls. This
algorithm requires determining k, the number of object types. In the
aforementioned work, the Akaike information criterion was used to
choose the optimal number of types. However, in our work, we choose
k to maximize either the classification accuracy or the log-likelihood,
as we will discuss.

Index Feature Description

3D-SOF1.1 Number of voxels in the object

3D-SOF1.4 A measure of the eccentricity of the object

3D-SOF1.6 A measure of the roundness of the object

3D-SOF1.7 The length of the object’s skeleton by homotopic thinning

3D-SOF1.8 The ratio of skeleton length to the area of the convex hull of

the skeleton

3D-SOF1.9 The fraction of object pixels contained within the skeleton

3D-SOF1.11 The ratio of the number of branch points in the skeleton to the

length of skeleton

Table 5.2: List of the 7 static subcellular object features (SOF) used
in this work. The complete set of 11 features is shown in Table 3.2
[46].

5.3 Cell Models

5.3.1 Modeling Displacement

Our method for multiple objects does not try to model every object
separately. Instead, the model expresses some kind of average behav-
ior for an object (although it allows different object types to show
different behaviors). We start our discussion by ignoring the static
features of objects, and describe a model that considers only the lo-
cations of objects in each frame (or more specifically, the locations
of the centroids of the objects). Given an object’s location in frame
t, this initial model represents the probability of finding an object in
any nearby location in frame t+ 1. We assume shift invariance: that

5. MULTIPLE OBJECTS 48

Frame 1

Frame 2

A

Figure 5.3: Finding nearby objects. The white circles represent
objects in frame 1, and the gray circles represent objects in frame 2.
The arrows indicate the nearby objects for object A within a radius
of dmax.

is, the probability of a given displacement is independent of the ob-
ject’s location in the image. Hence, the model only has to associate
a probability with each displacement.

Building the Model

To build this model, we first choose some maximum distance, dmax.
We then iterate through the centroids of every object in frame 1,
looking in frame 2 for nearby objects, which we define as objects
whose centroids are within a distance of dmax. An example is shown
in Fig. 5.3. For each nearby object found, we record the displacement
(rounding to the nearest pixel), or we record that no nearby objects
were found. We do not restrict an object in frame t+ 1 from being a
nearby object to two or more objects in frame t. However, the nature
of the data set and the choice of dmax were such that this event only
occurred about 15% of the time. The event of an object in t having
no nearby objects in t+ 1 also occurred about 15% of the time.

We repeat the above process for objects in frame 2 (looking for

5. MULTIPLE OBJECTS 49

nearby objects in frame 3) and so forth for every frame. Let Nx,y,z

be the total number of times that a nearby object was observed
at displacement (x, y, z), N∅ be the total number of times that an
object had no nearby objects, and N be the total number of objects
observed across all frames. We then define the model, m, as follows:

m = (mx,y,z,m∅), (5.1)

where:

mx,y,z =
Nx,y,z + 1
N + 2

, (5.2a)

m∅ =
N∅ + 1
N + 2

. (5.2b)

The model tries to capture the proportion of objects that have a
nearby object at displacement (x, y, z), or that have no nearby ob-
jects. These equations show the Bayes estimates of those proportions,
where the cost function is mean square error, and a derivation was
given in Section 3.1.2. The 1 in the numerator and the 2 in the
denominator come from the assumption of a uniform prior.

Fig. 5.4 shows the x,y-intensity distribution of mx,y,z for z = 0.
This model was built from a Cav cell of 23 frames, with approxi-
mately 300 objects in each frame. In this particular example, we can
see that an object in t + 1 is typically found within 2 pixels of an
object in t, with motion in the y-direction being more probable than
motion in the x-direction.

Validating the Model

As we discussed at the beginning of the chapter, we need some way
to measure the accuracy of our model. With real data, we use two
different methods of validation: The first is classification, and we
discuss this in Section 5.5; the second, which we discuss here, is to
use the model to predict some cell behavior, and to then test the
accuracy of that prediction.

An intuitive way to do this would be to build a model on frames
1, ..., t, and then make predictions for the displacement of objects
from t to t + 1. We could then look at frame t + 1 and test the
accuracy of those predictions. The problem with this method is that
the cell suffers from photobleaching as t increases, and so the number
of objects in each frame decreases, and the proportion of each object

5. MULTIPLE OBJECTS 50

x

y

−6 −4 −2 0 2 4 4

−6

−4

−2

0

2

4

6 0.005

0.01

0.015

0.02

0.025

0.03

0.035

Figure 5.4: Displacement model. This image shows the xy-intensity
distribution of mx,y,z for z = 0 for a Cav cell of 23 frames. Objects
in t+ 1 are typically found within 2 pixels of an object in t. Motion
in the y-direction is more probable than motion in the x-direction.

type also changes. As a result of this, we found that frames always
get more predictable as t increases, even if we do not change our
model. Hence, this method does not demonstrate whether or not the
model is improving with time.

Instead, we do something slightly different. We set aside the
first two frames as testing frames, and use the remainder (frame 3
onwards) as training frames. Using the model built from the training
frames, we try to predict the displacements of objects from our first
testing frame to the second. We show that the more training frames
used to build the model, the better the prediction of displacements.

To measure the prediction accuracy, we count the number of dis-
placements of (x, y, z) between the testing frames and label this count
as N ′x,y,z. We set N ′∅ to the number of objects in the first testing
frame that had no nearby objects in the second. We then measure

5. MULTIPLE OBJECTS 51

the likelihood of our model given these observations using:

l = m∅
N ′∅(1−m∅)(N

′−N ′∅)
∏

(x,y,z)

mx,y,z
N ′x,y,z(1−mx,y,z)N

′−N ′x,y,z ,

(5.3)
where there are N ′ objects in the first testing frame. This expression
ignores any dependencies between the model parameters and thus
may not be a good estimator of the likelihood. However, as we see
in the next experiment and also when we build a classifier in Section
5.5, it still provides a good measure of the model accuracy.

We use this method of validation on an Adfp cell. In Fig. 5.5,
the dashed blue line shows how the log-likelihood, log(l), increases
when the model is built from more frames. We can see that it in-
creases significantly with the first few frames, but subsequently levels
off, even decreasing at times. The law of diminishing returns ex-
plains why the model accuracy increases more slowly as more frames
are acquired—subsequent frames provide duplicate information, and
thus the marginal return of each additional frame is lower. However,
this does not explain why the model accuracy decreases at times.
There are two explanations for these decreases: First, the time series
exhibit photobleaching. For the cell used in Fig. 5.5, photobleach-
ing causes the number of objects detected per frame to drop from
2310 to 1197 over the duration of acquisition. This could change
the distribution of observed displacements because brighter objects
are more likely to still be detected in the last frame and may move
differently from the dimmer objects. Second, we assumed that the
model is constant, but it could actually change with time. Because
our testing frames were taken from the beginning of the time series,
the early training frames may be more helpful, whereas the later
training frames may be governed by a slightly different model.

To investigate whether photobleaching was a major reason for
the observed decreases in model accuracy in Fig. 5.5, we compared
time series with extensive photobleaching to those with little pho-
tobleaching. In general, we found that for time series with little
photobleaching, the model accuracy continued to increase through-
out the duration of acquisition. The dashed blue line in Fig. 5.6
shows an example of this. In contrast, for time series with extensive
photobleaching, the model accuracy decreased significantly towards
the end, supporting the hypothesis that photobleaching causes ap-
parent changes in the model. We also tried reversing the order of our

5. MULTIPLE OBJECTS 52

2 4 6 8 10 12 14 16 18 20

−223

−222.9

−222.8

−222.7

−222.6

−222.5

−222.4

Frame number

Lo
g−

lik
el

ih
oo

d

Figure 5.5: Model building (multiple objects, real data). The y-axis
shows the model accuracy, estimated by the log-likelihood of the
model given the observed displacements in the testing frames. The
x-axis shows the number of frames used to build the model. We can
see that the model accuracy increases, and then levels off, as more
frames are acquired.

training frames, building the model from the last frame and working
backwards. The model accuracy for this experiment is given by the
dotted black line in Fig. 5.6. We can see that the model is still
learned quickly, but is slower than when the training frames were in
forward order. This may indicate that the model changes slightly
over the acquisition period, or may just be because of minor photo-
bleaching.

5.3.2 Modeling Distance Instead of Displacement

Until now, we have been modeling the displacement between an ob-
ject in t and a nearby object in t + 1. However, a useful simplifi-
cation is to focus solely on the distance between the objects, and
to ignore the direction. Hence, (x, y, z) is replaced with d, where
d =

√
x2 + y2 + z2. This reduction in dimensionality speeds up

5. MULTIPLE OBJECTS 53

5 10 15 20

−180

−170

−160

−150

−140

−130

Frame number

Lo
g−

lik
el

ih
oo

d

forward order
reverse order

Figure 5.6: Model building (multiple objects, real data). The y-
axis shows the model accuracy, estimated by the log-likelihood of
the model given the observed displacements in the testing frames.
The x-axis shows the number of frames used to build the model.
The dashed blue line shows the case when the training frames are
added in forward order. The dotted black line shows the case when
the training frames are added in reverse order. The rate of increase
follows a similar trend, although adding frames in reverse order is
initially slower because the model is being learned on frames that
are farther in time from the testing frames.

model learning. More importantly, using distance instead of dis-
placement means that the end model is rotation invariant. This is
useful when we want to compare cell models, or to combine them to
form a class model. Therefore, we use this simplification exclusively
in such situations.

5.3.3 Modeling Object Types

We now enhance our model by considering static features of the ob-
jects. Specifically, we consider each object’s type. Initially, we look
at how knowledge of an object’s type helps us predict the locations

5. MULTIPLE OBJECTS 54

of its nearby objects more accurately. Then, we look at predicting
both the locations and the types of those nearby objects.

Building the Model

To incorporate object types into our displacement model, we build a
separate model for each object type. Hence, we record the number
of times that each displacement (x, y, z) is observed for each object
type λ, and we denote this as Nλ,x,y,z. Then, Nλ,∅ is the number of
times in which an object of type λ in frame t had no nearby objects
in frame t + 1, and Nλ is the total number of objects of type λ in
the time series. The revised model can now be estimated as follows
(compare this to (5.1)-(5.2)):

m = (mλ,mλ,x,y,z,mλ,∅), (5.4)

where:

mλ =
Nλ + 1
N + 2

(5.5a)

mλ,x,y,z =
Nλ,x,y,z + 1
Nλ + 2

, (5.5b)

mλ,∅ =
Nλ,∅ + 1
Nλ + 2

. (5.5c)

As explained earlier, these are the Bayes estimates where the cost
function is mean square error (see Section 3.1.2), and under the as-
sumption of a uniform prior. We note that this model m also includes
mλ, which models the proportion of each type in the time series.

We can expand on this model even further by predicting not
just the locations of nearby objects in the subsequent frame, but
also their types. To do this, we assume that the displacement and
the type transition are conditionally independent given the initial
type: that is, we assume p(λt+1, x, y, z|λt) = p(λt+1|λt)p(x, y, z|λt)
where λt is the object type in frame t, λt+1 is the type of the nearby
object in frame t + 1, and (x, y, z) is the displacement between the
two objects. The conditional independence assumption is solely to
reduce the dimensionality of the resulting model.

We have already described how to build the displacement model
for a given type, and this remains unchanged. The only addition is to
include a model of the type transition. For this, we iterate through
every combination of types (λ, λ′), and count the number of objects

5. MULTIPLE OBJECTS 55

5 10 15

5

10

15 0.01

0.02

0.03

0.04

0.05

Figure 5.7: Type transition model. This image shows mλ,λ′ for a
Tctex1 cell. Only 13 of the 18 types are found in this cell, and mλ,λ′

tends to be highest when λ = λ′ because objects tend to remain the
same type between frames.

of type λ that have nearby objects of type λ′ in the subsequent frame.
The total number of such type transitions is denoted by Nλ,λ′ . We
then add the component mλ,λ′ to our model, where mλ,λ′ is given by:

mλ,λ′ =
Nλ,λ′ + 1
Nλ + 2

. (5.6)

Fig. 5.7 shows the values of mλ,λ′ for a Tctex1 cell. Although we
were using 18 types, only 13 of those types are found in this cell. We
can see that mλ,λ′ tends to be highest when λ = λ′, because objects
tend to remain the same type between frames. However, in this
example, we can also see that mλ,λ′ is high for (λ = 3, λ′ = 14). This
indicates either that objects easily switch between these two types,
or that objects of these types are found close together in space.

To summarize, the final cell model consists of four components,
(mλ,mλ,x,y,z,mλ,∅,mλ,λ′):

5. MULTIPLE OBJECTS 56

1. The first component, mλ, is a k-by-1 vector representing the
proportion of objects of type λ.

2. The second component, mλ,x,y,z, is a k-by-n-by-n-by-n tensor
representing the proportion of objects of type λ that have a
nearby object at a displacement (x, y, z) in the subsequent
frame (where dmax spans n pixels).

3. The third component, mλ,∅, is a k-by-1 vector representing the
proportion of objects of type λ that have no nearby objects in
the subsequent frame.

4. The fourth component, mλ,λ′ , is a k-by-k matrix representing
the proportion of objects of type λ that have a nearby object
of type λ′ in the subsequent frame.

Validating the Model

In Section 5.3.1, we built a model using a training set (consisting
of frame 3 onwards), and then measured the log-likelihood of this
model given the observed displacements in a testing set (consisting
of frames 1 and 2). We now repeat this experiment, but show that we
can get an even higher log-likelihood when we use knowledge of an
object’s type. We thus replace mx,y,z and m∅ with mλ,x,y,z and mλ,∅.
We performed this experiment on the same Adfp cell as was used for
Fig. 5.5, and plot the new results in Fig. 5.8. The dashed blue line
(model accuracy without object type information) is the same in both
figures. The solid red line shows the model accuracy with object type
information. We can see that initially the accuracy is lower, and this
can be explained by the increased number of parameters that must
be learned. However, as more frames are included, the accuracy of
the model with object type information surpasses the accuracy of the
model without object type information.

As mentioned earlier, we need to choose k, the number of object
types. We can do this by testing many values of k and choosing
the one which maximizes the log-likelihood of the model given the
testing frames. For the above experiment, Fig. 5.8, this happened
at k = 4, which is the value used to make the solid red line in that
figure. In subsequent sections, k is much higher (usually 18 or so),
because we are grouping objects across all cells and classes, instead
of across a single cell.

5. MULTIPLE OBJECTS 57

5 10 15 20

−224.5

−224

−223.5

−223

−222.5

Frame number

Lo
g−

lik
el

ih
oo

d

without object types
with object types

Figure 5.8: Model building with object types (multiple objects,
real data). The y-axis shows model accuracy, measured by the log-
likelihood of the model given the observed displacements in the test-
ing frames. The x-axis shows the number of frames used to build the
model. The dashed blue line is the case without object type infor-
mation (as was shown in Fig. 5.5), whereas the solid red line is the
case with object type information. Although the model accuracy is
initially lower with object type information due to the extra param-
eters that must be learned, this accuracy eventually surpasses that
of the model built without object type information.

Before concluding our discussion of cell models, we run a valida-
tion experiment on the complete model, (mλ,mλ,x,y,z,mλ,∅,mλ,λ′).
Once again, we set aside the first two frames as testing frames, and
measure the likelihood of our model given the observed objects in
testing frame 1 and the corresponding nearby objects in testing frame
2. The difference from the previous experiments is that we now con-
sider the types of the nearby objects in frame 2—effectively measur-
ing the ability of our model to predict the types of nearby objects
as well as their displacement. We plot the resulting log-likelihood in
Fig. 5.9, and as before we see the model accuracy steadily increasing

5. MULTIPLE OBJECTS 58

2 4 6 8 10 12 14 16 18 20
−7.8

−7.75

−7.7

−7.65

−7.6

−7.55

−7.5

−7.45

Frame number

Lo
g−

lik
el

ih
oo

d

Figure 5.9: Model building with complete model (multiple objects,
real data). The y-axis shows model accuracy, measured by the log-
likelihood of the model given the observed displacements and corre-
sponding object types in the testing frames. The x-axis shows the
frame number. We can see the model accuracy increasing, and then
leveling off, as more frames are acquired.

with each training frame acquired.

5.4 Class Models

5.4.1 Building the Model

A class model is simply the collection of cell models from that class.
Hence, we can view the class model as a mixture model, where its
constituent cell models form the components of that mixture. To
build the class model, we need to build a cell model for each available
time series in the class, modeling distance instead of displacement as
in Section 5.3.2. We discuss alternative ways to build class models
in Section 5.6.

5. MULTIPLE OBJECTS 59

5.4.2 Validating the Model

The primary way to validate a class model is with classification, as
we discuss in Section 5.5. However, we can also use a log-likelihood
method similar to that described in Section 5.3. The procedure is
to build a class model using K training cells of that class. We then
measure the likelihood of this model given an observed testing cell
of the same class. As K increases, we expect the likelihood of the
resulting model to also increase.

To find the log-likelihood of a class model given an observed cell
model, we first measure the likelihood of each of the class’s con-
stituent cell models. This is similar to the process used in Section
5.3, except now we can use all frames from the testing cell as test-
ing frames. The likelihood of a constituent cell model m′ given the
observed cell model m is found by looking at each component of the
model individually:

l = lλ, lλ,λ′ , lλ,d, lλ,∅, (5.7)

where:

lλ =
k∏

λ=1

(mλ)Nλ(1−mλ)(N−Nλ), (5.8a)

lλ,λ′ =
k∏

λ=1

k∏
λ′=1

(mλ,λ′)Nλ,λ′ (1−mλ,λ′)(Nλ−Nλ,λ′), (5.8b)

lλ,d =
k∏

λ=1

dmax∏
d=1

(mλ,d)Nλ,d(1−mλ,d)(Nλ−Nλ,d), (5.8c)

lλ,∅ =
k∏

λ=1

(mλ,∅)
Nλ,∅(1−mλ,∅)

(Nλt−Nλ,∅), (5.8d)

where mλ, mλ,d, mλ,∅, mλ,λ′ , are from (5.5)-(5.6) respectively, but
replacing (x, y, z) with d because we are modeling distance instead
of displacement. We then take the likelihood of the class model, lC ,
to be the mean of the likelihoods of its constituent cell models, li.
Hence:

lC =
1
nC

∑
i∈C

li, (5.9)

where there are nC cell models making up class model C. In practice,
one term generally dominates this expression, and we observed no

5. MULTIPLE OBJECTS 60

change in accuracy when replacing (5.9) with (5.10):

lC = max
i∈C

li, (5.10)

This latter formulation is more convenient when working with log-
likelihoods.

We now perform the validation experiment, varying x from 1
up to the total number of cells for that class (leaving one cell for
testing). The results of this experiment are highly dependent on the
specific training and testing cells chosen, and so we average them
over 100,000 trials, randomly choosing the training and testing cells
each time. In Fig. 5.10, we show the results for the Hspa9a class.
The solid red line shows the log-likelihood of the model increasing as
more training cells from the Hspa9a class are used to build it. As a
comparison, the dotted black line shows the results when we use an
Hspa9a cell for testing, but use training cells from the Tctex1 class.
Not surprisingly, using training cells from a different class gives a
much lower log-likelihood, and this forms the basis of the classifier
that we now describe.

5.5 Classification

We now discuss how to classify a time series of an unknown protein,
using only the cell model of that time series and the class model of
each protein. Successful classification provides an additional source
of validation that our cell models and class models capture relevant
discriminative information. We have already shown, in Section 5.4,
how to find the likelihood of a class model given a particular cell
model. For classification, we simply do this with all 12 class models
and choose the class of maximum likelihood.

We evaluate our classification method using leave-one-out cross-
validation (see Section 3.3.3), giving a classification accuracy of 84.5%
on our data set. We described the previous best classifier on this data
set in Section 3.5.1, which used a range of morphological, texture,
and temporal features, yielding an accuracy of 83.9%. Therefore,
in bettering the classification accuracy, we verify that our models
are capturing relevant discriminative information present in the time
series.

The number of object types, k, was chosen to maximize classifi-
cation accuracy on the training set. This was achieved with k = 18

5. MULTIPLE OBJECTS 61

5 10 15 20

−11.46

−11.44

−11.42

−11.4

−11.38

−11.36

−11.34

−11.32

−11.3

Number of training cells

Lo
g−

lik
el

ih
oo

d

same class
different class

Figure 5.10: Model building (class models, real data). The y-axis
shows the model accuracy, measured by the log-likelihood of the
model given an observed Hspa9a testing cell. The x-axis shows the
number of training cells used to build this model. The solid red line
shows the case when the training cells are also from the Hspa9a class.
The dotted black line shows the case when the training cells are from
a different class (Tctex1). As expected, the accuracy is much higher
when the training cells are from the same class as the testing cell.

for every fold of the leave-one-out cross-validation. However, the ac-
curacy was not too sensitive to the choice of k. Anywhere in the
range of 12−24 resulted in a classification accuracy of at least 82.2%
(see Section 5.6).

If we consider only one component of our model—the proportion
of objects in each type (mλ)—we can get 67.4% accuracy. Adding the
components (mλ,d,mλ,∅), which find the joint probability of the ini-
tial object type and the distance moved, we get 76.3% accuracy. The
addition of the type transition model (mλ,λ′) completes the model,
giving our final result of 84.5%. These results are summarized in the
bottom part of Table 5.3.

We recall from Section 5.2 that object types are assigned on the
basis of 7 static features, which were listed in Table 5.2. The top part

5. MULTIPLE OBJECTS 62

of Table 5.3 shows the classification accuracy when only one of these
static features is used to determine the object type. The accuracy
ranges from 68.8% to 78.6% depending on the feature used. The most
informative features were 3D-SOF1.1, the number of voxels in the
object, and 3D-SOF1.9, the fraction of object voxels contained within
the skeleton. However, using any one of these features to assign
object types is significantly better than not assigning object types
at all. When the model considered only the distance between an
object and its nearby objects (and not the object types), classification
accuracy dropped to 47.4%.

The confusion matrix for our best classifier is shown in Table 5.4.
In both our method and in the method of the aforementioned previ-
ous work [26], Dia1 & Sdpr were commonly confused. However, the
other classes of confusion differed between the two methods. For ex-
ample, the previous work reported high confusion between Timm23
& Cav, with the resulting accuracies of these proteins being 70%
and 68% respectively. In contrast, our method had no confusion
between these classes, and their accuracies were 90% and 100% re-
spectively. This suggests that, in some cases, the two methods are
finding different discriminative information, and there may be poten-
tial to combine the classifiers to get a more accurate overall result.

Configuration Classification Accuracy

Previous work [26] 83.9%

Distance 47.4%

Distance & 3D-SOF1.8 68.8%

Distance & 3D-SOF1.11 69.1%

Distance & 3D-SOF1.6 72.0%

Distance & 3D-SOF1.7 73.4%

Distance & 3D-SOF1.4 74.3%

Distance & 3D-SOF1.1 78.0%

Distance & 3D-SOF1.9 78.6%

Proportion of object types 67.4%

Object types & distance 76.3%

Object type transitions & distance 84.5%

Table 5.3: Classification accuracy for different configurations.

5. MULTIPLE OBJECTS 63

T
ct

ex
1

A
ct

n
4

C
a
ld

1

A
n
x
a
5

G
lu

t1

H
sp

a
9
a

C
av

D
ia

1

S
d
p
r

A
tp

5
a
1

A
d
fp

T
im

m
2
3

Tctex1 100 0 0 0 0 0 0 0 0 0 0 0

Actin4 7 79 0 3 3 0 0 7 0 0 0 0

Cald1 13 0 69 6 0 0 0 0 6 0 0 6

Anxa5 0 22 0 78 0 0 0 0 0 0 0 0

Glut1 6 12 0 0 65 12 0 0 0 6 0 0

Hspa9a 0 4 0 0 4 75 0 4 4 4 0 4

Cav 0 0 0 0 0 0 100 0 0 0 0 0

Dia1 0 5 0 5 5 10 0 65 10 0 0 0

Sdpr 0 0 4 4 0 4 0 22 65 0 0 0

Atp5a1 5 5 5 0 0 0 0 0 5 80 0 0

Adfp 0 0 0 0 0 0 0 0 0 2 98 0

Timm23 0 0 0 0 0 5 0 0 5 0 0 90

Table 5.4: Confusion matrix of the best classifier. Each row corre-
sponds to the true class, and each column corresponds to the pre-
dicted class. All numbers are percentages.

5.6 Discussion

In this section, we discuss alternative methods, extensions, and other
considerations related to the multiple-object model-building.

Computation time. The modeling method outlined in this
chapter has a fast computation time relative to the acquisition time.
The object detection and feature extraction stages can be done in
well under a second (Intel Core Duo 2.2GHz processor with 1.96GB
of memory), and in real time while the frame is being acquired. The
actual model building takes only 50ms per frame. This compares to
an acquisition time of 45s per frame.

Higher-order models. Although we have shown that the mod-
eling is sufficient to classify with comparable accuracy to previous
work on this data set, there is still a lot of information that the
model does not capture. In particular, it only looks at the locations
of objects relative to their locations in the previous frame, mean-
ing that it cannot distinguish between objects following a random
walk model and objects following a constant velocity model. One

5. MULTIPLE OBJECTS 64

way to capture such higher-order information would be to extend
the method to look at sets of three consecutive frames, rather than
only two. However, the most detailed analysis on an object level
would come from extending the particle filter method of Chapter 4
to properly handle multiple-object models. This was discussed in
Section 4.4.

Object types. Grouping the objects into 18 types gave us our
highest classification accuracy, 84.5%. Fig. 5.11 shows the accuracy
when we group objects into any number of types in the range 1 −
30. We can see that increasing the number of types gives a big
increase in accuracy up to 8 types, but increasing the number of types
beyond this point gives only a small improvement. This suggests
that there are 8 major types, and beyond this we are splitting those
major types into smaller sub-types, or perhaps identifying new but
relatively uncommon types. The accuracy drops steadily when we
increase the number of types beyond 22 or so. This might be avoided
if we used a hierarchy of object types, allowing the major types to
be identified, but retaining information from the smaller sub-types.

Although these object types were computed from all 7 of the
static features given in Table 5.2, we still achieve a classification ac-
curacy of 82.2% when we compute the types using only the features
3D-SOF1.1 and 3D-SOF1.4 (size and eccentricity). The addition
of the features 3D-SOF1.7 and 3D-SOF1.9 takes us to 84.2% accu-
racy. If we use all features except for 3D-SOF1.6 (roundness), we
get 84.9%, which is slightly higher than the 84.5% achieved when
using all of the features. However, to conclusively determine the op-
timal combination of static features, we would need to repeat these
experiments with a larger data set.

Restriction to same-type displacements. We also note that
although we build a separate displacement model for each object
type, these models are still based on displacements between objects
of different types. An alternative method would be to base the model
only on displacements between objects of the same type. This could
increase the probability that a recorded displacement actually corre-
sponds to the motion of a single object between consecutive frames.
Unfortunately, we found that the models built with this method only
gave a classification accuracy of 80.3% (compared to 84.5% with the
earlier model). This lower accuracy may be because of the increased
data sparsity that results from reducing the number of recorded dis-
placements. It could also indicate that objects do actually change

5. MULTIPLE OBJECTS 65

5 10 15 20 25 30
0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

Number of object types

C
la

ss
ifi

ca
tio

n
ac

cu
ra

cy

Figure 5.11: Number of object types. This graph shows the result-
ing classification accuracy when objects are grouped into a different
number of types. The highest accuracy of 84.5% occurs with 18
types.

types between frames, whether due to errors in the object detection
and type assignment process, or due to a physical change in that
object. We can address this latter possibility by weighting the dis-
placements according to their probability under the model, including
the type transition model, as we now describe.

Weighting displacements. The model-building method de-
scribed in this chapter records every observed displacement between
frames, even if the same object is involved in two or more displace-
ments. For example, if an object in frame t has n nearby objects in
frame t+ 1, each at a different displacement, all n displacements are
recorded with a weighting of 1. We also tested an alternative method
that weighted the displacements, giving a cumulative weighting of 1
to all n displacements associated with a particular object in frame t.
The simplest way to do this is to give each of them a weighting of 1/n,
but a better method is to weight them according to their probability
under the current model. We then iterate between recalculating the
model using the recorded displacements and their weights, and up-

5. MULTIPLE OBJECTS 66

dating the weights based on this recalculated model. This process is
shown in Algorithm 1.

The first advantage of this method is that it typically gives more
weight to displacements between objects of the same type, because
these have a stronger probability of occurring under the type transi-
tion model (see Fig. 5.7). The second advantage is that it naturally
gives more weight to smaller displacements as these typically have
higher weighting under the displacement model (see Fig. 5.4). In
fact, with this method, we do not even need to define a maximum
displacement distance dmax because large displacements are natu-
rally given small weighting.

Unfortunately, this alternative model-building method only gives
a classification accuracy of 80.6%, whereas our chosen method gave
84.5%. The reason for this may be that our chosen model-building
method implicitly captures which object types occur close together in
space, which could be useful discriminative information. If we could
add this information into the alternative mdoel building method, it
might give higher classification accuracy. However, a larger dataset
would be necessary to confidently test this hypothesis.

Because this method associates an overall weighting of 1 with the
displacements from each object, it can be used to predict the prob-
ability with which pixels in a subsequent frame will contain objects.
We test this in Fig. 5.12 by setting aside the first two frames as
testing frames, and measuring the log-likelihood of the model given
the locations of objects in these testing frames. We can see that this
log-likelihood increases as more training frames are used to build the
model. We also show that we get a lower log-likelihood if we use a
uniform model (objects are equally likely to move anywhere up to
distance dmax from their original position) or a Gaussian model of
zero mean and equal variance in each dimension.

Class model extensions. Finally, we note that we simply repre-
sented class models as a mixture model, where each of the constituent
cell models made up the components of that mixture. This formula-
tion effectively assumes no similarity between the different cells in a
class. At the other extreme, we could make a single model—either
by taking the mean of all the cell models, or by concatenating all
frames across all cells and then building a model from this concate-
nation. We found that such methods gave significantly lower results,
which is why we prefer the mixture model method. However, a third
and promising method lies between these two extremes, which is to

5. MULTIPLE OBJECTS 67

Algorithm 1
Input : locations of objects in frames 1, ..., t.
Output : m, the model, a function giving the probability of each
displacement.

for all objects o in frames 1, ..., (t− 1) do
set Do to the set of possible displacements for o
initialize Wo to give constant weight to each displacement in Do

end for
repeat

learn m from (D,W)
for all objects o in frames 1, ..., (t− 1) do

for all displacements d in Do do
set Wo(d) to m(d)
normalize Wo

end for
end for

until m no longer changing
return m

cluster the cells and then make a single model of each cluster. This
allows us to exploit that many cells in a class will follow the same
model, but without assuming that all cells in a class follow the same
model.

A clustering of the cells requires that we measure the similar-
ity between two cell models. This can be done by finding the log-
likelihood of one model given the other, averaging to remove the
assymetry. Cell models could be clustered within a class, or could be
clustered across classes as we did when assigning types to each ob-
ject. If we used the latter method, we would end up defining a set of
cell types, and each class would contain a certain proportion of each
cell type. Another method again is to define motion types on the ob-
ject level, but this would require modeling each object individually,
which we do not yet do in the multiple-object scenario.

5. MULTIPLE OBJECTS 68

5 10 15 20
−3850

−3800

−3750

−3700

−3650

−3600

−3550

−3500

−3450

Frame number

Lo
g−

lik
el

ih
oo

d

adaptive
uniform
Gaussian

Figure 5.12: Alternative model-building method with weighted dis-
placements (multiple objects, real data). The y-axis shows the log-
likelihood of the model given the two observed testing frames. The
x-axis shows the number of frames used to build the model. The
solid red line shows the model learned using Algorithm 1. The dot-
ted black line shows a uniform model that assumes objects are equally
likely to move anywhere within a distance of dmax. The dashed blue
line shows a model that assumes object motion is governed by a zero-
mean Gaussian distribution with equal variance in each dimension.
The learned model quickly surpasses the non-adaptive models.

Part III

Intelligent Acquisition

69

70

The goal of this part is to acquire cells and classes of cells intelli-
gently so that we can build models as efficiently as possible. We try
to maximize model accuracy while minimizing both the acquisition
time and the photobleaching incurred during acquisition. The four
chapters in this part each discuss a different acquisition strategy:
where to acquire in a frame, when to acquire frames, when to stop
acquiring frames, and how many cells to acquire.

The first two strategies—choosing where to acquire in a frame
and choosing when to acquire frames—are only developed for the
single-object scenario. The reason for this is that our multiple-
object model-building method requires that every pixel in the frame
is known and that the frame-rate is constant. These requirements are
not compatible with an acquisition module that acquires only a sub-
set of pixels in a frame, or varies the time at which acquisitions are
made. Our method for determining when to stop acquiring frames
is tested on both the single-object scenario and the multiple-object
scenario. Furthermore, we show that this strategy differs depend-
ing on whether we are building a cell model or a class model. The
method for determining how many cells to acquire is only applicable
for class models, and so we test this method only on the multiple-
object scenario (we did not develop class models for the single-object
scenario).

With all of these strategies, we tried to develop methods that
were not closely tied to the specific model-building procedure used.
We believe that these strategies capture general principles that could
be applied in many scenarios that require intelligent acquisition.

6

Where to Acquire in a
Frame

This chapter looks at which pixels to acquire in each frame. Every
time we acquire a pixel, photobleaching can occur, which eventually
destroys the fluorescent signal. Our goal is to choose pixels such
that we gain as much information as possible before this happens.
We restrict discussion in this chapter to single-object models, because
our multiple-object model-building algorithm requires the full set of
pixels.

When choosing where to acquire, we want to find a combination
of pixels that gives a lot of information about the model, but does not
incur much photobleaching. To evaluate this, we present a method to
estimate the reward and the cost of an acquisition. The reward is the
amount of information that we expect to gain from the acquisition;
because we evaluate the accuracy of single-object models using the
log-likelihood of the true underlying model, we define the reward as
the expected increase in this log-likelihood. The cost is made up
of two components: the photobleaching cost, which estimates the
expected photobleaching that will result from the acquisition, and
the time cost, which is a constant cost associated with every frame.
We search for the set of pixels that maximizes the reward relative to
the cost.

71

6. WHERE TO ACQUIRE IN A FRAME 72

6.1 Cost Evaluation

First, we look at the cost associated with an acquisition. Our cost
function reflects two goals: to gain information as quickly as possible,
and to gain as much information as possible before photobleaching
destroys the fluorescent signal. Photobleaching occurs every time a
pixel containing an object is acquired. Additionally, in 3D imag-
ing with a laser scanning confocal microscope, acquisition of a pixel
also causes photobleaching for objects in the out-of-focus planes. As
an approximation, we assume that photobleaching of an object is
proportional to the number of times any pixel with the same xy-
coordinates of that object is acquired, regardless of the z-coordinate
(this assumes constant illumination intensity and exposure time). In
future, a better approximation would use a double-cone model to re-
flect the focusing of light onto a single pixel. Note that if we were to
lower the illumination intensity or shorten the exposure time then we
would reduce photobleaching. Adjusting these quantities could form
part of the intelligent acquisition module. However, in our experi-
ments we assume constant illumination intensity and exposure time
because we do not have a good model of how varying these quantities
would affect the quality of the image.

We do not define a generic phototoxicity model because it de-
pends on the type of cells being imaged, and furthermore, phototox-
icity is harder to measure directly. For the purposes of our simula-
tions, we simply assume that the phototoxicity cost is proportional
to the photobleaching cost.

The probability of a pixel containing an object is given by the
proportion of particles in that pixel. Defining Z(p) as the set of pixels
with the same xy-coordinates as pixel p, and Np as the number of
particles in p, the cost of a frame acquisition is given by:

C = τt+ ρ
∑
p∈P

∑
p′∈Z(p)Np′

N
. (6.1)

In this equation, the first term reflects the time cost: t is the elapsed
time since the last acquisition, and τ is the cost per unit time. If τ
is high, then the system will try to minimize cost by finishing acqui-
sition as quickly as possible. The second term is proportional to the
overall probability of detecting an object using the set of pixels P ,
combined with the probability of acquiring any pixel with the same

6. WHERE TO ACQUIRE IN A FRAME 73

xy-coordinates as the object. ρ represents the photobleaching cost
associated with each exposure of the object, and so this second term
reflects the expected photobleaching cost of the acquisition. The ra-
tio τ/ρ determines the relative importance of minimizing acquisition
time versus minimizing photobleaching.

6.2 Reward Evaluation

We now look at how to predict the reward—the expected increase in
model accuracy—that will result from an acquisition. To do this, we
first look at how the intelligent acquisition module can evaluate the
model accuracy (which is the log-likelihood of the true underlying
model) at any frame.

To make an estimate of the model at frame t, we use the models of
all the surviving particles, as shown by (4.3). Ideally, the intelligent
acquisition module could then evaluate the accuracy of this model
using (4.7), which calculated the log-likelihood of the true underlying
model. However, it is not possible to do this because the true under-
lying model is unknown. Instead, we can estimate the accuracy by
finding the log-likelihoods of the models of each surviving particle.
Assuming that each surviving particle’s model is equally likely to be
the true model, we can then estimate the model accuracy at t as the
mean of these log-likelihoods:

E[log(l)t,e] =
1
N

∑
q

log(l)q,e, (6.2)

where log(l)q,e is the log-likelihood of the model of particle q given
the estimated model.

More importantly, we wish to estimate the expected increase in
model accuracy following a particular acquisition. We consider this
for the case of acquiring a single pixel p in frame t + 1. There are
two possible outcomes: that the object will be found in p, or that
it will not be found in p. We can estimate the probability of each
outcome by looking at the proportion of particles that move to p in
frame t+ 1.

If the object is found in p then only those particles that moved
to p in frame t+ 1 will survive. Our model estimate under this out-
come will be found by applying (4.3) over those particles. Similarly,

6. WHERE TO ACQUIRE IN A FRAME 74

our estimated model accuracy under this outcome can be found by
applying (6.2) over those particles.

We can also predict the model accuracy under the outcome that
the object is not found in p. We follow the same procedure as before,
except now we use those particles that did not move to p (essentially,
we are considering all pixels other than p as one super-pixel). Hence,
we have now worked out the expected increase in model accuracy
under the two possible outcomes, and because we know the proba-
bility of each outcome, we can estimate the reward associated with
acquiring pixel p. We can extend this method to find the reward
associated with acquiring a whole set of pixels simply by considering
in turn the outcome that the object is found in each given pixel, as
well as the outcome that the object is not found.

We may expect that the reward of acquiring a single pixel is
proportional to the probability that that pixel contains the object.
However, this is not the case. In Fig. 6.1, we simulate an object mov-
ing in 1D under an RW model. We do this in 1D solely for plotting
purposes—a similar result can be shown in 3D. Plot (a) shows the
first frame of the simulation, where the solid red line plots the reward
associated with acquiring a pixel, and the dashed blue line plots the
probability of finding the object in the given pixel. Although these
curves are close to each other, their shapes are clearly different. We
can see that there are two distinct points where the reward curve
drops to nearly zero while the probability curve remains relatively
high. The reason for this is that, even if the object is found in these
pixels, we gain very little information about the rate parameter, Σ
(which is just a single number in the 1D case). To understand this,
Fig. 6.2 shows 10 Gaussian distributions with standard deviations
between 1 and 3. We can see that all of these curves come very close
at two distinct points, and thus observing such a displacement gives
little information about the true underlying Gaussian distribution.

In Fig. 6.1(b), we consider the ratio of reward to cost, which
we define as the benefit. When learning the model quickly is of
paramount importance (that is, the time cost is high), the benefit
curve follows that of the reward curve and is shown by the solid red
line. However, when minimizing photobleaching is of paramount im-
portance, the benefit curve instead follows that of the dotted black
line. We can see that, theoretically, the highest benefit results from
acquiring pixels that are far from the object—although these pixels
do not give much information, they are even less likely to cause pho-

6. WHERE TO ACQUIRE IN A FRAME 75

tobleaching, and thus the ratio of reward to cost is high. However,
in practice, we always have some time cost associated with acquisi-
tion, and even a small time cost pulls the benefit curve back towards
the solid red line. For example, when the time cost of one frame is
defined to be 10% of the photobleaching cost of one exposure, the
benefit curve follows the dashed blue line.

6.3 Choosing the Pixels

The actual acquisition algorithm aims to choose the set of pixels
that maximizes the benefit (which we defined as the reward relative
to the cost). We take a greedy approach and only try to maximize
this benefit in the immediately subsequent frame. Note that this is
not guaranteed to maximize the benefit in the long-term.

Even maximizing the benefit in just the subsequent frame is a
computationally daunting task. In any given frame of N pixels, there
are 2N combinations of pixels we could acquire. Clearly it is too
resource-intensive to estimate the reward and cost for all of these
combinations, and so instead we use a greedy procedure in which we
continue adding the pixels with the highest marginal benefit to our
set until the overall benefit stops increasing. Algorithm 2 describes
this in more detail.

To test this algorithm, we simulate an object track as described
in Section 4.1. We then simulate acquisition of this data set using five
different acquisition algorithms, and try to learn the object’s model.
Our results, which are shown in Fig. 6.3, are averaged over 1,000 tri-
als. Plot (a) shows the model accuracy (log-likelihood) against the
frame number under these five different acquisition scenarios. The
dotted black line shows the case where all pixels are acquired in a
frame. Not surprisingly, this method learns the model the fastest.
The solid red line shows the case where our intelligent algorithm (Al-
gorithm 2) is used for acquisition, and where the only cost considered
by this algorithm is the time cost. We compare this line to the dashed
blue line, which acquires the pixels that are most likely to contain
the object (rather than those with the highest reward). For both of
these scenarios, the same number of pixels are acquired. We can see
that the intelligent algorithm performs best for the first 10 frames,
but is then outperformed by the algorithm that acquires the most
likely pixels. We suspect that the reason for this is that the intelli-

6. WHERE TO ACQUIRE IN A FRAME 76

20 40 60 80 100

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Pixel

R
ew

ar
d/

P
ro

ba
bi

lit
y

reward
probability

(a)

20 40 60 80 100

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Pixel

R
ew

ar
d/

P
ro

ba
bi

lit
y

time cost
photo cost
mixture

(b)

Figure 6.1: Reward associated with a pixel acquisition. In this 1D
example, the object is assumed to move under an RW model. Plot
(a) shows the first frame in the simulation. The dashed blue line
shows the probability of finding the object in a given pixel. The
solid red line shows the reward associated with acquiring this pixel.
Plot (b) shows the ratio of reward to cost. The solid red line shows
this ratio when we only consider the time cost. The dotted black line
shows the ratio when we only consider the photobleaching cost. The
dashed blue line shows the ratio when we consider both costs, with
the time cost of one frame being 10% of the photobleaching cost of
one exposure.

6. WHERE TO ACQUIRE IN A FRAME 77

−10 −5 0 5 10

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Displacement

P
ro

ba
bi

lit
y

Figure 6.2: 10 Gaussian probability distributions, each with a dif-
ferent variance. These curves all come near two distinct points. If
we observed a sample at one of these points, we would have little in-
formation about from which probability distribution the sample was
drawn.

gent algorithm only maximizes the benefit in the subsequent frame.
However, in the long-term, accurately knowing the object’s location
is important, and so acquiring the most likely pixels can perform
better. Finally, the solid blue line shows results for our intelligent
algorithm but where the only cost considered is the photobleaching
cost. Model learning is slowest under this algorithm. The dash-
dotted magenta line shows results for our intelligent algorithm when
the time cost and the photobleaching cost are considered equal. As
expected, this yields faster model learning than when time cost was
ignored altogether (solid blue line), but is slower than when time was
the only consideration (solid red line).

Fig. 6.3(b) shows the same results, but now the model accu-
racy is plotted against the photobleaching cost (instead of against
the frame number). This shows us how well the model is learned for
a given amount of photobleaching. We can see that all three con-
figurations of our intelligent algorithm (considering just time cost,

6. WHERE TO ACQUIRE IN A FRAME 78

Algorithm 2
Input : the set of particles in frame t.
Output : Pacq, the set of pixels to acquire in frame t.
Pacq = ∅
B = 1
repeat

for all pixels p in Pacq do
set Rp to reward of acquiring {Pacq, p}
set Cp to cost of acquiring {Pacq, p}
Bp = Rp/Cp

end for
p′ = argmaxpBp
if Bp′ >= B then
Pacq = {Pacq, p′}
B = Bp′

end if
until Bp′ < B
return Pacq

just photobleaching cost, and a mixture of the two) perform bet-
ter than acquiring all pixels, or acquiring the pixels most likely to
contain an object. This is an important experiment because the
object can only be observed a certain number of times before its flu-
orescent signal is destroyed by photobleaching. Hence, these curves
show how well the model can be learned before this happens. The
curves in this figure stop at different points on the x-axis because,
over the 50 frames, a different amount of photobleaching occurred
for each of them. As expected, the intelligent algorithm that consid-
ers only the photobleaching cost (solid blue line) gives the highest
model accuracy relative to photobleaching, but the slow learning of
this algorithm meant that the model accuracy was still low after 50
frames. At the other extreme, model learning is fastest when we
consider only the time cost (solid red line), but accuracy relative
to photobleaching is lower. We can obtain curves in between these
extremes by considering a mixture of time cost and photobleaching
cost. An example, as mentioned, is the dash-dotted magenta line—
this algorithm considers the photobleaching cost and the time cost
to be equal.

6. WHERE TO ACQUIRE IN A FRAME 79

5 10 15 20 25 30 35 40 45 50

−1800

−1600

−1400

−1200

−1000

−800

−600

Frame number

Lo
g−

lik
el

ih
oo

d

most likely
time cost
all
combined cost
photo cost

(a)

0 10 20 30 40

−1800

−1600

−1400

−1200

−1000

−800

−600

Photobleaching cost

Lo
g−

lik
el

ih
oo

d

most likely
time cost
all
combined cost
photo cost

(b)

Figure 6.3: Where to acquire (single object, synthetic data). These
curves show the rate at which a model is learned under different
acquisition strategies. Plot (a) shows log-likelihood against frame
number. Plot (b) shows log-likelihood against photobleaching cost.
The dotted black line shows the method where every pixel in every
frame is acquired. The solid red line shows the intelligent algorithm
(Algorithm 2) where only the time cost is considered. The dashed
blue line shows the method where the pixels most likely to contain
the object are acquired. The solid blue line shows the intelligent
algorithm where only the photobleaching cost is considered. The
dash-dotted magenta line shows the intelligent algorithm where the
time cost and photobleaching cost are equal.

6. WHERE TO ACQUIRE IN A FRAME 80

6.4 Discussion

The main weakness of the intelligent algorithm is that it only tries
to maximize the benefit in the immediately subsequent frame. This
may cause it to underestimate the importance of keeping track of
the object’s location. We showed an example of this in Fig. 6.3(a),
where the algorithm that focused on tracking the object’s location
(by acquiring the pixels most likely to contain the object) actually
worked better than our intelligent algorithm after the first 10 frames.
Ideally we would extend our algorithm to maximize the benefit in the
subsequent k frames, but this is computationally infeasible with our
current method. Probably the simplest way to improve our algorithm
would be to adjust the benefit function to give more weighting to
those pixels most likely to contain an object. The specific weights
could be learned from a training set.

We did not apply our algorithms to the multiple-object scenario
because the model-building module for multiple objects requires the
full set of pixels. However, there is a very simple method that we
can use in the multiple-object scenario: this method is to skip over a
pixel if we are sure that it will not contain an object. This does not
affect the model-building procedure because we can set the value of
this pixel to zero, and hence still provide the model-building module
with a full set of pixels as required. The benefit is that it reduces
photobleaching of any objects with the same x,y-coordinates as the
skipped pixel (regardless of the z-coordinate).

There are several other things to consider when acquiring a sub-
set of pixels of real data. First, if objects have size and shape, we
must consider the implications of acquiring a partial object, or split-
ting an object in two. Second, the object detection process may be
more difficult if less background pixels are available. Third, we must
consider whether the microscope is capable of acquiring an arbitrary
set of pixels as we have assumed in this chapter, or whether, for
example, it can only acquire rectangular regions. Despite these con-
siderations, in scenarios where photobleaching is a major limitation,
intelligently choosing where to acquire can undoubtedly yield more
information from a cell.

7

When to Acquire Frames

In addition to deciding where to acquire, we must also decide when
to acquire. If we wait longer to acquire a new frame, more will have
changed, which may mean that the acquisition will provide more
information. This is beneficial, because to reduce photobleaching we
want to get as much information as possible from each acquisition.
However, in some cases, waiting too long to acquire a frame results
in losing information that could best be gained with high temporal
resolution. Furthermore, we then take longer to learn the model, and
in the case of multiple objects, tracking performance is degraded.
However, we test our algorithm here solely on the single-object case.

7.1 Method and Results

In Chapter 6, we showed how to find the expected reward of acquiring
any set of pixels in the subsequent frame, t + 1. If we expand this
set to include every pixel in the image, then we have the expected
reward of acquiring the entire frame t + 1. We can easily find the
expected reward of skipping frame t + 1 and acquiring frame t + 2:
To do this, we simply consider the positions of the particles in t+ 2
instead of t+ 1, and proceed in the same way.

We assume that acquiring any frame has the same photobleaching
cost. Therefore, to maximize the reward relative to photobleaching
cost, we just need to assess whether the expected reward of t + 1 is
higher than that of t + 2; if so, we acquire frame t + 1, and if not,
we skip t + 1, and then compare the rewards of acquiring t + 2 and
t + 3, and so forth. The problem with this method is that waiting

81

7. WHEN TO ACQUIRE FRAMES 82

another frame might always increase the expected reward, and so
this method might never actually choose to acquire a frame. This
problem is solved when we introduce the time cost of an acquisition,
which is proportional to the number of frames elapsed since the last
acquisition. Recalling that the benefit is the ratio of reward to cost,
and that the cost consists of both the photobleaching cost and the
time cost, our method is to acquire a frame if the expected benefit is
higher than if we waited for the following frame. Algorithm 3 details
this procedure.

Algorithm 3
Input : t, the frame number of the last acquired frame.
Output : t+ k, the frame number of the next frame to acquire.
k = 0
repeat
k = k + 1
set Bnow to benefit of acquiring frame t+ k
set Blater to benefit of acquiring frame t+ k + 1

until Blater < Bnow
return t+ k

To test this algorithm, we simulate an object track as described in
Section 4.1. We then try to learn the object’s model, using different
acquisition algorithms to acquire the data. Our results, which are
shown in Fig. 7.1, are averaged over 10,000 trials. Plot (a) shows
the log-likelihood against the frame number. The frame number is
incremented regardless of whether that frame was acquired or not.
The dotted black line shows the log-likelihood for the case when
every frame was acquired. Not surprisingly, this method learns the
model the fastest. The dash-dotted magenta line shows the results
of our intelligent algorithm when the photobleaching cost and time
cost were considered equal. The solid red line shows the results when
photobleaching cost was weighted at 10x the time cost. Because less
importance was given to time, this results in slower model learning.
This method acquired roughly 25% of the frames. The dashed blue
line shows a naive algorithm that acquires every 4th frame. The
significance of this is that it acquires the same total number of frames
as the solid red line, and yet we can see that the final model accuracy
is lower. Finally, the solid blue line shows the intelligent algorithm
when only photobleaching cost is considered. This results in the

7. WHEN TO ACQUIRE FRAMES 83

slowest model learning, although it is still steady.
Plot (b) now plots the same log-likelihood against photobleaching

incurred, which in this case, is equivalent to the number of frames
acquired. We see that the intelligent algorithm that considers only
the photobleaching cost does best, but the algorithm that considers
photobleaching cost at 10x the time cost performs nearly as well and
has much faster model learning. All methods performed better than
the method that acquired every frame.

7.2 Discussion

The results in this chapter show that intelligently choosing when to
acquire results in a higher model accuracy for a given amount of
photobleaching. We also showed that acquiring at a variable frame
rate can give a higher accuracy than a constant frame rate, even if
the average number of frames acquired is the same (as seen by the
solid red line and the dashed blue line in Fig. 7.1(a)). The algorithm
is general and could be applied to the multiple-object scenario if we
had a method to build multiple-object models with a variable frame
rate. It could also be combined with the algorithm that determines
where to acquire in a frame (see Chapter 6). To do this, we find the
maximum benefit achievable when acquiring a subset of pixels from
frame t+ 1 or t+ 2, and then proceed as before.

7. WHEN TO ACQUIRE FRAMES 84

5 10 15 20 25 30 35 40 45 50

−9000

−8500

−8000

−7500

−7000

−6500

−6000

−5500

Frame number

Lo
g−

lik
el

ih
oo

d

photo cost
10:1
1:1
all
every 4th

(a)

0 10 20 30 40 50

−9000

−8500

−8000

−7500

−7000

−6500

−6000

−5500

Photobleaching cost

Lo
g−

lik
el

ih
oo

d

photo cost
10:1
1:1
all
every 4th

(b)

Figure 7.1: When to acquire (single object, synthetic data). These
curves show the rate at which a model is learned under different ac-
quisition strategies. Plot (a) shows log-likelihood against frame num-
ber. Plot (b) shows log-likelihood against photobleaching cost. The
dotted black line shows the method where every frame is acquired.
The dash-dotted magenta line shows the intelligent algorithm when
the photobleaching cost and the time cost are considered equal. The
solid red line shows the intelligent algorithm when photobleaching
cost is weighted at 10x the time cost. The solid blue line shows the
intelligent algorithm when only the photobleaching cost is consid-
ered. The dashed blue line shows an algorithm that acquires every
4th frame.

8

When to Stop Acquiring
Frames

This chapter looks at when to stop acquiring frames. The motivation
is to save time and avoid unnecessary photobleaching. Ideally, we
would acquire until the point when additional frames are unlikely
to provide much new information. This could mean that the model
has been learned with high accuracy, or it could simply mean that—
perhaps due to high photobleaching—additional frames will not help.
When building class models, we want to stop acquiring a cell at the
point when switching to another cell of that class would provide
significantly more information.

We consider this topic both for the single-object scenario and for
the multiple-object scenario; the chapter is split accordingly. We
further subdivide the multiple-object scenario into cell models and
class models, because the optimal stopping point differs depending
on which of these we are trying to build.

8.1 Single Object

We test two methods for choosing when to stop acquiring in the
single-object scenario. The first method is to predict the reward
associated with acquiring the next frame, and to stop acquiring when
this reward falls below a threshold. This is our preferred method,
and the reward of the next frame can be predicted in the same way as
in Chapter 7. The second method is to estimate the reward that was
gained from the most recent frame acquisition, and to stop acquiring

85

8. WHEN TO STOP ACQUIRING FRAMES 86

when this falls below a threshold. The assumption is that the reward
associated with the most recent frame acquisition will be similar to
that of the subsequent frame acquisition. The motivation for the
second method is that it is faster to compute, but, as we will show,
it does not work well in the single-object scenario.

To test these methods, we generated 1,000 synthetic time series
as described in Section 4.1, with 50 frames in each time series. We
then simulated acquisition of these time series using the two intel-
ligent algorithms described above, as well as a standard algorithm
that acquired a fixed number of frames in each time series. For each
algorithm, we recorded the average number of frames acquired over
the 1,000 time series, and the average accuracy of the resulting mod-
els. The results are shown in Fig. 8.1. The solid red line shows our
preferred intelligent algorithm that stops acquiring when the reward
associated with acquiring the next frame falls below a threshold. To
obtain the different points on this curve, we varied the value of the
threshold. The dashed blue line shows the intelligent algorithm that
stops acquiring when the reward associated with acquiring the pre-
vious frame falls below a threshold. Once again, we varied the value
of the threshold to obtain the different points on the curve. Finally,
the dotted black line shows the standard algorithm, that acquires a
fixed number of frames from each time series.

We see that our preferred intelligent algorithm requires fewer
frames on average for any given average accuracy. For example,
it requires an average of 5 frames from each time series to achieve
an average log-likelihood of -1850, whereas the standard algorithm
requires 10 frames to achieve the same average log-likelihood. Our
other intelligent algorithm performs well when the stopping threshold
is low (which means that few frames are acquired on average), but
not as well when the stopping threshold is high. The reason for this
poor performance may be because the reward of consecutive frames
varies greatly when there is only a single object in the cell—in the
multiple-object scenario, we show that a similar algorithm works
fairly well.

8.2 Multiple Objects

In Chapter 5, we described two ways to validate the accuracy of
the multiple-object models. The first way was to measure the log-

8. WHEN TO STOP ACQUIRING FRAMES 87

10 20 30 40 50

−2200

−2150

−2100

−2050

−2000

−1950

−1900

−1850

−1800

Average number of frames acquired

A
ve

ra
ge

 lo
g−

lik
el

ih
oo

d

standard
reward of last frame
reward of next frame

Figure 8.1: When to stop acquiring (single object, synthetic data).
The y-axis shows the log-likelihood of the final model given the true
model, averaged across all time series. The x-axis shows the aver-
age number of frames acquired to get this final model. The solid
red line shows the intelligent algorithm that stops acquiring when
the reward associated with acquiring the next frame falls below a
threshold. The dashed blue line shows the intelligent algorithm that
stops acquiring when the reward associated with acquiring the pre-
vious frame falls below a threshold. The different points on these
curves are obtained by varying the threshold. The dotted black line
shows the standard algorithm that acquires a fixed number of frames
from each time series. We see that the first intelligent algorithm gives
the highest average log-likelihood for any given average number of
frames acquired.

8. WHEN TO STOP ACQUIRING FRAMES 88

likelihood of the model given a separate set of testing frames, and
the second way was to measure the classification accuracy. When
designing an algorithm to specify when to stop acquiring frames in
the multiple-object scenario, we must specify whether our goal is to
maximize the log-likelihood or to maximize the classification accu-
racy. We discuss these cases separately, and then discuss a further
modification that is useful when building a class model.

8.2.1 Maximizing Likelihood

In the single-object scenario, the best method worked by predicting
the reward of the next frame acquisition. However, in the multiple-
object scenario, there is no easy way to predict this future reward,
and instead we approximate it with the estimated reward of the last
frame acquisition. Although this approximation does not work well
for single-object scenarios, it works better with multiple objects; we
discuss the reason for this in Section 8.3.

To estimate the reward of the last frame acquisition, we proceed
much as we did when we validated the model in Section 5.3. We set
aside the first two frames as validation frames, and learn the model
from the remaining frames. After each new frame acquisition, we
test our model on the validation frames and record the accuracy.
The reward of a frame is defined as the improvement in accuracy
resulting from that frame’s acquisition. Once this reward drops below
a threshold, we stop acquiring, and then build the final model using
all the frames (including the validation frames). Algorithm 4 shows
this process in algorithmic form.

We test this method using the 3T3 data set described in Section
5.1. For each time series, we proceed as follows: First, we set aside
the first two frames as the testing frames. We then use the training
frames to build a model and intelligently determine when to stop
acquiring. The intelligent algorithm uses the first two training frames
as validation frames. When acquisition stops, the final model is
built from all acquired training frames, and the resulting accuracy is
measured on the testing frames.

This method acquires a different number of frames for each time
series in the data set, and the resulting model of each time series has
a different accuracy. In Fig. 8.2, the solid red line plots the aver-
age accuracy against the average number of acquired frames, where
the different points on the curve are created by varying the stopping

8. WHEN TO STOP ACQUIRING FRAMES 89

Algorithm 4
Input : β, the threshold below which to stop acquisition.
Output : m, the final cell model facquired, the number of frames ac-
quired.

acquire frames 1 and 2
set facquired to 2
set lnew to 0
repeat

acquire next frame
increment facquired
build model m with frames 3, ..., facquired
set lold to lnew
set lnew to log-likelihood of m given frames 1 and 2

until lnew − lold < β
build model m with frames 1, ..., facquired
return m, facquired

threshold. In contrast, the dashed blue line plots the average ac-
curacy against the average number of acquired frames when we use
the standard method of acquiring k frames every time. In this case,
the different points on the curve are created by varying k. We can
see that our intelligent method gives a higher accuracy for the same
average number of frames, but the difference between the curves is
not large. Fortunately, we show a much bigger improvement when
the goal is to maximize classification accuracy.

8.2.2 Maximizing Classification Accuracy

Our intelligent stopping algorithm gives much stronger results when
the goal is to maximize classification accuracy. Here, we try to stop
acquiring at the point where the classification decision is unlikely to
change. We distinguish between two scenarios:

1. Global scenario. We have access to the class models during
acquisition. This means that we can classify the cell after ac-
quiring each frame, and stop acquiring when the classification
result reaches a sufficient confidence.

2. Local scenario. We do not have access to the class models dur-
ing acquisition. Hence, we cannot classify during acquisition,

8. WHEN TO STOP ACQUIRING FRAMES 90

5 10 15

−7.1

−7.05

−7

−6.95

−6.9

−6.85

Frame number

Lo
g−

lik
el

ih
oo

d

standard
intelligent

Figure 8.2: When to stop acquiring (multiple objects, real data,
maximizing likelihood). The y-axis shows the log-likelihood of the
final model given the testing frames, averaged across all time series.
The x-axis shows the average number of frames acquired to get this
final model. The solid red line shows the algorithm that intelligently
chooses when to stop acquiring, with the different points on the curve
obtained by varying the stopping threshold. The dotted black line
shows the standard algorithm that acquires a fixed number of frames
from each time series. We see that the intelligent algorithm gives
a higher average accuracy for any given average number of frames
acquired, but the improvement is small.

and our choice of when to stop acquiring the cell must be based
solely on the data from that cell.

Global Scenario

As stated in Section 5.5, we classify a cell by finding the log-likelihood
of each class model, and choosing the class of maximum log-likelihood.
We now show that we can find the standard errors of each of these
log-likelihoods, and use them to compute our confidence in the clas-
sification decision.

In Section 5.4.2, we showed how to find the likelihood of a cell

8. WHEN TO STOP ACQUIRING FRAMES 91

model given an observed cell using (5.7)-(5.8). We reproduce these
equations below, but taking logarithms of each side:

log(l) = log(lλ) + log(lλ,λ′) + log(lλ,d) + log(lλ,∅), (8.1)

where:

log(lλ) =
k∑

λ=1

Nλmλ + (N −Nλ)(1−mλ), (8.2a)

log(lλ,λ′) =
k∑

λ=1

k∑
λ′=1

Nλ,λ′mλ,λ′ + (Nλ −Nλ,λ′)(1−mλ,λ′), (8.2b)

log(lλ,d) =
k∑

λ=1

dmax∑
d=1

Nλ,dmλ,d + (Nλ −Nλ,d)(1−mλ,d), (8.2c)

log(lλ,∅) =
k∑

λ=1

Nλ,∅mλ,∅ + (Nλt −Nλ,∅)(1−mλ,∅). (8.2d)

These expressions are based around the counts Nλ, Nλ,λ′ , Nλ,d

and Nλ,∅, defined in Section 5.3. To calculate the standard error of
the log-likelihood, note that these counts come from the N individual
object observations, and that the log-likelihood given the overall cell
is the sum of the log-likelihoods given each individual object obser-
vation. To make this clearer, we introduce the binary variable nj,λ,
defined to be 1 when object j is of type λ, and 0 otherwise. Hence,
Nλ =

∑N
j=1 nj,λ. We define similar variables to correspond with the

counts Nλt,λt+1 , Nλt,d, and Nλt,∅. Hence, nj,λ,λ′ is 1 if object j is
of type λ and there is a nearby object of type λ′ in the subsequent
frame; nj,λ,d is 1 if object j is of type λ and there is a nearby object
distance d away in the subsequent frame; nj,λ,∅ is 1 if object j is
of type λ and there are no nearby objects in the subsequent frame.

8. WHEN TO STOP ACQUIRING FRAMES 92

Using these binary variables, we can rewrite (8.2) as:

log(lλ) =
N∑
j=1

xj,λ, (8.3a)

log(lλ,λ′) =
N∑
j=1

xj,λ,λ′ , (8.3b)

log(lλ,d) =
N∑
j=1

xj,λ,d, (8.3c)

log(lλ,∅) =
N∑
j=1

xj,λ,∅, (8.3d)

where:

xj,λ =
k∑

λ=1

nj,λlog(mλ) + (1− nj,λ)log(1−mλ), (8.4a)

xj,λ,λ′ =
k∑

λ=1

k∑
λ′=1

nj,λ,λ′ log(mλ,λ′) + (1− nj,λ,λ′)log(1−mλ,λ′),

(8.4b)

xj,λ,d =
k∑

λ=1

dmax∑
d=1

nj,λ,dlog(mλ,d) + (1− nj,λ,d)log(1−mλ,d), (8.4c)

xj,λ,∅ =
k∑

λ=1

nj,λ,∅log(mλ,∅) + (1− nj,λ,∅)log(1−mλ,∅). (8.4d)

Finally, we can rewrite (8.1) as:

log(li) =
N∑
j=1

yj , (8.5)

where:
yj = xj,λ + xj,λ,λ′ + xj,λ,d + xj,λ,∅. (8.6)

The reason for this rearranging is that we can now view y1, ..., yN
as instantiations of a random variable Y . Learning the mean of Y
is sufficient for learning the log-likelihood of the cell model, and our
estimate of this mean improves as the number of object observations

8. WHEN TO STOP ACQUIRING FRAMES 93

increases. Specifically, the standard error of the mean is given by
σ/
√
N , where σ is the standard deviation of y1, ..., yN .

We have described how to find the log-likelihood of a cell model
and its standard error given an observed cell. However, what we
actually want to find is the log-likelihood of a class model and its
standard error. To do this, we simply take the class’s constituent cell
models and find the one with the highest log-likelihood. This log-
likelihood, along with its standard error, becomes the log-likelihood
and standard error of the class model.

Now, if c1 is the class of highest log-likelihood, and c2 is the class
of second highest log-likelihood, we define the classification confi-
dence, C, as:

C =
log(lc1)− log(lc2)√

e2c1 + e2c2
, (8.7)

where log(lc1) and log(lc2) are the log-likelihoods of classes c1 and c2
respectively, and ec1 and ec1 are their standard errors. Our intelligent
stopping algorithm continues to acquire frames until C exceeds some
threshold that we call the classification confidence threshold.

Local Scenario

In the local scenario, we cannot compute the log-likelihood of a class
model, because the class models are unavailable. However, we can
still compute the log-likelihood of some sample model, including its
standard error. This standard error provides an indication of how
accurately we expect to predict the log-likelihood of the class models
when they become available. The natural choice of a sample model
is the model of the cell being acquired. We define the standard error
of its log-likelihood as S, and acquire frames until S falls below some
threshold that we call the likelihood uncertainty threshold.

Results

We now test our intelligent stopping algorithms both for the extrinsic
and the local scenario. As before, we take each time series in the data
set and determine how many frames would have been acquired for
a given stopping algorithm and threshold. We then measure the
average number of frames acquired, and the average classification
accuracy. For example, in the extrinsic scenario with a classification
confidence threshold of 0.7, we acquire 3-35 frames per cell, with

8. WHEN TO STOP ACQUIRING FRAMES 94

an average of 8.0 frames, yielding 80.3% classification accuracy. We
compare this to the standard method that acquires exactly 8 frames
for each cell, yielding only 75.0% classification accuracy. To reach
80% classification accuracy using the standard method, we would
need to acquire over 14 frames per cell—almost twice as many as
with our intelligent method.

In Fig. 8.3, we compare the two intelligent methods with the
standard method, using a range of stopping thresholds to get the
different points on the curves. The solid red line plots the intelligent
algorithm for the global scenario, the dashed blue line plots the in-
telligent algorithm for the local scenario, and the dotted black line
plots the standard algorithm that acquires a fixed number of frames
in each time series. The intelligent algorithms achieve significantly
higher accuracy for the same average number of frames acquired,
with the best results for the global scenario.

8.2.3 Class Models

Finally, we discuss when to stop acquiring frames from a cell when
building a class model. The primary change is that, in the global
scenario, we now stop acquiring a cell if we recognize that it is similar
to a previous cell in that class. This allows us to focus our time
and resources on acquiring cells that are different from previously
acquired cells of that class, as these are the cells that provide the
most new information.

To assess whether a cell is similar to previous cells in the class, we
simply classify it. If it is correctly classified with confidence exceed-
ing the classification confidence threshold, we know that it must be
similar to previously acquired cells of that class, and we stop acquir-
ing. In addition, as we did previously, we also stop acquiring when
S falls below the likelihood uncertainty threshold. This ensures that
we do eventually stop acquisition even when the cell is very different
from previously acquired cells of that class (or when we are acquiring
the first cell of that class).

This method implicitly assumes that acquisition alternates be-
tween cells of all the classes, such that we can build and refine a
class model of every class simultaneously. In the local scenario, when
classes are not available before starting the acquisition, this is not
possible. However, we can still use the likelihood uncertainty thresh-
old as before, which gives almost as good results for small numbers

8. WHEN TO STOP ACQUIRING FRAMES 95

5 10 15 20

0.65

0.7

0.75

0.8

Average number of acquired frames

C
la

ss
ifi

ca
tio

n
ac

cu
ra

cy

global scenario
local scenario
standard

Figure 8.3: When to stop acquiring (multiple objects, real data, max-
imizing classification accuracy). The y-axis shows the classification
accuracy of the final model, averaged across all time series. The x-
axis shows the average number of frames acquired to get the final
model. We use one of three methods to choose when to stop acquir-
ing. The first method (solid red line) uses the intelligent algorithm
under the global scenario. The second method (dashed blue line)
uses the intelligent algorithm under the local scenario. The third
standard method (dotted black line) acquires the same number of
frames for each time series. We see that the two intelligent methods
outperform the standard method, with the best results in the global
scenario.

8. WHEN TO STOP ACQUIRING FRAMES 96

of cells.
To test these intelligent acquisition algorithms, we set aside 10

time series as our testing set. We take the remaining 294 training
time series and determine which frames would have been acquired for
each intelligent stopping method and threshold. We then use these
to build a class model for each of the 12 classes, and attempt to clas-
sify the testing set. We use every frame for time series in the testing
set. We ran 10,000 trials, randomizing the testing and training sets,
including their order, in each trial. In Fig. 8.4, we show the resulting
classification accuracy against the average number of frames acquired
per cell when (1) using our intelligent acquisition algorithm for the
global scenario, varying the classification confidence threshold to get
the different points on the curve, (2) using our intelligent acquisition
algorithm for the local scenario, varying the likelihood uncertainty
threshold to get the different points on the curve, (3) using a stan-
dard acquisition algorithm that acquires a fixed number of frames
for every cell. Once again, we see that the intelligent algorithms
achieve significantly higher accuracy than the standard method for
the same average number of frames acquired. Moreover, the results
for the global scenario are best. In the global scenario, the intelligent
algorithm requires only 10 frames per cell to reach a classification ac-
curacy of 80%, whereas the standard algorithm requires 18 frames.
The results for the local scenario are almost as good as those for the
global scenario, but we expect that the difference between the two
scenarios will increase as the number of cells per class increases.

8.3 Discussion

In the single-object scenario, we showed that predicting the reward of
the next frame, and ceasing acquisition when this reward falls below
a threshold, is a more effective stopping strategy than just acquiring
a fixed number of frames. The limitation is that this algorithm only
looks at the very next frame, t+1. However, as sometimes t+1 may
have a low reward but subsequent frames may have high rewards,
a useful extension would be a stopping criterion that considers the
reward of the next several frames. We could do this by combining
the current stopping algorithm with the when to acquire algorithm
of Chapter 7. The latter determines the best frame to acquire, and
the former determines whether the benefit associated with acquiring

8. WHEN TO STOP ACQUIRING FRAMES 97

5 10 15 20

0.55

0.6

0.65

0.7

0.75

0.8

Average number of acquired frames

C
la

ss
ifi

ca
tio

n
ac

cu
ra

cy

global scenario
local scenario
standard

Figure 8.4: When to stop acquiring (class models, real data, max-
imizing classification accuracy). The y-axis shows the classification
accuracy of the final model, averaged across all time series. The
x-axis shows the average number of frames acquired to get the fi-
nal model. We use one of three methods to choose when to stop
acquiring. The first method (solid red line) uses the intelligent al-
gorithm for the global scenario. The second method (dashed blue
line) uses the intelligent algorithm for the local scenario. The third
method (dotted black line) acquires the same number of frames for
each time series. We see that the two intelligent methods outperform
the standard method, with the best results in the global scenario.

this frame is high enough to justify continued acquisition.
We also tried using the reward associated with the last frame

acquisition to predict the reward of the next frame acquisition. We
showed that this did not work well in the single-object scenario (Fig.
8.1), but gave better results in the multiple-object scenario (Fig.
8.2). The reason for its failure in the single-object scenario is that
the reward associated with successive frames varies greatly due to
pixelation and noise in the object’s motion; therefore, the reward
of the most recent frame acquisition may be very different from the
reward of the next frame acquisition. However, these variations tend

8. WHEN TO STOP ACQUIRING FRAMES 98

to cancel each other out in the multiple-object scenario, and so the
rewards of successive frames are more similar.

For maximizing classification accuracy, we got good results by
ceasing acquisition at the point where the classifier had high confi-
dence in its decision. It is important to realize that this confidence
does not refer to the probability that the decision is correct, but
rather to the probability that the decision will not change. Our
results might be even better if we considered the extent of photo-
bleaching in the cell: If photobleaching is extensive then new frames
contribute less information, and so the classification decision is even
more unlikely to change.

To find the confidence in the classification decision, we converted
the likelihoods of each class into a Gaussian random variable. An al-
ternative method is to use the likelihood values directly as a measure
of confidence. However, because these likelihoods are the product of
all the different variables in the model, and because there are de-
pendencies between these variables, this method tends to give confi-
dences that are highly inflated and not useful as a stopping criterion.

Finally, we note that the best time to stop acquiring depends on
our goal—whether to maximize log-likelihood, maximize classifica-
tion accuracy, or maximize some other quantity. Although we did
not show results, we actually found that the criterion for maximizing
log-likelihood gave worse results in terms of classification accuracy.
Hence, tailoring the algorithm to the specific application is highly
desirable. For situations where the specific application is unknown
during acquisition, it would be useful to search for a quantity whose
maximization gives good results for most real-world scenarios.

9

How Many Cells to
Acquire

Our final strategy is to decide how many cells to acquire when build-
ing a class model. Because cells must be cultured prior to image
acquisition, we focus on batch additions. Hence, rather than re-
evaluating after every cell, we first acquire, say, 10 cells, and then
ask whether we should acquire another 10 cells.

Our approach here is similar to that described in Section 8.2.1 for
deciding how many frames to acquire. The basic idea is to measure
the reward gained from acquiring the last cell, and to use this as
a basis for deciding whether to acquire more cells. The difference
is that, unlike frames, the cells have no inherent ordering. Hence,
instead of only focusing on the reward of the most recently acquired
cell, we can measure the reward of each of the acquired cells and
then average across all of them. To measure the reward of a cell,
we measure the resulting drop in model accuracy when that cell is
removed from the set used for model building.

As in Chapter 8, our method differs depending on whether we
want to maximize the likelihood of the class model given a newly
observed cell, or to maximize the classification accuracy of that newly
observed cell. We discuss each case in turn.

9.1 Maximizing Likelihood

Suppose we have acquired k1 cells from a class and want to decide
whether to acquire more. Our method is to first measure the accuracy

99

9. HOW MANY CELLS TO ACQUIRE 100

of the model when k1−2 cells are used to build it, and then measure
the accuracy of the model when k1−1 cells are used to build it. If that
extra cell significantly improved the accuracy, then we would decide
to acquire more cells. (Ideally we would measure the improvement in
accuracy from k1−1 cells to k1 cells, but we have no way to measure
the accuracy when all k1 cells are used.)

To measure the accuracy of the model when k1− 2 cells are used
to build it, we first select any k1 − 2 cells from the set and build the
model. Then, we measure the log-likelihood of this model given the
remaining two cells. We repeat this using every possible combination
of k1−2 cells (there are k1(k1−1) such combinations), and compute
the average log-likelihood over all of them, which we denote a2.

To measure the accuracy of the model when k1− 1 cells are used
to build it, we repeat this process, but now selecting k1−1 cells from
the set to build the model, and measuring the log-likelihood given
the remaining one cell. There are k1 combinations of k1−1 cells, and
again we compute the average log-likelihood across all of them, which
we denote a1. If (a1 − a2) exceeds a threshold, we choose to acquire
more cells from this class. Algorithm 5 shows this whole process in
algorithmic form.

We tested this method using the 3T3 data set described in Sec-
tion 5.1. For each class, we first set aside one testing cell. Then, we
acquired k1 cells from that class, and used the method above to de-
cide whether to acquire an additional k2 cells. Finally, we measured
the likelihood of the model (which was built with either k1 cells or
k1 + k2 cells) given the testing cell. We ran this experiment on every
class and repeated it 10,000 times with different training and testing
cells. In Fig. 9.1, the y-axis measures the average log-likelihood of
the model and the x-axis indicates the number of classes for which
an additional k2 cells were acquired. The solid red line shows the av-
erage log-likelihood when we intelligently chose whether to acquire
an additional k2 cells, whereas the dashed blue line shows the av-
erage log-likelihood when we randomly chose whether to acquire an
additional k2 cells. Plot (a) shows the results when k1 = 10 and
k2 = 5. Plot (b) shows the results when k1 = 10 and k2 = 10. In the
latter plot, we only used 6 of the 12 classes (Sdpr, Adfp, Timm23,
Hspa9a, Tctex1 and Actn4), because we did not have enough cells
available for the other 6 classes. We can see from these experiments
that acquiring with the intelligent method results in a higher average
log-likelihood for the same average number of cells acquired.

9. HOW MANY CELLS TO ACQUIRE 101

0 2 4 6 8 10 12
0

0.5

1

1.5

2

2.5

x 10
−3

Number of classes with extra cells

Lo
g−

lik
el

ih
oo

d

intelligent
random

(a)

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

1.2

x 10
−3

Number of classes with extra cells

Lo
g−

lik
el

ih
oo

d

intelligent
random

(b)

Figure 9.1: How many cells to acquire (class models, real data, max-
imizing likelihood). The y-axis measures the average likelihood on
the testing cells. The x-axis indicates the number of classes for which
the additional k2 cells were acquired. The solid red line shows the
average likelihood when we used our intelligent acquisition method
to choose whether to acquire an additional k2 cells for a class. The
dashed blue line is for when we randomly chose whether to acquire
an additional k2 cells for a class. For both plots, k1 = 10. In plot
(a), k2 = 5, whereas in (b), k2 = 10. We see that acquiring with the
intelligent method results in a higher average log-likelihood for the
same number of cells.

9. HOW MANY CELLS TO ACQUIRE 102

Algorithm 5
Input : c, the class from which to acquire, k1, the initial number
of cells to acquire from the class, k2, the number of extra cells to
acquire from the class, γ, the threshold over which these extra cells
are acquired.
Output : Sc, set of acquired cells.

initialize set of acquired cells Sc to ∅
acquire any k1 cells from c and add to Sc
for all cells s in Sc do

build class model Mc from all Sc except s
set xs to log-likelihood of Mc given s

end for
set accuracy, a1, to mean of x
for all cells s in Sc do

for all cells t in Sc except s do
build class model Mc from all Sc except s and t
set xt to log-likelihood of Mc given t

end for
set bs to mean of x

end for
set accuracy, a2, to mean of b
set reward, r, to a2 − a1

if r > γ then
acquire k2 extra cells from c and add to Sc

end if
return Sc

9.2 Maximizing Classification Accuracy

We use the same method when our goal is to maximize classifica-
tion accuracy, but now we estimate the reward of acquiring more
cells from a class in terms of classification accuracy instead of log-
likelihood. Here, as in Chapter 8, we distinguish between two sce-
narios:

1. Global scenario. We first acquire k1 cells from every class, and
can then look at all cells when deciding from which classes to
acquire an additional k2 cells.

2. Local scenario. We acquire k1 cells from a class, and must

9. HOW MANY CELLS TO ACQUIRE 103

decide whether to acquire an additional k2 cells from that class
without accessing the cells from other classes.

Global Scenario

Suppose we have acquired k1 cells from every class. Now, for a class
c, we want to decide whether to acquire more cells. Similarly to
Section 9.1, our process is to first measure the accuracy of the class
model when k1 − 2 cells are used to build it, and then measure the
accuracy of the class model when k1 − 1 cells are used to build it.
If that extra cell significantly improved the accuracy, then we would
acquire more cells from that class.

To implement this idea, we first we build class models for all
classes except c (using all k1 cells available). Second, we build a
class model for c with k1 − 2 cells, and measure the classification
accuracy on the remaining two cells in c. We repeat this with every
possible combination of k1 − 2 cells (there will be k1(k1 − 1) such
combinations) and compute the average accuracy, which we denote
a2. Third, we build a class model for c with k1−1 cells, and measure
the classification accuracy on the remaining cell. We repeat this
with every possible combination of k1 − 1 cells (there are k1 such
combinations), and compute the average accuracy, which we denote
a1. If (a1 − a2) exceeds a threshold, we choose to acquire more cells
from c. Algorithm 6 shows this process in algorithmic form.

Local Scenario

In the local scenario, we do not have access to cells from other classes,
and so we cannot find the classification accuracy as we did for the
global scenario. Nevertheless, we still try to estimate the drop in
classification accuracy that would result from removing a cell from
the class. To do this, we take each cell model m in the class, and
determine its closest match, m′, which is the cell model that has
the highest likelihood given m. We then find p—the proportion of
cell models in that class that are chosen at least once as a closest
match. If a cell model is chosen as a closest match, then its removal
is likely to reduce the classification accuracy of that class. Hence, if
p is higher, removing a cell from the class will result in a bigger drop
in classification accuracy, which means that adding more cells to the
class may cause a bigger increase in classification accuracy. Thus, if

9. HOW MANY CELLS TO ACQUIRE 104

Algorithm 6
Input : k1, the initial number of cells to acquire from each class, k2,
the number of extra cells to acquire from a class, γ, the threshold
over which these extra cells are acquired.
Output : S, the set of acquired cells from all classes.

for all classes c do
initialize Sc to ∅
acquire k1 cells from c and add to Sc
build class model Mc from Sc

end for
for all classes c do

for all cells s in Sc do
build class model Mc from all Sc except s
classify s using current class models
set xs to 1 if s is classified correctly, 0 otherwise

end for
set accuracy, a1, to mean of x
for all cells s in Sc do

for all cells t in Sc except s do
build class model Mc from all Sc except s and t
set xt to 1 if t is classified correctly, 0 otherwise

end for
set bs to mean of x

end for
set accuracy, a2, to mean of b
set reward, r, to a2 − a1

if r > γ then
acquire k2 extra cells from c and add to Sc

end if
build class model Mc from all Sc

end for
return S

p exceeds a threshold, we choose to acquire more cells from the class.
Algorithm 7 shows this process in algorithmic form.

9. HOW MANY CELLS TO ACQUIRE 105

Algorithm 7
Input : c, the class from which to acquire, k1, the initial number
of cells to acquire from the class, k2, the number of extra cells to
acquire from the class, γ, the threshold over which these extra cells
are acquired.
Output : Sc, set of acquired cells.

initialize set of acquired cells Sc to ∅
acquire any k1 cells from c and add to Sc
for all cells s in Sc do

set xs to 0
end for
for all cells s in Sc do

find cell in Sc, s′, whose cell model has the highest likelihood
given s
set xs′ to 1

end for
set reward, r, to mean of x
if r > γ then

acquire k2 extra cells from c and add to Sc
end if
return Sc

Results

We tested this method using the 3T3 data set described in Section
5.1. For each class, we first set aside one testing cell. Then, we ac-
quired k1 cells from each class, and used the methods above to decide
from which classes to acquire an additional k2 cells. Finally, we built
a model using all the acquired cells from all classes, and measured
the classification accuracy on the testing cells. We repeated this ex-
periment 10,000 times with different training and testing cells. In
Fig. 9.2, the y-axis measures the average classification accuracy of
the model, and the x-axis indicates the number of classes for which
an additional k2 cells were acquired. The solid red line shows the
average classification accuracy under the global scenario when we
intelligently chose whether to acquire an additional k2 cells. The
dashed blue line shows the average classification accuracy under the
local scenario when we intelligently chose whether to acquire an ad-
ditional k2 cells. The dotted black line shows the classification ac-

9. HOW MANY CELLS TO ACQUIRE 106

curacy when we randomly chose whether to acquire an additional k2

cells. Plot (a) shows the results when k1 = 10 and k2 = 5. Plot (b)
shows the results when k1 = 10 and k2 = 10. In the latter plot, we
only used 6 of the 12 classes (Sdpr, Adfp, Timm23, Hspa9a, Tctex1
and Actn4), because we did not have enough cells available for the
other 6 classes. We can see from these experiments that acquiring
with the intelligent method results in a significantly higher average
classification accuracy for the same average number of cells acquired,
with the best results for the global scenario.

9.3 Discussion

This chapter showed that we get higher accuracy when we intelli-
gently choose from which classes to acquire extra cells than when we
randomly choose. We tested this both for maximizing log-likelihood
and for maximizing classification accuracy, achieving the best results
in the latter scenario. Because classification is a real-world applica-
tion, we expect that the classification results will be more indicative
of the results on other real-world applications.

One way to view this problem is to say that a class has multiple
sub-classes, and that to learn a class model, we need to continue
acquiring cells until we believe we have at least one cell from each
sub-class. In that case, we can consider the algorithms in this chapter
as giving the probability that there are still major undiscovered sub-
classes. These algorithms work well in conjunction with the when to
stop acquiring frames algorithm for class models from Section 8.2.3.
That algorithm stopped acquiring frames from a cell if it observed
that that cell was similar to a previously acquired cell (hence, in
the same sub-class), allowing us to find the cells from undiscovered
sub-classes more quickly.

9. HOW MANY CELLS TO ACQUIRE 107

0 2 4 6 8 10 12

0.745

0.75

0.755

0.76

0.765

0.77

0.775

0.78

Number of classes with extra cells

A
ve

ra
ge

 c
la

ss
ifi

ca
tio

n
ac

cu
ra

cy

global scenario
local scenario
random

(a)

0 1 2 3 4 5 6
0.86

0.865

0.87

0.875

0.88

0.885

0.89

0.895

0.9

Number of classes with extra cells

A
ve

ra
ge

 c
la

ss
ifi

ca
tio

n
ac

cu
ra

cy

global scenario
local scenario
random

(b)

Figure 9.2: How many cells to acquire (class models, real data, max-
imizing classification accuracy). The y-axis measures the average
classification accuracy on the testing cells. The x-axis indicates the
number of classes for which the additional k2 cells were acquired. The
solid red line shows the classification accuracy when we use the intel-
ligent algorithm in the global scenario to choose from which classes
to acquire extra cells. The dashed blue line shows the classification
accuracy when we use the intelligent algorithm in the local scenario.
The dotted black line shows the accuracy when we randomly choose
from which classes to acquire extra cells. For both plots, k1 = 10.
In plot (a), k2 = 5, whereas in (b), k2 = 10. We see that acquiring
with the intelligent method results in a higher average classification
accuracy for the same number of cells.

Part IV

Conclusions

108

109

Although automated analysis of fluorescence microscope images
is becoming more common, up until now, this analysis has always
taken place as a post-processing step. This means that the acquisi-
tion process has been unable to adapt to the task and data at hand.
In this work, we have explored the benefits of building models while
the data is being acquired, thereby opening up the potential for intel-
ligent acquisition. We have developed a new acquisition framework
which combines model building and intelligent acquisition, and we
have shown that this framework results in either time savings or
reduced photobleaching without loss of accuracy, or alternatively, a
higher accuracy for the same total acquisition time or photobleaching
cost.

Model Building We described methods to build models both in
the single-object scenario and in the multiple-object scenario. We
tested the single-object method on synthetically generated data where
we could use accurate ground truth to demonstrate its correctness,
and tested the multiple-object method on a real data set of 3T3 time
series to show useful results on real data. Because of the difficulty of
matching objects between frames, the multiple-object method does
not model each individual object, but instead models the average
behavior of each type of object in the cell. Future research will look
at ways of bringing the modeling down to an individual object level,
which would, in turn, allow for more intelligent acquisition methods.

The cells in our 3T3 data set came from 12 cell lines, each with
a different protein labeled. We defined each of these cell lines as a
unique class, and built class models by combining the models from
all cells in a class. We showed that these class models could clas-
sify a cell of unknown class with 84.5% accuracy—higher than any
previously reported result on this 3T3 data set. Future research will
look at clustering cells within a class so that classes could be repre-
sented as a set of sub-classes. This would provide more insight into
their behavior as well as allowing for more sophisticated intelligent
acquisition algorithms.

Although it is convenient to build the final models while we ac-
quire, note that the only requirement is that the model building is
accurate enough to guide the intelligent acquisition module. If nec-
essary, we can then build more accurate models as a post-processing
step, perhaps with a more sophisticated and time-consuming algo-

110

rithm.

Intelligent Acquisition We discussed four different strategies for
intelligent acquisition. These were evaluated with respect to max-
imizing log-likelihood and maximizing classification accuracy. For
both of these goals, we showed that intelligent acquisition was more
effective than standard acquisition, but generally the difference was
greater when the goal was maximizing classification accuracy. This
is encouraging because classification is a real-world application, sug-
gesting that our framework and algorithms will have real practical
benefits.

• Where to Acquire in a Frame. For the single-object scenario,
we showed that we could learn an object’s motion model with
less photobleaching when we intelligently chose which pixels to
acquire. Interestingly, the best pixels to acquire were not nec-
essarily those most likely to contain the object, because those
pixels were also the most likely to cause photobleaching. We
would like to apply our method to the multiple-object scenario
as well, but this would require modeling multiple-object cells
on an individual object level, which we cannot yet do efficiently.
In the meantime, a simple strategy for the multiple-object sce-
nario is to skip any pixels highly unlikely to contain an object,
because this does not affect the model accuracy, but does still
lead to faster frame acquisition as well as reducing photobleach-
ing in out-of-focus z-slices.

• When to Acquire Frames. We also showed that we can reduce
photobleaching by sampling in time—that is, by intelligently
choosing when to acquire frames. Intuitively, if objects are
move slowly relative to the spatial resolution, then we want to
acquire infrequently, whereas if objects move quickly relative
to spatial resolution, we want a much higher frame rate.

• When to Stop Acquiring Frames. This is perhaps the most im-
mediately applicable of our strategies, because it was tested on
real data, and requires no special microscope features. Here, by
intelligently choosing from which cells to acquire more frames
and from which cells to acquire less, we achieved up to a twofold
reduction in acquisition time without any loss in classification
accuracy.

111

• How Many Cells to Acquire. Finally, we presented a method
for determining from which classes we should acquire more cells
when building a class model. This lets us know which cells we
should culture in the first place. With the goal of modeling all
proteins in all cell-types and under all conditions, it is clearly
important to know from which classes we need more cells. In-
telligent acquisition can provide significant savings: In one ex-
ample, we showed that we got a higher classification accuracy
by intelligently choosing just two classes from which to acquire
extra cells than by randomly choosing four such classes.

As large amounts of 2D and 3D time series are being acquired
every day, reducing the acquisition time and total light exposure is
a desirable goal. The framework that we have introduced, which
combines online model building with intelligent acquisition, is an
effective way to achieve this goal. As computing power continues to
increase in accordance with Moore’s Law, even more sophisticated
online algorithms will become possible, making intelligent acquisition
a valuable tool in the future of fluorescence microscopy.

Bibliography

[1] M. S. Arulampalam, S. Maskell, N. Gordon, T. Clapp, D. Sci,
T. Organ, and S. A. Adelaide. A tutorial on particle filters for
online nonlinear/non-Gaussian Bayesian tracking. IEEE Trans.
Signal Proc., 50(2):174–188, 2002.

[2] R. G. Baraniuk. Compressive Sensing. IEEE Signal Proc. Mag.,
24(4):118–121, 2007.

[3] C. Berzuini, N. G. Best, W. R. Gilks, and C. Larizza. Dynamical
conditional independence models and markov chain monte carlo
methods. Journ. Amer. Stat. Assoc., 92(440), 1997.

[4] C. M. Bishop. Pattern Recognition and Machine Learning. In-
formation Science and Statistics. Springer, 2006.

[5] M. V. Boland, M. K. Markey, and R. F. Murphy. Automated
recognition of patterns characteristic of subcellular structures in
fluorescence microscopy images. Cytometry, 33:366–375, Nov.
1998.

[6] M. V. Boland and R. F. Murphy. A neural network classifier ca-
pable of recognizing the patterns of all major subcellular struc-
tures in fluorescence microscope images of HeLa cells. Bioinfor-
matics, 17(12):1213–1223, 2001.

[7] C.J.C. Burges. A tutorial on support vector machines for pattern
recognition. Data mining and knowledge discovery, 2(2):121–
167, 1998.

[8] E. J. Candès. Compressive sampling. In Int. Congr. of Mathe-
maticians, Madrid, Spain, 2006.

112

BIBLIOGRAPHY 113

[9] E. J. Candès, J. Romberg, and T. Tao. Robust uncertainty
principles: exact signal reconstruction from highly incomplete
frequency information. IEEE Trans. Inform. Th., 52(2):489–
509, Feb. 2006.

[10] A. Chebira, Y. Barbotin, C. Jackson, T. E. Merryman,
G. Srinivasa, R. F. Murphy, and J. Kovačević. A mul-
tiresolution approach to automated classification of protein
subcellular location images. BMC Bioinformatics, 8(210),
2007. http://www.andrew.cmu.edu/user/jelenak/Repository/-
07 ChebiraBJMSMK/07 ChebiraBJMSMK.html.

[11] X. Chen, M. Velliste, S. Weinstein, J. W. Jarvik, and R. F.
Murphy. Location proteomics - building subcellular location
trees from high resolution 3d fluorescence microscope images of
randomly-tagged proteins. In Proc. SPIE, volume 4962, pages
298–306, San Jose, CA, 2003.

[12] D. Cohn, L. Atlas, and R. Ladner. Improving generalization
with active learning. Mach. Learn., 15(2):201–221, 1994.

[13] C. Cortes and V. Vapnik. Support-vector networks. Machine
learning, 20(3):273–297, 1995.

[14] T. Cover and P. Hart. Nearest neighbor pattern classification.
IEEE Transactions on Information Theory, 13(1):21–27, 1967.

[15] J.V. Davis and I. Dhillon. Differential Entropic Clustering of
Multivariate Gaussians. Advances in Neural Information Pro-
cessing Systems, 19:337–344, 2007.

[16] D. L. Donoho. Compressed sensing. IEEE Trans. Inform. Th.,
52(4):1289–1306, Apr. 2006.

[17] A. Doucet. On sequential simulation-based methods for bayesian
filtering. Technical report, Cambridge Univ., Cambridge, UK,
1998.

[18] A. Frank. On Kuhn’s Hungarian method-a tribute from Hun-
gary. Naval Research Logistics, 52(1):2–5, 2005.

[19] E. Glory and R. F. Murphy. Automated subcellular location
determination and high throughput microscopy. Developmental
Cell, 12:7–16, 2007.

BIBLIOGRAPHY 114

[20] N. Gordon, D. Salmond, and A. Smith. Novel approach to
nonlinear/non-Gaussian Bayesian state estimation. Radar and
Signal Processing, IEEE Proceedings, 140(2):107–113, 1993.

[21] R. M. Haralick. Statistical and structural approaches to texture.
Proc. IEEE, 67:786–804, 1979.

[22] S. Haykin. Neural networks: a comprehensive foundation. Pren-
tice Hall, 2008.

[23] R. A. Hoebe, C. H. Van Oven, T. W. Gadella Jr, P. B. Dhonuk-
she, C. J. Van Noorden, and E. M. Manders. Controlled light-
exposure microscopy reduces photobleaching and phototoxicity
in fluorescence live-cell imaging. Nature Biotech., 25(2):249–53,
2007.

[24] D.W. Hosmer and S. Lemeshow. Applied logistic regression.
Wiley-Interscience, 2004.

[25] C.W. Hsu and C.J. Lin. A comparison of methods for multi-
class support vector machines. IEEE Transactions on Neural
Networks, 13(2):415–425, 2002.

[26] Y. Hu. Automated analysis of protein subcellular locations in
time series images. PhD thesis, Carnegie Mellon Univ., Carnegie
Mellon Univ., 2007.

[27] Y. Hu, J. Carmona, and R.F. Murphy. Application of temporal
texture features to automated analysis of protein subcellular lo-
cations in time series fluorescence microscope images. In Proc. of
the 2006 IEEE International Symposium on Biomedical Imaging
(ISBI 2006), pages 1028–1031, 2006.

[28] K. Huang and R. F. Murphy. Boosting accuracy of automated
classification of fluorescence microscope images for location pro-
teomics. BMC Bioinformatics, 5(78), 2004.

[29] J. W. Jarvik, S. A. Adler, C. A. Telmer, V. Subramaniam, and
A. J. Lopez. CD-tagging: A new approach to gene and protein
discovery and analysis. Biotechniques, 20:896–904, 1996.

[30] I.D. Johnson. Handbook of Biological Confocal Microscopy,
chapter Practical considerations in the selection and application
of fluorescent probes. Springer, third edition, 2006.

BIBLIOGRAPHY 115

[31] D. D. Lewis and W. A. Gale. A sequential algorithm for train-
ing text classifiers. Proc. ACM SIGIR Conf. on research and
development in information retrieval, pages 3–12, 1994.

[32] Z.-P. Liang and P. C. Lauterbur. An efficient method for dy-
namic magnetic resonance imaging. IEEE Trans. Med. Imag.,
13(4):677–686, 1994.

[33] T. E. Merryman and J. Kovačević. Adaptive multiresolu-
tion acquisition of fluorescence microscopy data sets. IEEE
Trans. Image Proc., sp. iss. Molecular and Cellular Bioimag-
ing, 14(9):1246–1253, Sep. 2005.

[34] P. Muller. Monte Carlo integration in general dynamic models.
Contemp. Math., 115:145–163, 1991.

[35] R. F. Murphy. Location proteomics: A systems approach to
subcellular location. Biochem. Soc. Trans., 33:535–538, Mar.
2005.

[36] R. F. Murphy, M. Velliste, and G. Porreca. Robust classifica-
tion of subcellular location patterns in fluorescence microscope
images. In Proc. IEEE Int. Workshop Neur. Netw. for Signal
Proc., pages 67–76, Sep. 2002.

[37] A.Y. Ng and M.I. Jordan. On discriminative vs. generative
classifiers: A comparison of logistic regression and naive bayes.
Advances in neural information processing systems, 2:841–848,
2002.

[38] L. P. Panych, C. Oesterle, G. P. Zientara, and J. Hennig. Imple-
mentation of a fast gradient-echo SVD encoding technique for
dynamic imaging. Magn. Res. Imaging, 35(4):554–62, 1996.

[39] M. K. Pitt and N. Shephard. Filtering via simulation: Auxil-
iary particle filters. Journ. Amer. Stat. Assoc., 94(446):590–591,
1999.

[40] JR Quinlan. Induction of decision trees. Machine learning,
1(1):81–106, 1986.

[41] D.B. Reid. An algorithm for tracking multiple targets. IEEE
Transactions on Automatic Control, 24(6):843–854, 1979.

BIBLIOGRAPHY 116

[42] Burr Settles. Active learning literature survey. Computer Sci-
ence Technical Report 1648, University of Wisconsin–Madison,
2009.

[43] H. S. Seung, M. Opper, and H. Sompolinsky. Query by com-
mittee. Proc. Workshop Comp. Learn. Theory, pages 287–294,
1992.

[44] D.L. Taylor and E.D. Salmon. Fluorescence microscopy of living
cells in culture: Fluorescent analogs, labeling cells, and basic
microscopy, chapter Basic Fluorescence Microscopy. Academic
Press, 1989.

[45] J. Tsao, P. Boesiger, and K. P. Pruessmann. kt BLAST and
kt SENSE: dynamic MRI with high frame rate exploiting spa-
tiotemporal correlations. Magn. Res. Imaging, 50(5):1031–1042,
2003.

[46] M. Velliste. Image interpretation methods for a systematics of
protein subcellular location. PhD thesis, Carnegie Mellon Univ.,
Carnegie Mellon Univ., 2002.

[47] M. Velliste and R. F. Murphy. Automated determination of
protein subcellular locations from 3D fluorescence microscope
images. In Proc. IEEE Int. Symp. Biomed. Imaging, pages 867–
870, Washnigton, DC, 2002.

[48] M. West and J. Harrison. Bayesian Forecasting and Dynamic
Models. Springer, 1997.

[49] H. Zhang. The optimality of naive Bayes. Proceedings of the Sev-
enteenth Florida Artificial Intelligence Research Society Confer-
ence, pages 562–567, 2004.

[50] T. Zhao, M. Velliste, M. V. Boland, and R. F. Murphy. Object
type recognition for automated analysis of protein subcellular
location. IEEE Trans. Image Proc., sp. iss. Molecular and Cel-
lular Bioimaging, 14(9), Sep. 2005.

Abstract

This thesis presents a new acquisition framework that models
fluorescence microscope data during acquisition, and uses these
learned models to intelligently guide future acquisitions. This
framework results in significant time savings, as well as in reducing the
photobleaching and phototoxicity incurred during acquisition.

Fluorescence microscopy is a popular tool for live-cell imaging, and in
recent years, there has been an explosion in the amount of data
acquired with this technique. Visual inspection of this data is time-
consuming and not reproducible, motivating the goal of automated
image analysis. Furthermore, we would ideally like to acquire all types
of cells under all conditions, but standard acquisition methods are too
time-consuming to achieve this feat. This work proposes to address
these problems with a new acquisition framework that builds models of
the data while it is being acquired, and uses these models to carry out
intelligent acquisition. The goal is to reduce total acquisition time by
identifying and acquiring only the data that is necessary for building the
model, as well as to acquire in a way that reduces photobleaching and
phototoxicity – two fundamental limitations associated with
fluorescence microscopy.

We evaluate the framework experimentally on synthetic and real data.
First, we present a possible method to build models of a single object
within a cell, of multiple objects in a cell, and of a population of cells.
Then, we present intelligent acquisition algorithms to determine where
to acquire in a cell, when to acquire in a cell, when to stop acquiring
from a cell, and how many cells to acquire from a population. We show
that the combination of model building and intelligent acquisition
results in time savings, reduced photobleaching, and reduced
phototoxicity, without loss of accuracy.

