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Chapter 1

Background and Motivation

1.1 Eye Dynamics, RelatedMedical Applications and Eye Track-

ing Systems

Eye dynamics, including 3D spatial movement (horizontal, vertical and torsional), pupil dilation

and extraction have been used by clinicians to diagnose or screen a number of diseases including

balance disorder, diabetic retinopathy (DR), strabismus, cerebral palsy, multiple sclerosis, etc. [1–

3]. Eye movement is also investigated by researchers to study human ophthalmological, vestibular,

and neuro-otologic systems [4, 5]. The essential component of a diagnostic or screening system is

a reliable eye movement tracking system.

It is well known that abnormal eye movement can provide an indication of neurological, oph-

thalmological, and other medical problems. Among these, vestibular (balance) related problems

are the most widely investigated in both research and clinical studies. Abnormal eye movement

can also indicate diseases such as multiple sclerosis, Parkinson’s disease, diabetic retinopathy, etc.
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CHAPTER 1. BACKGROUND AND MOTIVATION

Balance is a combined function of three systems: the vestibular system, vision, and the central

neurological system. The vestibular system accomplishes two tasks. First, it contributes to an

individual’s sense of motion and spatial orientation with respect to the force of gravity. There are

three perpendicular semicircular canals in the inner ear. Each canal has hair cells that can detect

changes in fluid displacement and send information to the central neural system about acceleration

and head tilt. Second, when head and body are in motion, the vestibular system controls eye

movements so that the eye can capture steady and in-focus images. This is the vestibular-ocular

reflex (VOR). The vestibule has a direct influence on eye motion via the VOR. By measuring the

presence, absence, and degree of eye movement provoked by various stimuli of body motion, eye

tracking systems can indirectly measure the vestibular function. Tracking and analyzing the eye

movement can provide valuable information on the diagnosis of problems related to the vestibular

system [6].

The positional eye movement has six degrees of freedom: three transitions in the socket and

three rotations. The transitions are usually small and are generally ignored. The three rotations are

the horizontal, vertical, and torsional eye movement. Torsional movement refers to the rotation of

the eye around the axis along the line of sight.

The eye is never completely at rest, even when it is fixed on a target. Fixation eye movement

refers to this eye “fluctuation” when it tries to stabilize the retina over a stationary object of interest;

it is involuntary and related to brain stem activity. Saccade is the rapid jerky eye movement when

the eye tries to focus on a new object. The speed of eye movement can approach 700◦/sec for

large saccades. In most cases, the eye reaches the new position quickly and without noticeable os-

cillation or correction. Undershooting the target with jumps larger than 20◦ degree is common and

overshooting is rare. There is also a latency of about 200 milliseconds between each target jump

4
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and the induced saccade [7]. Abnormal saccades, which can be identified by traits including the ve-

locity, accuracy, and latency of eye movement, can be used to assess neurological pathogenicities.

Nystagmus characterizes the involuntary rhythmic eye movement when the eye moves quickly in

one direction (fast phase) and then slowly in the other (slow phase). Nystagmus can be horizontal,

vertical, or torsional. Most eye disorders associated with nystagmus can easily be diagnosed by

tracking the visual pattern.

Pupil constriction and dilation is another type of dynamics that has been used in the medical field

for diagnostic purposes. For people who might have a disease on the retina of the eye, recording

and analyzing the pupil response under designated light stimulus can provide precious informa-

tion on the retina function, which may not be easily available by other conventional examination

methods. Monitoring pupil response can help to diagnose several diseases such as glaucoma, or

diabetic retinopathy [3].

An eye tracking system typically uses electrical and computing devices to track the eye move-

ment. It can provide a quantitative, consistent, and repeatable record of eye movements. It helps

distinguish small deviations such as high frequency, low amplitude movements, and helps in early

detection of diseases, or diagnosis of low level, chronic diseases.

Figure 1.1 shows the diagram of a typical diagnostic (screening) process where eye tracking

result is used as a measurement. Subjects are given a certain stimulus, usually motion (in vestibular

tests) or visual (in diabetic retinopathy tests) stimulus in the test. Concurrently, the eye images are

captured by video cameras and processed by eye tracking software. As the output of the eye

tracking software, eye movement traces are given and saved for analysis. The analysis software

usually performs de-noising first to obtain a cleaner signal. A norm indicating either normal or

different risk of sickness is developed based on tests among the group of population of interest.

5



CHAPTER 1. BACKGROUND AND MOTIVATION

Eye Images 

Eye Movement 
Tracking 

Diagnosis,  
Recommendations, etc 

Analysis: 
De-noising, Classification  
(Norm Development) 

Eye Movement Traces 

Diagnosing (Screening) System: 

Subjects 

Stimulus 
 (Motion, Visual)  

Figure 1.1: A typical diagnostic (screening) procedure using eye tracking result as a measurement

Computationally speaking, this is a classification problem. The output of the analysis software

usually would be an index associated with the norm. Based on the analysis results, a physician

(M.D.) will make a diagnosis or give recommendations to the patient. If necessary, another test

may be arranged for further investigation.

The research in this PhD dissertation concentrates on eye tracking systems, because an accurate

and robust measurement of eye movement is essential for many applications. The analysis and

norm development is of great interest and would be an important direction for future research.

1.2 Related Work and the Need for a New System

To capture rapid eye movement, a high temporal resolution is sometimes required. Online pro-

cessing is essential because it may be important for the experimenter (e.g., the physician) to have

immediate control over the output quality [8]. In addition, the experimenter monitoring the test

may decide to do further tests on-the-fly based on the observed test results.

6
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The digital video based eye tracking system is non-invasive compared to other methods including

scleral search coil systems [6, 9, 10]. Head-mounted eye tracking systems are more accurate than

non-head-mounted systems, electro-oculography (EOG) systems [11], cornea reflection systems

[12, 13], or flying-spot laser based systems [14, 15] . The temporal resolution of the video based

eye tracking systems used to be limited by the camera speed and computation power. With the

availability of ever increasing computation power, the development of digital camera and image

processing technology, it is now possible to exploit the full potential of video based eye tracking

systems. In this research, we investigate digital image based eye tracking systems and study three

aspects: tracking the horizontal and vertical movement, monitoring the pupil size change, and

tracking the torsional eye movement.

Current video image based eye tracking systems either run online at a low speed, do the process-

ing off-line, or use dedicated hardware to reach high online processing rates; they are usually not

robust to interference and scenarios including eyelid drops, illumination variations, eccentric eye

locations, etc. In this PhD dissertation, we report an accurate, robust, and online eye movement

tracking system by applying image processing techniques on captured digital video images.

To capture dynamics during high-speed eye movement, e.g., during saccadic eye movement, a

high frame rate is needed, and often an online system is preferred. Therefore, the system required

is one that can capture and process images at high frame rate, and at the same time, still be able

to handle interference arising from eyelid drops, reflections, and blinks, etc. Considering the

development cost and time, a tracking system running on a general computer system would be

preferred. Therefore, we developed an accurate, robust, and high-speed horizontal and vertical eye

tracking system on a general computer system by using commercially available digital cameras.

Torsional eye position measurement is very important for the diagnosis of balance related prob-
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CHAPTER 1. BACKGROUND AND MOTIVATION

lems and research in the vestibular system. Most systems available in the market and reported in

the literature are not robust enough for clinical use, especially in situations when the eye is not in

central position or the eye is partially occluded by eyelids. Therefore, we developed a torsional

eye tracking system robust to artifacts and various testing scenarios.

DR is one of the potential complications of diabetes that may cause blindness. DR can cause

vascular damage on the retina before the patient develops more severe symptoms. Patients with

vascular damage may have a different pupil contraction and dilation pattern under some light stim-

ulus. It is possible to develop a screening method if we can measure the pupil size change under

designated light stimulus. Therefore, in this thesis we have also developed an accurate and online

pupil size monitoring system for the screening of DR.

Eye position in space can be described by its horizontal, vertical, and torsional components.

Discovering the 3D eye position from 2D images requires the recovering of image projection pa-

rameters through calibration. Existing calibration methods either use a simplified model for eye

movement or a simplified model for the imaging process to achieve a closed-form or linear solu-

tion to the problem. These simplifications can result in large error in eye position measurement. In

this PhD dissertation, we report a novel calibration method that can accurately measure the 3D eye

position in a wider range than other systems. The method uses a more accurate two-radius rotation

model for eye movement and the perspective projection model for the imaging process. The pa-

rameters of the elliptical pupil boundary from multiple views of the eye are used as the constraints

to estimate the projection parameters.

Given the importance of eye tracking systems, it is still difficult to evaluate and compare the per-

formance of these systems in terms of their accuracy, robustness, and capability to handle artifacts

including occlusion and changes in illumination. The difficulty lies in the lack of ground truth
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CHAPTER 1. BACKGROUND AND MOTIVATION

information. To provide data sets with ground truth available, we developed a simulation system

that generates realistic eye video images with known eye position.
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Chapter 2

The Calibration Method

Eye position in space can be described by its horizontal, vertical, and torsional components. How-

ever, video images only provide 2D information of the eye position. Camera projection parameters

are needed to fully recover the 3D position of the eye from images. Calibration is the procedure

for finding the camera projection parameters, and is especially important to recover the torsional

component, in which geometrical distortion of the iris pattern needs to be compensated before cal-

culating the torsional component. In this chapter, we present a novel calibration method that can

accurately measure the 3D eye position in a wider range than other systems. We start with the

basics of camera models and existing eye tracking calibration methods.

2.1 Background and Motivation

2.1.1 Geometric Camera Models and Homogeneous Coordinates

The imaging procedure is typically modeled by the pinhole model as shown in Figure 2.1. A point

P with the coordinate vector [x, y, z]T in the camera based coordinate system (O, ijk) is projected
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CHAPTER 2. THE CALIBRATION METHOD

onto the image plane Π at point [x′, y′] in the image coordinate system, and we have:














x′ = f x
z

y′ = f y
z

, (2.1)

where f is the distance from the camera center (the pinhole) to the image plane. One can see that

the position of the projected point on the image is related to z, the distance of the point in the

3D space to the camera plane (O, ij). This model is called the perspective projection model. Let

m = −f
z
; when the scene depth (variation of z) is small relative to the distance to the camera, m

can be taken as a constant. This model is called the weak perspective projection model. We have:














x′ = −mx

y′ = −my

. (2.2)

Furthermore, when we normalize the image coordinates so that m = −1, this is the orthographic

projection model, and we have:














x′ = x

y′ = y

. (2.3)

However, (2.1)-(2.3) are only valid when all distances and coordinates are measured in the cam-

era’s coordinate system, and the origin of the image coordinate system is at the principal point,

where the camera’s optical axis (-the k axis in Figure 2.1) intersects with the image plane. In

reality, the image origin may not be at the principal point, and the object may be measured in

a world coordinate system, which is different from the camera coordinate system. Typically the

world frame and the camera frame may be related by rotation, translation, or difference on scales,

etc.

Table 2.1 lists the intrinsic parameters of cameras, which relate a real camera coordinate system

to the idealized one described in Figure 2.1 and (2.1). It is known that a point on the image with
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Figure 2.1: The pinhole camera model.

α magnification in the x direction: it is related with f and pixel size

β magnification in the y direction: it is related with fand pixel size

θ skew: angle between the two axes of the image, sometimes it is not strictly 90◦

u0, v0 principal point: the intersection point of the camera optical axis and the image plane

Table 2.1: Intrinsic parameters of a camera

coordinate vector [u, v]T is related with the object point with camera coordinate vector [xc, yc, zc]T

according to the following equation [16]:

















u

v

1

















=
1

zc
K

















xc

yc

zc

















, where K =

















α −α cot θ u0

0 β
sin θ

v0

0 0 1

















. (2.4)

We define the homogeneous coordinate vector of a 3D point [x, y, z]T as P = [x, y, z, 1]T , and

the homogeneous coordinate vector of a 2D point on an image as p = [u, v, 1]T . One benefit of

homogeneous coordinates is that we can describe rotation and translation as one linear transforma-
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tion. For example, if there is a translation and rotation between the world coordinate system and

the camera coordinate system, one has:

Pc "









R t

0T 1









Pw, where Pc =

























xc

yc

zc

1

























,Pw =

























xw

yw

zw

1

























(2.5)

In (2.5), R is the 3 × 3 rotation matrix, and t is the 3 × 1 translation vector; they are usually

referred as the extrinsic parameters of the camera, which relate the camera coordinate system with

the world coordinate system.

The notation " in (2.5) represents projective equality. When one has A " B, it means that there

exists a scalar value c, such that A = cB. One intuition is that if two homogeneous coordinates

are projective equal to each other, they represent the same physical point. With projective equality,

(2.4) and (2.5) can be rewritten as:

p " K









R t

0T 1









Pw, in which p =

















u

v

1

















. (2.6)

2.1.2 Modeling the Eye Movement

In eye movement tracking, the eye is typically modeled as a perfect sphere and a solid object

[17–20], i.e., there is no deformation of the eye ball. It is also commonly assumed that:

• The iris and pupil are approximated as a plane intersecting the sphere;

• The eye movement consists mainly of pure rotation around the sphere center, with no or very

small translation components;
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• The visual axis of the eye can be approximated by the optical axis .

In some scenarios [18], it is assumed that eye rotates around the same center, while in other

cases, it is modeled such that the vertical rotation center is distinct from the horizontal rotation

center [19–21].

Z

X

Y

Y

Z

X
Camera Lens

Y

Z

X

Y

X

OOO

Figure 2.2: Projection of the eye onto the image plane and the coordinate systems: the eye coordinate
system (O,XeYeZe) (O is chosen to be the horizontal rotation center of the eyeball), the
head coordinate system (O,XhYhZh), the camera coordinate system (Oc, XcYcZc), and
the image coordinate system (Oi, XiYi).

Figure 2.2 shows the relative position of the eye and the camera in the system, and four co-

ordinate systems of interest: the eye coordinate system, the head coordinate system, the camera

coordinate system, and the image coordinate system. For a camera installed on a wear-on goggle,

it can be assumed that there is no relative motion between the head and the camera during tests.

The offset between the head coordinate system and the camera coordinate system is character-

ized by a rotation R̂(θc, φc, ψc) and a translation ŝ. Therefore, the homogeneous coordinate vector

P h = [xh, yh, zh, 1]T in the head frame, the corresponding homogeneous coordinate vector in the
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camera frame P c = [xc, yc, zc, 1]T , and the homogeneous coordinate vector in the image frame

pi = [u, v, 1]T are related by:

Pc " [R̂(θc) R̂(φc) R̂(ψc), ŝ] Ph

pi " K Pc

(2.7)

Matrix K represents the intrinsic camera parameters described in (2.4). R̂(θc), R̂(φc), R̂(ψc)

represent the horizontal, vertical and torsional rotation between the head frame and the camera

frame, respectively. Note that K, R̂(θc)R̂(φc)R̂(ψc), and ŝ are fixed if there is no change to the

camera and there is no relative motion between the head and the camera installed on the wear-on

goggle, i.e., these values do not change with different eye positions.

The motion of the eyeball relative to the head is the movement that we are trying to recover from

captured images. Assuming that for a point on the eye, e.g., the pupil center, the homogeneous

coordinate vector in the eye frame is Pe = [xe, ye, ze, 1]T , then its corresponding vector in the

head frame Ph is given by:

Ph = [R(θ, φ, ψ), s] Pe, (2.8)

in which R(θ, φ, ψ), s represent the rotation and translation of the eyeball respectively. The trans-

lation component is usually very small and negligible in tests [18]. However, as we will see in the

following section, distinct rotation centers for vertical and horizontal eye movement can effectively

produce a nonzero s vector, i.e., a small translation component.

If the distance from the iris plane to the horizontal rotation center is rp, the homogeneous co-

ordinate vector of the pupil center in the eye frame is always [0, 0, rp, 1]T regardless of the eye

position. However, the coordinate vector of the pupil center in the head frame varies with different

eye positions, and so is its coordinate vector in the camera frame and its projection on the image.
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2.2 Existing Calibration Methods

2.2.1 The Calibration Method based on a One-Radius Model

A calibration model was first proposed in [18] to compensate for geometric distortion in calculating

torsional movement. In addition to the assumptions mentioned in Section 2.1.2, the paper assumes

that the horizontal and vertical movement has the same rotation center, and there is no translation

component. In addition, orthographic projection is assumed in the model, although in the analysis,

they do point out that the error can reach around 0.5◦ for large eye angles. Camera intrinsic matrix

K is assumed to be identity matrix as well.

These assumptions simplify the projection procedure and an analytical solution can be derived

given five known eye positions and the pupil center in the corresponding images. Table 2.2 shows

the five known eye positions used. Typically, one can choose θ = 10◦, φ = 10◦. However, these

assumptions can result in measurements with large error when the eye is in eccentric positions.

torsional position 0 0 0 0 0

horizontal position 0 θ −θ 0 0

vertical position 0 0 0 φ −φ

Table 2.2: Eye position used for calibration

2.2.2 The Calibration Method based on a Two-Radius Model

It has been shown, however, that the kinematics of the eye cannot be modeled by pure rotations

around the same rotation center [21]; a better approximation of the eye movement can be achieved

by shifting the vertical rotation center along the torsional rotation axis (Ze)[19, 20]. Experimen-
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tally, it is shown in [19] that by using the one-radius model, horizontal eye movements, in absolute

values, are uniformly larger than the actual eye movements, and vertical movements uniformly

smaller; the resulting error in eye position measurement can be up to 1.5◦, while medical special-

ists using the eye tracking devices demand an accuracy at 0.1◦. Therefore, a two-radius model

is used in [19, 20] in which the vertical rotation center (Cv) is distinct from the horizontal rota-

tion center (Ch); there is a shift between them along the optical axis (Ze) of the eye ball. The

transformation from the eye frame to the head frame can then be written as:

[R(θ, φ, ψ), s] = R(θ)RtR(φ)R−t R(ψ), (2.9)

in which R(θ), R(φ) and R(ψ) describe the horizontal, vertical, and torsional rotation (in Fick

sequence), respectively, while Rt, R−t characterize a forth and back translation along the Ze axis

before and after the vertical rotation correspondingly. The combination of these three transforma-

tions RtR(φ) R−t is equivalent to the vertical rotation around the vertical center (Cv).

By using the two-radius model, it is shown in [19, 20] that the error in horizontal and vertical

eye position measurement can be decreased to 0.1−0.2◦ in certain scenarios. However, in both pa-

pers it is assumed that the horizontal and vertical rotational offset angles
(

R̂(φc), R̂(θc)
)

between

the head frame and the camera frame are negligible. Although it is shown in [18] that the error

caused by the horizontal and vertical offsets is small compared with the torsional offset R̂(ψc), the

error can still be up to 1◦. Furthermore, in [19], orthographic projection model is again assumed

and it can produce an error up to 0.5◦. In [20], although the perspective projection is used, it is

assumed that certain parameters, e.g., the distance from the lens to the CCD chip and the distance

from the lens to the center of the pupil, are known, for which it is not easy to obtain an accurate

measurement.
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In summary, while there exist several calibration methods for eye position measurement, each

of them has significant drawbacks. We therefore developed a calibration method to address these

issues and to achieve a more accurate measurement for eccentric eye positions.

2.3 Proposed Method: Projective Geometry Based Calibra-

tion

The new algorithm we propose here is based on the two-radius model introduced in Section 2.2.2.

It is shown in [18] that the error caused by ignoring the horizontal and vertical offset between

the head and the camera is smaller than ignoring the torsional offset, when the magnitude of the

offset is smaller than 5◦. First, as mentioned previously, even with this small rotational offset, the

resulting error can still be up 1◦. Secondly, in reality, it is difficult, even for trained operators, to

adjust the wear-on goggle so that the offset is guaranteed to be small and negligible. Therefore, in

our proposed calibration method, the horizontal and vertical rotation offset is taken into account,

and a more accurate perspective projection model is used.

2.3.1 Estimating Projection Parameters from Known Eye Positions

Solution assuming translation parameter α is known

By assuming the two-radius model, from (2.8), (2.9) one gets:

Ph = R(θ) Rt R(φ) R−t R(ψ) Pe, (2.10)

in which, Ph = [xh, yh, zh, 1]T , Pe = [xe, ye, ze, 1]T , and for pupil center,

Pe
pc = [0, 0, rp, 1]T (2.11)
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The three rotation matrices and two translation matrices are:

R(θ) =

























cos θ 0 sin θ 0

0 1 0 0

− sin θ 0 cos θ 0

0 0 0 1

























,

R(φ) =

























1 0 0 0

0 cosφ − sinφ 0

0 sinφ cosφ 0

0 0 0 1

























,

R(ψ) =

























cosψ − sinψ 0 0

sinψ cosψ 0 0

0 0 1 0

0 0 0 1

























,

(2.12)

Rt =

























1 0 0 0

0 1 0 0

0 0 1 t

0 0 0 1

























, R−t =

























1 0 0 0

0 1 0 0

0 0 1 −t

0 0 0 1

























, (2.13)

in which t represents the amount of translation between the horizontal and the vertical rotation

center. Substituting (2.11), (2.12), and (2.13) into (2.10), one obtains the pupil center in the head
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frame:

Ph
pc =

























cos θ sin θ sinφ sin θ cosφ −t sin θ cosφ + t sin θ

0 cosφ − sinφ t sinφ

− sin θ cos θ sinφ cos θ cosφ −t cos θ cosφ + t cos θ

0 0 0 1

















































0

0

rp

1

























(2.14)

In (2.7), let

M = K [R̂(θc) R̂(φc) R̂(ψc), ŝ], and

M =

















m1 m2 m3 m4

m5 m6 m7 m8

m9 m10 m11 m12

















.
(2.15)

By substituting (2.14) and (2.15) into (2.7), the pupil center in the image coordinate system pi
pc

can be written as:

pi
pc " M

























rp

























sin θ cosφ

− sinφ

cos θ cosφ

0

























+ t

























sin θ(1 − cosφ)

sinφ

cos θ(1 − cosφ)

0

























+

























0

0

0

1

















































and pi
pc = [u, v, 1]T

(2.16)

Let t = α · rp, and [xi, yi, zi]T = right hand side of (2.16). By substituting (2.15) into (2.16), one

gets:

















xi

yi

zi

















=

















rpm1 rpm2 rpm3 m4

rpm5 rpm6 rpm7 m8

rpm9 rpm10 rpm11 m12









































sin θ cosφ + α sin θ(1 − cosφ)

(α− 1) sin(φ)

cos θ cosφ + α cos θ(1 − cosφ)

1

























(2.17)
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Let

Mr =

















rpm1 rpm2 rpm3 m4

rpm5 rpm6 rpm7 m8

rpm9 rpm10 rpm11 m12

















(2.18)

One can observe that there are 12 unknown parameters in the matrix Mr if we combine each

rpmk(k = 1, · · · , 11) as one parameter. For each image acquired in a known eye position, i.e. ,

known θ and φ, and with detected pupil center (u, v) in this image,

[u, v, 1]T " [xi, yi, zi]T (2.19)

Therefore, the following two equations hold:

u = xi

zi , v = yi

zi .

One therefore obtains:

u
−→
fα

t−−→mr3 −
−→
fα

t−−→mr1 = 0

v
−→
fα

t−−→mr3 −
−→
fα

t−−→mr2 = 0

, (2.20)

in which,
−−→mr1 = [rpm1 rpm2 rpm3 m4]t

−−→mr2 = [rpm5 rpm6 rpm7 m8]t

−−→mr3 = [rpm9 rpm10 rpm11 m12]t,

and

−→
fα =

























sin θ cosφ + α sin θ(1 − cosφ)

(α− 1) sin(φ)

cos θ cosφ + α cos θ(1 − cosφ)

1
























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If the system acquires and processes multiple such images with known eye positions, there will

be multiple equations similar to the ones in (2.20). By stacking them together, one obtains an array

of equations in matrix form:

































−
−−−→
fα(1)

t
0 u1

−−−→
fα(1)

t

0 −
−−−→
fα(1)

t
v1
−−−→
fα(1)

t

... ... ...

−
−−−→
fα(n)

t
0 un

−−−→
fα(n)

t

0 −
−−−→
fα(n)

t
vn

−−−→
fα(n)

t

















































−−→mr1

−−→mr2

−−→mr3

















= 0. (2.21)

Let

Q =

















−−→mr1

−−→mr2

−−→mr3

















, and L =

































−
−−−→
fα(1)

t
0 u1

−−−→
fα(1)

t

0 −
−−−→
fα(1)

t
v1
−−−→
fα(1)

t

... ... ...

−
−−−→
fα(n)

t
0 un

−−−→
fα(n)

t

0 −
−−−→
fα(n)

t
vn

−−−→
fα(n)

t

































,

in which Q is a vector with 12 unknown parameters. Note that Q, and Mr, are defined up to a

scaling factor, which means if Q (Mr) is a solution, then c · Q (c · Mr) is also a solution for any

constant c.

If α is known, one can solve (2.21) for Q if there are eleven equations, i.e., six images with

known eye position. With more than six such images, (2.21) can be solved in the mean square

sense, which means by solving for the Q with unit norm that minimizes ||LQ||, i.e. ,QT LT LQ.

This is a typical homogeneous linear least-squares problem, and the minimum value of QT LT LQ

is reached at Q = eigenvector of LT L corresponding to its smallest eigenvalue. For the robustness
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of the algorithm, nine known eye positions shown below are used in real tests:

horizontal angle (in degrees)(θ) −30 −15 0 15 30 0 0 0 0

vertical angle (in degrees)(φ) −0 −0 0 0 0 −20 −10 10 20

Dealing with unknown α

However, for a particular set of tests with one subject, we do not know the α value. There does not

exist a linear solution to the problem, i.e., the minimization of ||LQ||, since there are non-linear

items included in the equations if we consider α an unknown parameter. However, since we have

a prior knowledge that t, the translation value, is smaller than rp, the horizontal rotation radius, it

follows that the following inequality holds:

0 ≤ α ≤ 1.

We can do a linear search between [0, 1] to find a numerical solution close to the optimal value of

α. Specifically, the algorithm searches for α at an incremental value of 0.1 between [0, 1], and then

at an incremental value of 0.01 between [k − 0.1, k + 0.1], in which k is the best value obtained in

the previous step.

Nonlinear optimization

The above linear solution can only find a close-to-optimal solution to minimize the algebraic dis-

tance defined by QT LT LQ. In addition, the above algorithm is built upon the elliptical pupil center;

actually when the eye is not in the central position, the center of the ellipse defined by the moved

eye pupil boundary is not exactly the projective transformation of the circular pupil center when

the eye is in the central position. Therefore, we use the shape of the elliptical pupil boundary for

further optimization. It can be proven (see Section A.2 for the proof) that the shape of the elliptical
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pupil boundary in different eye position is related to the shape of pupil when the eye is at the center

according to (2.22):

Ci " HT
0←i × C∗

0 × H0←i, (2.22)

in which C∗
0 is a normalized symmetric 3 × 3 matrix, and it is the matrix format for the ellipse

equation that fits the pupil boundary in the image when the eye is in the central position. Ci is

a normalized symmetric 3 × 3 matrix as well, it represents the “predicted” ellipse equation for

the pupil when the eye is in another position i. H0←i is a 3 × 3 matrix determined by projection

parameters Mr, α, and the horizontal and vertical eye position.

Let C∗
i be the detected ellipse fitting the pupil boundary from the image in position i. Ideally, we

should have C∗
i = Ci. Comparing one such pair of C∗

i and Ci gives 5 equations, and 9 images of

the eye in different positions give 5 × 8 equations. Minimizing the cost function defined in (2.23)

using Levenberg-Marquardt algorithm results in a solution to the projection parameters Mr, α,

which optimally fits the shapes of pupil boundary between different views of the eye.

efun =
∑

i,j,k

{

Ci(j, k) − C∗
i (j, k)

}2
(2.23)

Summary of the Algorithm

In summary, Algorithm 1 outlines the procedure to find the camera projection parameters given

the pupil center and shape of nine known eye positions. The entire algorithm is implemented in

Labview. It takes less than 1s to finish the calculation after collecting the nine calibration images

and the corresponding pupil center and shape. Since the system only does one time calculation

for each set of tests, during which there is no considerable movement between the camera and the

head of the subject, this time delay is acceptable for both the subject and the operator.
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Algorithm 1 The Calibration Algorithm
Input: θk, φk (known eye position ), uk, vk, C∗

k (pupil center and shape for the corresponding
image), k = 1, · · · , 9
Output: Mr, α
(Mr, α) =mainCalibrationProc(θk, φk, uk, vk, C∗

k)
minDist = 999;
bestα = 0;
for α= 0:0.1:1 do

(tMr, tα, aDist) = solveWithKnownAlpha (θk, φk, uk, vk, α);
if aDist < minDist then

Let minDist = aDist;
Let bestα = tα;

end if
end for
minDist1 = 999;
bestα1 = 0;
bestMr = [];
for α= bestα-0.1:0.01:bestα+0.1 do

(tMr, tα, aDist) = solveWithKnownAlpha (θk, φk, uk, vk, α);
if aDist < minDist1 then

Let minDist1 = aDist;
Let bestα1 = tα;
bestMr = tMr;

end if
end for
(Mr, α) = nonLinearOpt (bestMr, bestα1, θk, φk, uk, vk, C∗

k);
return;

——————————————-

(tMr, tα, aDist) = solveWithKnownAlpha (θk, φk, uk, vk, α)
Solve the linear optimization problem defined by (2.21);
return;

——————————————-
(Mr, α) = nonLinearOpt (bestMr, bestα1, θk, φk, uk, vk, C∗

k)
Solve the non-linear optimization problem defined by (2.23) using Levenberg-Marquardt algo-
rithm;
return;
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2.3.2 Calculating Eye Position During Eye Tracking

In Section 2.3.1 we described how to estimate the projection parameters from images of known eye

position. After the calibration procedure, during eye tracking tests, the system collects eye images,

locates the pupil center and calculates the eye position; this calculation is based on the projection

parameters estimated according to the method introduced in Section 2.3.1. This section describes

the details of the procedure to calculate the horizontal and vertical eye positions. Here we assume

that the system has collected the images and found the pupil center. The algorithm to calculate

pupil center is discussed in Chapter 4.

From (2.17), (2.18), (2.19), we have:

[u, v, 1]T " A
−−−−→
f(θ, φ) +&b, (2.24)

in which,

A =

















rpm1 rpm2 rpm3

rpm5 rpm6 rpm7

rpm9 rpm10 rpm11

















, &b = [m4,m8,m12]T ,

−−−−→
f(θ, φ) =

















sin θ cosφ + α sin θ(1 − cosφ)

(α− 1) sin(φ)

cos θ cosφ + α cos θ(1 − cosφ)

















.

(2.25)

This means we need to find a constant k so that:

kA−1

















u

v

1

















=
−−−−→
f(θ, φ) + &q,

where &q = A−1&b.

(2.26)
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In (2.26), A,&b, &q does not change when the projection parameters do not change. There are three

unknowns k, θ, φ, and three equations, which means the equations can be solved. We first assume

α = 0, and let:

g =

















g1

g2

g3

















= kA−1

















u

v

1

















− &q, (2.27)

we have: ||g|| = ||
−−−−→
f(θ, φ)|| = 1. Since ||g|| = g2

1 + g2
2 + g2

3 = 1 is a quadratic function of k, it can

be solved easily. The other two parameters can be solved as below:

φ = sin−1(
g3

α− 1
), θ = tan−1(

g2

g1
) (2.28)

Up to now, we obtained an approximate solution of horizontal and vertical eye position (θ, φ) by

assuming α = 0. To obtain a more accurate solution, we use this approximate solution as the initial

value, and again use the Levenberg-Marquardt algorithm to find a local optimum by minimizing

an error function defined as:

err = kA−1

















u

v

1

















−
(

f(θ, φ) + &q
)

(2.29)

The above algorithm to calculate horizontal and vertical eye position (θ, φ) is implemented in

Labview and the run time is around 0.01ms, which does not affect the typical high speed eye

tracking at 100 − 400 frames/second.
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2.4 Results

The above algorithm is tested using a simulation system we developed. Based on captured eye

images, the simulation system synthesizes images in known eye positions with realistic pupil/iris

features, noises and interferences, including eyelid coverage, cornea reflections, and illumination

changes, etc. The details of the simulation system is described in Chapter 3. To evaluate the

performance of different calibration algorithms, the simulation system generates two groups of

images. One group of the images are used for calibration, in which the known eye position is

used to calculate the projection parameters. After recovering the projection parameters with a

specific calibration method, the second group of images are used to evaluate the accuracy of 3D

eye position calculation, during which the known eye position is used as the ground truth.

In the calibration step, the pupil center, shape are first calculated from the images, and then as

described in Section 2.3.1, the pupil center, shape and the corresponding known 3D eye position

are used to estimate projection parameters such as Mr, α. We observed that during actual tests,

when the subject is instructed to look at one fixed point, the pupil still fluctuates around the po-

sition. The eye movement during the fixation can be up to 0.5◦, with the standard deviation up

to 0.2◦. Therefore, for each planed eye position, 30 images are generated; for each of them the

actual eye position used to generate the image is added with a Gaussian noise with zero mean and

standard deviation of 1.7◦. The average of the estimated pupil center (shape) for these 30 images

is used as the pupil center (shape) for one known eye position.

For the second group of images, the pupil center is also estimated, and with the projection pa-

rameters obtained in the calibration step, the 3D eye position is calculated according to the method

in Section 2.3.2. The estimated eye position is then compared with the ground truth to find out
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the error. For each image, besides interferences such as cornea reflections, occlusions, a Gaussian

noise equivalent to the camera static noise is added as well.

Figure 2.3 shows the measurement error based on three different calibration methods, Moore’s

method [18], Zhu’s method [19], and our method. Three different rows show the performance

with varying camera rotation offset θc, φc, ψc, and different α value, which characterizes the differ-

ence in vertical and horizontal rotation center. Each point is the average of 30 images and a 95%

confidence interval is plotted. From the plots, one can see that in all cases, the proposed method

performs consistently better than the other two methods. In row one when α = 0.2, by Moore’s

method, the vertical measurement is much more accurate than the horizontal measurement. This

is because in Moore’s method, the analytical solution to projection parameters is more dependent

on the vertical pupil location; this results in large error in the horizontal estimation when the hori-

zontal rotation center is different from the vertical center. When α = 0, as shown in the third row,

by Moore’s method, the horizontal and vertical performance are in the same scale.

Comparing the first row and the second row, one can see that when [θc, φc, ψc] = [10◦, 10◦, 10◦],

the difference in the performance of Zhu’s method and our method is larger than the case when

[θc, φc, ψc] = [0◦, 0◦, 10◦]. That is due to the fact that in Zhu’s method, the torsional camera rotation

offset ψc is modeled explicitly, and the horizontal and vertical camera rotation offset θc, φc is not

modeled explicitly.

In the third row, when [θc, φc, ψc] = [10◦, 10◦, 10◦], and α = 0, Moore’s method performs better

than Zhu’s method. The reason for that is that Moore’s method modeled all three camera rotation

offset, but not α, and in contrast, Zhu’s method modeled α, but not two of the camera rotation

offset, θc, φc.
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Measurement Error When the Camera Offset θc = 10°, φc = 10°, ψc = 10°, and α = 0.2°
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Measurement Error When the Camera Offset θc = 10°, φc = 10°, ψc = 10°, and α = 0

Figure 2.3: Measurement error with different calibration methods. The star data points show the per-
formance of Moore’s method, the circle data points show the performance of Zhu’s method,
and the dot data points show the performance of our proposed method. The left column
shows the cases when the eye only moves horizontally, i.e., φ = 0◦. The middle column
shows the same plots as the left column at a finer scale in the Y axis. The right column
shows the cases when the eye only moves vertically, i.e., θ = 0◦. Note that the right column
has the same scale in Y axis with the middle column.
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Figure 2.4: Measurement error with different calibration methods. The star data points show the per-
formance of Moore’s method, the circle data points show the performance of Zhu’s method,
and the dot data points show the performance of our proposed method. The left column
shows the cases when the eye only moves horizontally, i.e., φ = 0◦. The right column
shows the cases when the eye only moves vertically, i.e., θ = 0◦. Note that the right
column has different scale in Y axis with the first column.
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Figure 2.4 shows the performance by different calibration algorithm with varying α. Each point

is the average of 30 × 42 images in 42 different eye positions, and the 95% confidence interval is

plotted as well. In the first row, when the camera rotation offset is [0◦, 0◦, 0◦], Zhu’s algorithm per-

forms similar with our algorithm although slightly worse, and Moore’s algorithm performs similar

in vertical measurement but worse in the horizontal measurement with increasing α. This is due to

the fact that in Moore’s method, α is not modeled and the estimation of projection parameters are

more based on the vertical pupil position.

In the second row when the camera rotation offset is [0◦, 0◦, 10◦], Zhu’s algorithm performs sim-

ilar with our algorithm since ψc is modeled explicitly, while the performance of Moore’s method is

highly dependent on α. In the third row, when the camera rotation offset is [10◦, 10◦, 10◦], Moore’s

algorithm performs better than Zhu’s method in the vertical measurement and also in the horizontal

measurement when α is small. That is again due to the fact that Zhu’s method modeled α but not

θc, φc, and vice versa for Moore’s method.

In all cases, the proposed method performs consistently better than the other two methods. In

Table 2.3, the average and maximum measurement error are shown for a typical setting of camera

rotation offset [10◦, 10◦, 10◦], and α = 0.2. One can see that for the proposed method, there is an

order of magnitude improvement for the average measurement error compared with the other two

methods.

2.5 Summary

We proposed a new method for calibration in horizontal and vertical eye position measurement,

which can also be needed for geometric compensation in torsional measurement. Previous works
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Horizontal Vertical

Method Avrg error Max error Avrg error Max error

Moore’s Method 1.85525 6.91488 0.37983 2.66614

Zhu’s Method 0.58703 1.85614 0.83693 2.99331

Our Method 0.01255 0.04043 0.01355 0.07796

Table 2.3: Measurement error when the camera rotation offset is [10◦, 10◦, 10◦], and α = 0.2

either ignore the horizontal/vertical rotation offset between the head frame and the camera frame,

or approximate the imaging procedure as an orthographic projection, or assume a single center for

horizontal and vertical eye rotation. These approximations produce large errors when the eye is

at a large angle. With our proposed method, by explicitly modeling the imaging procedure as a

perspective projection, considering all three rotation offsets between the head frame and the camera

frame, and by modeling the eye rotation as a two-radius model, i.e., distinct horizontal and vertical

rotation center, we have a more accurate model for the eye movement. With the help of linear and

non-linear numerical methods, an algorithm is designed to solve the projection parameters during

the calibration and calculate the horizontal and vertical eye rotation angles during online tracking.

The calibration algorithm is implemented in Labview. It takes less than 1s to finish, which is

acceptable for both the subject and the operator. The run time to recover the 3D eye position

from pupil center during tracking is around 0.01ms, which does not affect the online tracking

speed at 100 − 300 frames/second. Simulation results show that the proposed method brings the

average error in measurements down to less than 0.02◦ for a wide range of eye position for both

horizontal and vertical eye position, while the current best available method has an average error

of 0.59◦, 0.84◦ for horizontal and vertical eye position respectively. As will be shown in the next
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chapters, this improvement has serious implications and benefits.
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Chapter 3

The Simulation System

3.1 Background and the Importance of Ground Truth

Video camera-based eye tracking systems are gaining more importance for their non-invasive na-

ture and convenience of operation. In diagnosing and managing (e.g., rehabilitation) of balance

disorders and other health problems, such eye measurement systems may play a key role. How-

ever, it is still difficult to evaluate and compare the performance of eye tracking systems and algo-

rithms in terms of their accuracy, robustness, and capability to handle artifacts including occlusion

and illumination changes. Although comparing the performance of video-based systems with the

search-coil systems [9, 10] is one way for evaluation; however, this can be expensive and cumber-

some.

The difficulty in evaluating such systems lies in the fact that no ground truth for the eye position

is easily available. There is a number of video-oculography (VOG) systems available on the market

and introduced in the literature [22–24]. To the best of our knowledge, however, there does not exist

a software system that can produce realistic eye images in different positions, and provides the true
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eye position that can be used for the evaluation of eye tracking systems. In this chapter, we present a

novel eye-movement simulation system that generates realistic eye images and provides the ground

truth. It can be used to evaluate the performance of different VOG systems or algorithms in tracking

the horizontal, vertical and torsional positions. The simulation system uses a few samples of real

eye images captured in known positions, and uses vision techniques to synthesize images in other

user-specified positions. The system is also capable of simulating artifacts such as reflections,

illumination changes, eyelid drops, etc. It provides a cheap, yet powerful and convenient way to

evaluate the performance of eye tracking systems.

3.2 Proposed System: A Novel Simulation System Generating

Realistic Eye Images

3.2.1 Simulation of the Projective Geometry for the 3D Eye Movement

The uniqueness of the system is that the synthesized images are based on real captured eye im-

ages. This ensures that the images generated have realistic pupil/iris features, noise level, and

interferences, etc.

The input to the simulation system are nine template images captured in nine different known

eye positions during calibration, as presented in Section 2.4. The projection parameters Mr, α

are calculated according to the calibration procedure as well. We developed a software to semi-

automatically segment the pupil area, iris area, and the entire eye ball area between two eyelids.

The eyelid area that can deform during eyelid movement are hand segmented for each image.

Parameters including pupil center, pupil radius, and iris radius are calculated from each image.
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Statistics including mean and variance for each area is calculated and saved. Based on the images

and segmented areas, a soft 3D eye model is established. After obtaining the 3D eye model,

the simulation system can then turn the eyeball and generate eye images by applying projective

geometry.

Figure 3.1-(a) shows the diagram of the eye structure, and Figure 3.1-(b) shows a picture of the

eye. The eyelids, eyelashes, pupil and iris area and location of cornea are shown. The geometry

and photometric property of the eyeball, pupil, iris and cornea affects the resulting image; hence

all these need to be simulated properly while synthesizing new images. In the eye model, the

pupil/iris area is modeled as a plane in the space. The cornea and sclera area are modeled as sphere

surfaces. Since only the pupil/iris area is where features are usually used for eye tracking, we

ignore the detailed features in the sclera area, and only use its statistics to generate the pixels in

the synthesized images. The cornea itself is transparent but reflections of lighting LED can act as

interference to eye tracking. Simulation of cornea reflections is presented in the next section.

As to the the iris/pupil area, since we already know the projection parameters Mr, α, with nine

images and their position information available, it is possible to reconstruct the plane in the 3D

space up to a scale factor. As long as the same scale factor is used to synthesize new images, the

new images will be at the same scale as the real image. However, from the following analysis one

can see that it is actually not necessary to reconstruct the plane explicitly to render new images.

To generate an image in a new eye position, for each pixel at [u, v]T in the iris/pupil area, one

needs to calculate its gray value. This is realized by locating its corresponding point in the 3D eye

model with coordinate vector [xe, ye, ze]T , and then its corresponding position in one of the nine

template images [ut, vt]T . Then the pixel value of point [u, v]T in the new image is set equal to the

pixel value of [ut, vt]T in the corresponding template image. Since ut, vt are usually floating point
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Figure 3.1: (a) Diagram of the eye structure, (b) A picture of the eye.

variables, their pixel values are the interpolated values from the neighboring pixels.
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in which θ, φ, ψ is the 3D position of the eye for which a new image is to be rendered. Let
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Equation (3.1) can be rewritten as:
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If one plans to synthesize images for the same eyeball in a different environment, e.g., different

offset angles between the camera and the head frame, one needs to simulate the camera geometry

for different settings. In this case, the coordinate vector of pixels in the new image can be written

as:
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where M∗
r , α∗ = t∗

r∗p
are the new projection parameters. Note that this set of projection parameters

may be different from the parameters we obtained from the calibration procedure. Since θ, φ, ψ
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are known, we can solve (3.4) for xe

rp
and ye

rp
as follows:
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in which,

U = M∗
r
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The relationship between the coordinate vector of a pixel in the template image and the coor-

dinate vector of the actual piont in the 3D space is determined by the imaging process while the

image is captured:
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From (3.5) and (3.6), one can solve for the pixel position [ut, vt]T in the template image, which

corresponds to the same physical point in the 3D space as the pixel in position [u, v]T in the

rendered image. In (3.6), θt, φt are respectively the horizontal and vertical position of the eye when

the image is captured. It is assumed that the torsional angle φt is zero. Mt, α are the projection

parameters obtained from calibration. As the first choice, the template image in the center position

(θt = 0, φt = 0) is always used. However, there is a possibility that part of the iris is occluded

by eyelids or cornea reflections. In this case, another template image is tried at random until a

template image is found in which the part of the iris is visible. As the last step of the geometric
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simulation, we set the pixel gray value in the new image to be equal to its corresponding pixel gray

value in the template image:

Ig(u, v) = Ig(ut, vt) (3.7)

We will see in the next section that, because of illumination change, new components need to be

added for the gray value.

3.2.2 Photometric Simulation

In the previous section, it is assumed that there is no illumination change when the eye rotates,

i.e., the same part of the iris produces exactly the same pixel gray value at different angles. This

is not exactly true in reality. The LED light sources are usually close to point sources and they are

located close to the eye ball. They shed different amount of light onto the iris plane when the plane

is at different angles, and therefore results in different gray value in images. The surface of cornea

will produce both reflecting and diffusing light. The consequence is that the images show various

illumination changes when the eye is at different angles. The cornea reflections change their shape

and location during eye motion as well. An eye tracking system that does not deal with these

factors is very likely not to be robust. Therefore, to evaluate eye tracking systems and algorithms,

photometric simulation is important to generate realistic images for various eye positions.

The LED light sources are modeled as point sources. In general, the radiance at a point P on the

object surface is:

L(P, θo) =
∑

i

ρ(P, θo) · Bi(P ) =
∑

i

ρ(P, θo)
N(P ) · S(i)

r2
i

in which θo is the direction of the outgoing light, N(P ) is the surface normal, S(i) is the direction

of light source i, ρ(P, θo) is determined by the surface material and is dependent on the outgoing
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direction, and ri is the distance to the light source.

The iris surface is more like a diffuse surface, so it is modeled as a Lambertian surface, i.e., a

perfect diffuse surface, for which the radiance Liris(P, θo) can be written as:

Liris(P, θo) =
∑

i

Liris(i, P, θo) =
∑

i

(

ρ1(P )Bi(P )
)

,

in which ρ1(P ) depends on the surface material but does not depend on outgoing direction θo. The

cornea reflection is a glossy surface, but also has some diffuse. Therefore, we model the cornea

surface reflection as a combination of a Lambertian component and a specular component. We use

the common Phone’s model as shown in Figure 3.2 to approximate the specular component of the

cornea surface reflection from source i as:

Lc(i, P, θo) =
∑

i

(

ρd Bi(P ) + ρs Bi(P )cosn(θs(i) − θo)
)

,

in which θs is the direction of specular direction, and θo is the direction of the outgoing light, and

ρs, ρd depend on the surface material.

Assuming that the camera response, i.e., the gray value in the image I(P ), is linear in the surface

radiance, we have:

I(P i) ∼ Liris(Pr, θo) +
∑

i

Lc(i, Pc, θo)

∼
∑

i

(

ρ1(Pr)
N(Pr) · S(i)

r2
i

+
(

ρd + ρscos
n
(

θs(i) − θo

))N(Pc) · S(i)

r2
i

) (3.8)

in which, θo is the camera direction relative to the surface, P i is the image point, and Pr, Pc are the

corresponding point on the iris and on the cornea, respectively. In the photometric simulation, the

values of ρ1, ρd, ρs are selected so that the gray value of pixels generated are close to the template

images, which are captured during the calibration process and serve as the input to the simulation

system.
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Figure 3.2: Phone’s model used to model the specular component of the cornea surface reflection.
Specular surfaces usually reflect light into a lobe of directions around the specular direction,
and the reflection intensity depends on the direction.

To determine the location of cornea reflections in the image, we model the cornea as a spherical

surface. Given the LED positions in the space, we determine the reflection center on the surface and

then bright spots are projected onto images. This simulates the position change of the reflections

in the images when the eye moves. In Figure 3.3, both the sclera surface and the cornea surface

are modeled as sphere surfaces. In the eye frame, we have:

−−−→
CeCc =

[

0, 0,
√

R2
eye − R2

i −
√

R2
c − R2

i

]T

,

−−→
CcP =

−−→
CeP −

−−−→
CeCc,

−−→
PPL =

−−−→
CePL −

−−→
CeP ,

−−→
PPC =

−−−→
CePC −

−−→
CeP .

(3.9)

in which, PL is the position of the LED source in the eye frame, and PC is the position of the

camera in the eye frame. Therefore, the normalized surface normal vector is &n =
−−→
CcP

||
−−→
CcP ||

, and the
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Figure 3.3: The eye model used to calculate the position of reflections in the image. Reye, Rc, Ri

are radius of the eye ball, the cornea sphere, and the iris plane. The specular direction
and the light source direction are symmetric with respect to the surface normal. For each
different eye position, the light source position and the camera position coordinates need
to be recalculated (transformed into the eye coordinate system).

normalized vector for the source direction is: &l =
−−→
PPL

||
−−→
PPL||

, in which the notation ||&v|| represents

the L2 norm of a vector &v. The normalized vector in the specular reflection direction can be written

as:

&s = (2 · &n ·&l) &n −&l.

The vector &s is then compared with the camera direction, and the point with the smallest disparity

is considered the center of the reflection.
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3.2.3 Simulation of the Eyelid Movement

Occlusions from the eyelash and eyelids are common artifacts in eye images. A good tracking

algorithm should be robust to these interferences. To introduce realistic interferences, we simulated

the eyelid movement as well.

In the template image, the software prompts the user to hand mark the upper eyelid and lower

eyelid area. Figure 3.4 shows the deformation process for the upper eyelid area. The deformation

process for the lower eyelid is done in a similar way. When eyelid movement is desired, e.g., an

upper eyelid drop of d pixels, the middle point Mo is moved down d pixels to Mn, and the new

upper eyelid curve is fitted as a circle from the three points E1,Mn, E2. The gray value for the

eyelid deformation area in the new image In(x, y) is related with the gray value for the area in the

old image Io(x, y′) according to the following formula:

In(x, y) = Io(x, y′),

y′ =
(

y − S(x)
)

Mo(x)−S(x)
Mn(x)−S(x) + S(x).

(3.10)

3.3 Results

In this section, we present some examples for template images, the preprocessing procedure, and

examples of some synthesized images. Figure 3.5 shows the original template image captured, the

preprocessed template images with pupil center or eyelid boundary marked, and the segmented

region in the image.

Figure 3.6 shows four images with different eyelid movement while the eye is in the same posi-

tion.

Figure 3.7 shows four images when the eye is in different positions, and with synthesized cornea
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new upper eyelid

original upper eyelid

E E

d

M

M

starting curve of the 

upper eyelid area

S

Figure 3.4: Deformation of the upper eyelid. The starting curve of the upper eyelid area and the
original upper eyelid is hand-marked by the user. E1, E2 are the beginning and ending
columns of the eyelid deformation area. d is the amount of eyelid movement. A column
line intersects the starting curve, the original upper eyelid and the new upper eyelid at
S(x), Mo(x), Mn(x) lines, respectively.

Figure 3.5: Preprocessing of template images. The upper left image shows the template image cap-
tured. The upper right image shows the image with the cornea reflection filled and the
pupil center marked. The lower left image shows the marked eyelid boundary. The bound-
ary of the upper eyelid area is marked in blue and the boundary of the lower eyelid area is
marked in red. The lower right image shows different regions segmented.

reflections.
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Figure 3.6: Images with different eyelid movement while the eye is in the same position

Figure 3.7: Images with different eye movement

3.4 Summary

In this chapter, we presented a simulation system that can generate video sequences in different

known eye positions based on real captured eye images. Three dimensional eye movement is sim-

ulated by applying geometric transformation for the imaging process. Photometric simulation is
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implemented to simulate different reflection properties of the iris and the cornea. Eyelid movement

is simulated as well to add interferences similar to the real situation. These generated images can

be used to evaluate the performance of calibration or eye tracking algorithms since there is ground

truth information available for the eye position.
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Eye Movement Tracking
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Chapter 4

Horizontal and Vertical Eye Tracking

4.1 Existing Online Eye Tracking Systems

As mentioned before, a high-speed, accurate and online eye position measurement is desired for

both laboratory and clinical usage. Saccadic eye movement can approach the speed of 700◦/sec

and can have dynamics in the time frame of tens of milliseconds. It is essential for a good eye

tracking system to run at high-speed to capture this dynamics, which are important for diagnostic

purposes. Digital image based online eye tracking systems available in industry typically run at

60 Hz for binocular systems. To capture subtle eye movement in saccadic motion, a high time

resolution of 150 Hz for horizontal and vertical tracking is a must [25]. There are some existing

systems that can capture eye movement at high frame rate. Clarke presents a system at a sampling

rate of 400 Hz by using smart sensors and a custom-designed DSP/FPGA architecture for pre-

processing [26]. The SMI (SensoMotoric Instruments) system reaches a speed of 500 Hz and also

involves specialized hardware [22]. The customized hardware design induces considerable cost

and development time.
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Detecting the pupil is the most frequently used method to track the horizontal and vertical eye

position [27, 28]. Unfortunately, most early pupil detection systems make the oversimplifying

assumption that the pupil is circular, and that the pupil’s center is at the mass center of the circular

object; the algorithm is commonly referred to as the center of mass algorithm. In practice, even

a circular pupil appears elliptical in eccentric eye position, and the pupil “object” is frequently

occluded by the eyelids, eyelash and cornea reflections. Zhu et al. proposed to use the curvature

characteristics of the pupil boundary and fit them to an ellipse [29]. This technique gives a more

robust and accurate estimation of the pupil center. Starburst is an eye tracking system that uses

a hybrid algorithm combining feature based (edge point extraction) and model-based approaches

(ellipse fitting) [28]. However, the complexity of these methods adversely affects the processing

rate.

In a typical pupil detection procedure based on the center of mass algorithm, the captured image

is first transformed into a binary image by a user-set threshold. Everything under the threshold

is labeled as “one” (considered object pixels) and everything else is labeled as “zero” (considered

as the background). Then, one can use a blob analysis algorithm such as the Labview Virtual

Instrument (VI), “IMAQ Complex Particle”, to find objects (consisting of connecting object pixels)

in the image. Finally, the software chooses the largest object, which is the pupil, and calculates the

geometric center of the object.

For images captured with a typical head-mounted camera, a 320 × 240 pixel region of interest

(ROI) window is usually sufficient to capture the whole dynamics of eye movement assuming the

eye is right at the center of the ROI window when the subject is looking straight ahead. However,

because of variations on people’s shape, sometimes it is difficult to adjust the wear-on goggle to

make sure that the eye is right at the center of the captured image area. Therefore, it is necessary
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to capture a larger image area and then set the ROI window for processing. In addition to the

processing time, computation cost of capturing the images, user interface monitoring, and image

displaying also slow down the overall frame rate.

The aforementioned factors limit the performance of the binocular system. If the full size images

are captured and processed directly, the maximum system frame rate (image capturing and interface

updating time included) one can currently achieve is about 80 Hz on a Pentium IV computer

system. We aim to find a software solution to increase the processing rate.

4.2 Proposed System: A High-Speed Online Eye Tracking Sys-

tem

This chapter presents a high-speed head-mounted binocular eye tracking system we have recently

developed. The herein reported results clearly indicate that it is possible to measure the eye move-

ment at a speed of 150 Hz by just using a general purpose computer system. The system utilizes

off-axis infrared lighting and the black pupil technique so that the pupil area can be easily extracted.

To detect the pupil center at high-speed, the system employs a dual-working-mode mechanism and

a two-step processing algorithm. First, an approximate pupil location is searched in a low reso-

lution image, then the image area around the approximate location is processed and an accurate

pupil center is calculated. We observed that droopy eyelids’ partially covering the pupil is a quite

common phenomenon. Hence, a symmetric mass center algorithm based on geometric proper-

ties of ellipses is developed to achieve a more accurate measurement when the eyelid is partially

occluded.

The approach presented in this section for finding pupil center is an improvement over the naive
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center of mass algorithm. The symmetric mass center algorithm we developed gives a more robust

measurement for the eye position. Processing frame rate is enhanced by eliminating the bottleneck

in transferring and processing of the entire image. Locating the approximate position of the pupil

at a low-resolution image can significantly decrease the region that needs processing for the fea-

ture extraction step. Our algorithm improves the accuracy compared with the naive mass center

algorithm while maintaining the high-speed operation.

4.2.1 System Overview

Component type Specification Number

computer desktop system Pentium IV 3 GHz CPU 1

1G RAM, 800 MHz bus

software platform Windows XP Pro, Labview 7.1 1

interface Card IEEE 1394b Fireware, 2 Port 1

high-speed camera Point Grey DragonFly Express 2

Table 4.1: System configuration

Table 4.1 shows the main components of the system. Figure 4.1 shows the goggle (the high-

speed eye tracking system) with the two cameras installed. Two hot mirrors are used to reflect

the eye images to the cameras and at the same time allow a broad viewing angle for the subjects.

Infrared LED is used for illumination and infrared pass filters are installed before the cameras to

exclude light from the environment. Two cables connect the cameras to the IEEE 1394b Fireware

card installed in the computer desktop system.
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Computer Desktop 

System User Interface

1394 Fireware cables connecting the 

cameras to the desktop computer system

(1) (1)

(2) (2)

(3)
(3)

(a)

(b)

A test subject wearing 

the goggle

Figure 4.1: (a) The system components.

(b) A subject wearing the goggle with two cameras installed. The numbers in the picture

indicate: (1) Two cameras installed on the goggle, with infrared pass filters installed before

the camera lens. (2) Hot mirrors reflecting eye images to cameras. (3) 1394 Fireware cable

connecting the cameras to the desktop computer system.

The images captured by the cameras are transferred to the desktop (or laptop) computer. The

image processing software we developed extracts the pupil and calculates its geometric center.

From the pupil center, the horizontal (θ) and vertical (φ) rotation angle of the eye are calculated

based on projection parameters according to the approach introduced in Section 2.3.2.

The software first works in the low-speed mode when full size images are captured and displayed

so that the operator can select the ROI; then the software can be switched to the high-speed mode
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when only the partial image inside the ROI window is captured. In the high-speed mode, a two-

step processing algorithm first processes the image in the ROI window at a low pixel density

resolution to find the approximate location of the pupil. After that, a tiny trace window containing

the entire pupil area is defined and further processing is done in the trace window to calculate the

precise location of the pupil center. The system increases the processing rate for horizontal and

vertical eye position measurement up to 150 Hz on a Pentium IV 3 GHz computer system for both

cameras, displaying measurement results and captured eye images on the interface. It achieves this

high-speed by eliminating the bottleneck caused by capturing and processing the full size images

without sacrificing convenience and spatial resolution.

4.2.2 High-Speed Pupil Detection: The Dual-Mode Capturing Software and

the Two-Step Processing Algorithm

To enhance the processing rate, we observed that the size of the image captured and processed is

the key to the problem. The pupil itself is pretty small, typically less than 120 × 120 pixels, but it

moves around. If one can find the approximate location of the pupil first, one can then process a

much smaller image to find the more accurate location of the pupil center.

We developed the new dual-mode capturing software with a two-step processing algorithm so

that it can achieve a high frame rate without sacrificing the accuracy. We first capture and pro-

cess the images at full size and full resolution (640 × 480) using the center of mass algorithm

as described in Section 4.1. The operators can set the threshold and adjust the ROI window in

this low-speed mode. After that, the user can switch to the high-speed mode. In the high-speed

mode, the system captures the partial image in the ROI window specified above. This makes the
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Fireware 1394b interface board capable of transmitting images at a higher frame rate and reduces

the processing time as well.

To reach an even higher speed, we developed an algorithm to first track the approximate position

of the pupil and then determine a tiny image window enclosing the pupil for further processing.

The image is downsampled at 1
4 ∗ 1

4 rate of the original resolution, and again the center of mass

algorithm is used to locate the approximate pupil center. Then, the system specifies a tiny trace

window slightly larger than the detected pupil area so that we do not lose any pixels. We process

the tiny image at full pixel density resolution using the symmetric mass center algorithm described

below to locate the accurate position of the pupil center.

 

    
  

Figure 4.2: The upper row shows a full pixel density resolution grey-level image (the partial image

defined by the ROI window), with the small threshold image inlayed on the right location.

The lower row shows, from left to right, the downsampled grey-level image, the threshold

image of the downsampled image, the grey-level image of full pixel density resolution in

the tiny trace window, and the small threshold image in the tiny trace window.

Figure 4.2 shows the grey-level images and threshold images in different resolution. “Object”

pixels close to the image borders are caused by camera distortion; they can be eliminated by the
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simple criteria of being connected to the borders, and this step can be completed in the low-speed

mode. By implementing the dual-mode capturing and the two-step processing algorithm described

above, the current software reaches a final system speed of 150 Hz (binocular system) in the high-

speed mode, including proper image and data display on the user interface.

4.2.3 The Symmetric Mass Center Algorithm

S E

S E

S E

O

O

O

Elliptical pupil area that is 

partially occluded

Dropped eyelid occluding 

part of the pupil area

Figure 4.3: Locating the center for an elliptical pupil area that is partially occluded. The algorithm

finds the maximum parallelogram S1E1E3S3, and calculates the mass center of the area

enclosed by
!

S1S3

!
E3E1

In the high-speed mode, after the approximate pupil location is obtained, we extract the image

in the tracing rectangle at full pixel density resolution and apply a new symmetric mass center

algorithm to calculate the pupil center coordinates. The center of mass algorithm assumes that the

pupil area can be approximated by a circle or an ellipse. This assumption will be violated when the

eyelid covers part of the pupil area and it leads to large measurement error. The symmetric mass

center algorithm utilizes only the non-occluded, rotational symmetric portion of the pupil area to

estimate the pupil center.
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Algorithm 2 Pseudo code for the symmetric mass center algorithm
Input: ImIn (input image)
Output: (ox, oy) (pupil center)
(ox, oy) = mainFindPupilCenter(ImIn)

Imt = DownSample (ImIn)
Imb = NMassCenter (Imt, ImIn)
(ox, oy) = SymmetricMassCenter (Imb)
return (ox, oy)

SymmetricMassCenter (Imb)
for i= each image line in Imb do
{Si, Ei} = ScanImgLine (Imb, i)
Leni = ‖SiEi‖

end for
for i= each image line in Imb do

parag(i) = Find Parallelogram (Imb, Len, i)
cen(i) = Find Parallelogram Center (parag(i))

end for
cluster cen = Find the statistic cluster center of all cen(i)
maxParag = FindMaxParag ( parag(i), cluster cen)
LetmaxParag be the maximum parallelogram, S1E1E3S3

(ox, oy) = PMassCenter (Ims, S1E1, S3E3)
return (ox,oy)

Suppose that an ellipse is partially occluded as shown in Figure 4.3, the mass center of the non-

occluded area will not yield the correct ellipse center. From geometric properties of ellipses, we

know that if we find the maximum parallelogram S1E1E3S3, the mass center of the area enclosed

by
!

S1S3

!

E3E1 is a good estimate of the ellipse center, given a significant area of the ellipse is not

occluded. We designed our symmetric mass center algorithm according to this principle, and the

pseudo code is shown in Algorithm 2. In the code, NMassCenter is the procedure that implements

the naive mass center algorithm; it finds the rectangle area around the pupil, and outputs a small

binary image of the pupil with full pixel density. ScanImgLine is a procedure that locates the start-

ing and ending object pixel in the image line. Find Parallelogram is the procedure that searches

for a matched image line (having the same length of object pixel) for current image line i, and

outputs the parallelogram formed by the current image line and its matched line. FindMaxParag is
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the procedure to find the maximum parallelogram, which has the maximum height and has a center

close to cluster cen. PMassCenter finds the mass center of the partial object falling between line

S1E1 and line S3E3; they represent respectively the top and bottom line of the “symmetric” part of

the ellipse.

4.3 Results

4.3.1 Speed of Horizontal and Vertical Position Measurement

We tested the processing rate of the software with a Pentium IV 3 GHz computer. The data is

obtained by applying different algorithms on the image of same size, and without including the

time for acquiring the image from the cameras and the time for user interface updating.
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Figure 4.4: Processing rate with different ROI size. By implementing the two-step processing algo-

rithm, the processing rate is about 2-3 times faster than locating the pupil center directly at

full pixel density resolution.

Figure 4.4 shows the result. The solid line with triangles shows the processing rate (for single

image) in the low-speed mode when pupil center is located in one step. The solid line with asterisks
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shows the processing rate (for single image) in the high-speed mode when the two-step algorithm

is applied. The x axis is the normalized image size in the ROI window defined. Table 4.2 lists

the normalized image sizes and the corresponding dimensions of the ROI window. Although this

is not the final system speed, it shows the effect of employing the two-step processing algorithm.

Observe that the new algorithm introduced a considerable performance improvement in terms of

processing rate.

ROI size 400 × 300 380 × 250 340 × 260 335 × 250 310 × 230

normalized size 1 0.9 0.8 0.7 0.6

Table 4.2: Dimensions of the ROI window and the corresponding normalized image size

4.3.2 Accuracy of the Symmetric Mass Center Algorithm

In this section, we compare the accuracy of measured eye position for different algorithms by

artificially varying the degree that the pupil area is occluded. The pupil center obtained when the

pupil is not occluded is considered the ‘true’ center. Figure 4.5-(a) shows an eye image with the

full pupil area viewable on the left and an image with pupil partially occluded on the right. The

portion of pupil boundary that is not occluded is highlighted in red color.

Experiments are performed to compare three different algorithms: the original naive center of

mass algorithm, the algorithm that uses the midpoint of the maximum horizontal axis as the pupil

center (the midpoint algorithm), and the symmetric mass center algorithm. Using the simulation

system introduced in Chapter 3, 3780 images are generated in different eye positions and with

different levels of occlusion. The average error and the 95% confidence interval on horizontal and

vertical measurement for each occlusion level is calculated; the occlusion level is indicated by the
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percentage of pupil boundary being occluded. In Figure 4.5-(b), the left figure shows the error

in the horizontal measurements, and the right figure shows the error in vertical measurements.

The line with crosses shows the result of the naive center of mass algorithm; the line with circles

shows the result of the algorithm using the midpoint of the maximum horizontal axis, and the line

with dots shows the result using the symmetric mass center algorithm. The plot shows that when

the percentage of the pupil boundary being occluded increases, both the horizontal and vertical

measurement error for the naive mass center algorithm increases significantly. For the midpoint al-

gorithm, the performance is relatively stable over different occlusion levels, but it performs worse

than the other two algorithms when the occlusion level is less than 20%. The reason is that the

midpoint algorithm, by nature, is robust to the major source of occlusion: the upper/lower eyelid

movement, but it is sensitive to the occlusion of cornea reflections and image noises. The sym-

metric mass center algorithm is robust to most occlusions and the performance remains stable over

different degrees of occlusion. In most situations, the symmetric mass center algorithm performs

better than the other two algorithms.

Tables 4.3 shows the overall average measurement error for the three algorithms. Compared with

the best of the other two algorithms, the symmetric mass center algorithm provides an improvement

of about 27% in horizontal measurements and 66.6% in vertical measurements.

Algorithm Naive mass center Midpoint Symmetric mass center

horizontal error 0.3418◦ 0.3129◦ 0.2285◦

vertical error 1.2720◦ 0.8946◦ 0.2989◦

Table 4.3: Overall performance of different algorithms
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Figure 4.5: Measurement results for different algorithms when the pupil area is partially occluded:
(a) shows the eye images and highlights un-occluded part of the pupil boundary in red;
(b) plots the measurement results for different algorithms in terms of percentage of the
pupil boundary being occluded.

4.4 Summary

While many eye-tracking systems have been developed before, we have developed a new video-

based eye tracking system with high temporal resolution using only general-purpose computing

and image capturing devices. More specifically, in this PhD dissertation, we have presented a high-

speed eye position measurement system that does not sacrifice either accuracy or convenience.
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The high-speed 2D eye position measurement system achieves a binocular processing rate of

150 Hz for horizontal and vertical eye measurement, including necessary results and video dis-

playing on the interface. The system employs a dual-mode capturing mechanism so that only the

necessary part of the entire image is captured but at the same time maintains the convenience of

operation. To calculate the pupil center, we designed a two-step processing algorithm; i.e., first

processing a downsampled image to find the approximate location of the pupil and then processing

the full resolution image in the small window at the approximate pupil location. By this method,

we achieved the high processing rate desired, and at the same time, the new algorithm improves

the accuracy in measurement by up to 66.6%.
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Torsional Eye Tracking

5.1 Existing Torsional Eye Tracking Methods

Most torsional eye position measurement systems use one of two general methods: the tracking of

natural or attached landmark [30] on the eye, or some variant of the polar cross correlation methods

[18, 31–34]. Applying artificial landmarks to the eye simplifies the computation for torsional

measurement. However, the invasive nature of these tracking methods makes them unsuitable for

clinical use. The polar cross-correlation methods rely on the natural radial striation pattern of the

iris to measure the torsional eye position. Polar cross-correlation methods compare only hundreds

of pixels along a circular sampling path (the iral signature) around the pupil center. In contrast

to comparing the whole 2-D images with hundreds of thousands of pixels, these methods clearly

simplify the computation. The reference signature is the signature sampled from the reference

image selected by the operator through the system user interface; the test signature is the signature

sampled from each subsequent image by the system. The algorithm calculates the cross-correlation

function of the reference signature and the test signature. The shift in the peak of the cross-
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correlation function provides a measure of relative change in torsional position.

In the iral signature method for torsional eye tracking, even a small error on the pupil center

detection leads to a significant change in the iral signature. To avoid this, Groen presented an

algorithm in [35] that takes a wide strip of an annulus instead of an iral signature along a thin

line. The method selects and recovers a set of 36 significant patterns in the iris automatically

using pattern matching. Each relocated landmark results in a single estimate of the torsion angle.

A robust algorithm estimates torsion angle from this total set of individually determined torsion

angles, thereby largely correcting for errors that may arise due to misjudgments of the rotation

center. This method is only implemented off-line possibly because it does not satisfy the online

tracking requirement.

Guillemant et al. presented the neural networks method to detect torsion in [36]. They use

a combination of supervised and dynamic learning to identify the pupil, as well as iral patterns

that can be used in the measurement of ocular torsion. This method has the advantage that image

artifacts like reflections of the illumination lights from the cornea and occlusions of the pupil by

dropping eyelids are implicitly dealt with by the algorithm. However, the current version does not

take the distortion of the iral image in eccentric eye positions into consideration.

Lee et al. proposed a method for measuring ocular torsion using optical flow [37, 38]. This

method measures the displacement between reference and current image using spatial and temporal

gradient. Feature points are obtained from the images, and the relative optical flows of each point

are calculated. The feature points are selected according to the strength of corner on the signature

of iris. Iterative Lukas-Kanade algorithm is then used to calculate the torsion value. This method

is fast and can measure torsion value in real time at a speed of 2 ms per frame, but it is not robust

to pupil center misalignment and eccentric eye position.
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Ott and Eckmiller proposed a laser scanning ophthalmoscope that uses prominent structures of

the retina to determine ocular torsion [39]. This approach takes advantage of the fact that the

structure of retina is much more prominent than that of the iris under IR light. However, it requires

that the subject is looking straight ahead, and has the additional drawback that the camera obstructs

the field of view. This approach is therefore not generally applicable for clinical usage.

A template-matching technique is presented in [40] to calculate torsional eye position. The

algorithm samples two annular segments on the iris on two sides of the pupil center, and uses two

threshold values (one high threshold and one low threshold) to remove image pixels with grey

values outside of the range. It assumes that torsional rotation of the eye is limited to less than 2◦

between successive video frames. This algorithm is more robust compared to the cross correlation

algorithm and the optical flow based feature tracking systems. However, the method is not robust to

occlusions from other artifact, e.g., the dropped eyelid, eyelashes, and shadow. In the experiments

conducted we observed that sometimes it is difficult to distinguish the real iris pixel and artifacts,

by a simple pixel grey value threshold. In addition, the 2◦ limit between successive frames can

cause the testing result to fall into an erroneous “local minimum”; once the program generates an

error value because of eye blinking or occasionally blurred image, it is difficult to get out of that

mode.

Object tracking is a classical problem in image vision. Many methods including template track-

ing, and feature tracking are discussed in the literature [41–45]. A common problem with these

approaches is that the complexity of the model results in high computation cost, which limits their

use in applications with high-speed requirement. Jurie et al. introduced a template matching algo-

rithm in [46] to handle occlusions and illumination variations.

The robust template matching algorithm we will present to detect torsion movement in Sec-
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tion 5.2 is similar to Jurie’s work in the sense that we also separate the template into many small

segments. The key difference is, instead of calculating the motion of each small template inde-

pendently and then combining these motion parameters robustly, we eliminate the outliers in these

segments in each trial motion parameter and search for the best motion parameter that produces

the smallest error value.

5.2 Proposed System: The New Torsional Eye Tracking Algo-

rithm

This section presents an improved template-matching algorithm to reduce the effect of interfer-

ences to the iris pattern and to measure the torsion movement in a noisy environment, where the

image may undergo occlusion and illumination change. As usual, a circular reference template

around the pupil center is extracted at the reference location when the eye is looking straight

ahead. Then the reference template is compared with the test template sampled from the subse-

quent images, when the eye might have moved away from the original reference position, namely,

when the eye is in the test position.

Several mechanisms were developed to make the algorithm robust. First, we developed an iris

localization algorithm to eliminate artifacts, including occlusions from eyelids, shadows and eye-

lashes. The iris localization is performed while capturing the reference template and during the

calibration procedure, when the speed is not essential. In Zhu’s algorithm [40], two partial annuli

iris template on two sides of the pupil, each spanning 90◦ in the reference image, are used. Al-

though the method is effective in excluding the occlusion in a lot of cases, it loses some useful

iris information. Because most iris images have radial pattern, it is more important to include a
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large angular span for the iris template than increasing the radial width of the template. In the

calibration procedure, the torsion movement is also tracked based on the iris localization result.

Good frames with little occlusions are collected to compute statistics, e.g., mean and variance of

the cost function between the reference and the test template, which will be used later in the online

tracking process.

Second, we developed a robust template matching algorithm to calculate the torsion for each

frame during online tracking. One novelty of the proposed algorithm is that the reference template

is partitioned into many small segments. While evaluating each hypothetical torsion value, each

small segment in the reference template is compared with the corresponding area of the test tem-

plate by calculating a distance function. The cost function for the hypothetical torsion movement

is calculated by choosing half of the segments giving the smallest distance value and calculating

the distance function between these segments and the corresponding area in the test template.

The intuition behind the algorithm is that if the segment in the reference template or the corre-

sponding area in the test template is contaminated, the distance will be larger. When the evaluated

hypothesis is the real torsion movement, if assuming at least half of these segments are not con-

taminated, then at least half of these segments will give a very low distance function and hence a

low cost function for the hypothesis; while for other trial torsion values, taking the same number of

segments will result in a larger cost function. If more than half of the segments are contaminated,

e.g., during a blink, the image frame is usually ignored by detecting the pupil shape.

Thirdly, we employed an adaptive searching range in the tracking system. Inter-frame informa-

tion is previously used in Zhu’s algorithm to determine the searching range for torsion calculation

[40]; an inter-frame searching range of [lastTor−2◦, lastTor+2◦] is used, in which lastTor rep-

resents the torsion position of the previous frame. The benefit of this technique is that it reduces
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searching range and increases the frame rate, but once the tracking algorithm gives an incorrect

torsion value in one image frame, it cannot jump out of it and will result in numerous of incorrect

detection results afterwards, and eventually lose tracking. In our proposed system, the searching

range is adaptable, i.e., the algorithm will adopt the same small searching range as Zhu’s algorithm

during stable online tracking while the torsion value of previous image frame is reliable, and use

a larger searching range while the torsion value of previous image frame is not so reliable, and

consequently a small searching range is highly likely to give an incorrect estimation.

Lastly, to compensate for the geometric distortion, a new calibration algorithm and its corre-

sponding geometric transformation method is used to map pixels in the reference image to the test

image according to the homography obtained, as described in Section A.1, by setting the torsion

value to be zero.

5.2.1 Iris Localization Algorithm

The iris localization algorithm is based on the observation that the elliptical iris/sclera boundary

shape is occluded when there are artifacts in the image. Pupil location is always located first and

the horizontal and vertical eye position recovered using the method described in Chapter 2 and

Chapter 4. Knowing the pupil location, the imaging parameters, and the iris boundary shape in

the reference image, the iris boundary shape in the test image can be “predicted”. Pixels on the

predicted ellipse and its neighboring pixels are set as the mask (shapeMask) that will be used

for the next step of edge detection. Edge points from the cornea reflection is excluded by a mask

(refltMask) as well. In the calibration process when shape information is not available, the

shapeMask is set to all ones. In Figure 5.1-(a), the highlighted grey area is the mask from the

predicted ellipse boundary, and the blue area is the mask from cornea reflection to exclude edge
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(f) The boundary of the final determined 

iris area
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Figure 5.1: Intermediate results for iris localization

points. The final mask area is set as edgMask = shapeMask & (!refltMask).

To localize the iris area, we first find the ellipse that matches the iris/sclera boundary. A mod-
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ified canny-edge detector is first used in the previous mask area (edgMask) to find thinned edge

segments. The main modification to the original canny edge detector is that the magnitude value

is calculated as the gradient in the radial direction, and only one pixel is found in each radial di-

rection as the strong edge point. Edge points which have the x gradient magnitude larger than the

y gradient magnitude are put into the group identified by idx1, which has lower possibility to be

caused by eyelids or shadows. All the other points are put into another group identified by idx2.

Figure 5.1-(b) shows the results of edge detection. Red pixels are points that belong to group idx1,

and green pixels are points that belong to group idx2.

Based on the detected edge points, a RANSAC algorithm is performed to estimate the ellipse.

The metric for choosing an estimated ellipse over another is usually the number of edge points on

the ellipse. Sampson distance is calculated as the estimation for the distance from a point to the

ellipse. Edge points with Sampson distance lower than a threshold (1.5) are considered “on” the

ellipse. To avoid including edge points from the eyelids and shadows, instead of simply using the

number of edge points “on” the ellipse, we determined a metric that favors the edge points in group

idx1 than idx2. The following cost function is defined and the estimation with a lower value is

accepted as a better candidate in the RANSAC procedure.

costFun ! 10 ∗

[

2 ∗ EdgPtnNum − 2 ∗ Len
(

OnElp(idx1)
)

− Len
(

OnElp(idx2)
)

]

+2 ∗
∑

idx1

elpDist
(

OnElp(idx1)
)

+
∑

idx2

elpDist
(

OnElp(idx2)
)

,

where EdgPtnNum is the total number of edge points, OnElp is the function to find the subgroup

of points on the ellipse, Len is a function to calculate the size of the group and elpDist is a function

to calculate the Sampson distance. Figure 5.1-(c) shows the result of ellipse detected in pink color.

After the elliptical shape of the pupil boundary is determined, the algorithm searches for the

upper and lower limit of edge segments that are on the ellipse. Only two types of segments are

72



CHAPTER 5. TORSIONAL EYE TRACKING

included in this search: 1) the segments of which the percentage of points on the ellipse is higher

than a certain threshold (0.75); 2) the segments of which the percentage of edge points both on the

ellipse and belonging to group idx1 is higher than another threshold (0.5). Figure 5.1-(d) shows

edge segments included in the search in blue color and the four end points in green color.

After that, an upper line is drawn passing through the two upper end edge points, and lower

line is drawn passing through the two lower end edge points. The area enclosed by the iris/pupil

boundary, iris/sclera boundary, the upper line and the lower line is determined as the iris area.

Figure 5.1-(e) shows the two ellipses estimated and the two lines drawn, and Figure 5.1-(f) shows

the boundary of the final determined iris area in pink color.

Figure 5.2 shows the iris templates captured in two different eye positions and with different

eyelid occlusion levels. The two images in Figure 5.2-(a) show the iris area boundary in pink

color. The two images in Figure 5.2-(b) show the multi-pixel-wide iris template in red color.

The template includes the same number of pixels in each circumference. This template can be

unwrapped and can be shown as a square shape. Figure 5.2-(c) shows the unwrapped iris templates

in the upper part, and in the bottom part shows the corresponding masks (irisMask) deduced from

the cornea reflection and the detected iris area in the original test image. This irisMask is used in

the template matching algorithm we developed to calculate the torsion.
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Figure 5.2: (a) Boundary of iris area localized in pink color;
(b) The iris template position in red color;
(c) Top image: the unwrapped iris template, bottom image: the mask identifying real iris
pixels.
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5.2.2 The Robust Template-Matching Algorithm

The robust template-matching algorithm is described in six steps below. One advantage of the

algorithm is that the threshold to exclude “bad” segments is not a hard coded threshold and is

adaptable to different environments.

The robust template-matching algorithm

1. Sample signatures around the pupil center from the reference image. Multiple one-pixel-

wide signatures on circles with different radius are sampled from the reference image and

arrayed together to form a 2-D reference template. Let Ri,j be the normalized gray value of

each pixel in the template, in which i represents the sequence number of signatures in the

radial direction and j represents the sequence number of sampled pixels on a circle. The

sampling rate (samplRate) is usually 720 pixels to ensure a 0.5◦ degree resolution. Let

resl = samplRate/360.

2. Define the mask irisMask based on iris localization algorithm introduced in Section 5.2.1

to exclude cornea reflections and artifacts in the reference template.

3. Map each pixel on the reference template to the test image using the homography calculated

according to Section A.1, and obtain the gray values: Ti,j . Define a mask M t
i,j based on gray

value to exclude cornea reflections in the test image:

M t
i,j = imerode(Tmt

i,j), Tmt
i,j = Ti,j < Th.

4. Divide the reference template into many small segments, each having the same number of

neighboring pixels. Let pixels belong to segment k be represented by Sk.
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5. Shift the reference template within the range of SFT ∈ [s1, s2], search for the value SFTmin

that minimizes the cost function CFUN(SFT ).

6. Set αmin = SFTmin

resl
as the torsional rotation between the test image and the reference image.

In step 5, the cost function CFUN is computed as:

CFUN(SFT ) =

∑

S∗

k∈Gk

(

D(S∗
k , SFT ) ∗ Size(S∗

k , SFT )
)

∑

S∗

k∈Gk

Size(S∗
k , SFT )

, (5.1)

where D(S∗
k , SFT ) is the distance function of segment S∗

k , Size(S∗
k , SFT ) is the number of

“valid” pixels for this segment, and Gk represents the selected group of segments whose distance

function is less than the median value of all segments’ distance function for this hypothetical tor-

sion value:

Gk =
{

S
′

k

∣

∣

∣
D(S

′

k, SFT ) < Median{Sk}

(

D(Sk, SFT )
)}

.

The distance function , and the number of “valid” pixels of each segment is defined as:

D(Sk, SFT ) =

∑

Ri,j∈Sk

(∣

∣

∣
(Ri,j − Ti,j+SFT )

∣

∣

∣
∗ irisMask ∗ M t

i,j+SFT

)

Size(Sk,SFT ) ,

Size(Sk, SFT ) =
∑

Ri,j∈Sk

(

irisMask ∗ M t
i,j+SFT

)

.

(5.2)

In step 5, the searching range is determined adaptively. When the tracking starts, or just after

the pupil algorithm detects a blink, or when the minimum cost function of the previous frame is

beyond 2 standard deviation of the mean of the cost function according to statistics collected in the

calibration procedure, the searching range is set to [−20◦, 20◦], otherwise, it is set to [lastTor −

2◦, lastTor + 2◦], in which lastTor is the torsion position of the last frame. If the minimum cost
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function of the current frame calculated utilizing the inter-frame searching range is again beyond

the 2 standard deviation of the mean, then step 5 − 6 is repeated with the full searching range.

Figure 5.3 shows the reference image, test image, and the template captured under two different

schemes. The width of the template in Zhu’s algorithm is two times of that of the proposed method

to ensure similar computation cost. The true torsion value is 15.5◦ for this test image.
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The Reference Image and the Template
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(b)

Figure 5.3: (a) The reference and test template captured for Zhu’s template matching algorithm.

(b) The reference and test template captured for our proposed robust template matching

algorithm.
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Figure 5.4 shows the cost function for Zhu’s and our algorithm. One can see that for our algo-

rithm, the minimum cost function gives the correct torsion value 15.5◦, while the minimum cost

funciton of Zhu’s method gives an incorrect value of 3◦.
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Figure 5.4: Cost function for different hypothetical torsion movement.

Figure 5.5 shows the distance function of each segment for different hypothetical torsion val-

ues. One can observe that around the correct torsion value 15.5◦, and for segments 1 − 10, i.e.,

those segments not occluded, the distance function is among the smallest. The proposed algorithm

correctly identifies these segments and hence the correct torsional value.
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Figure 5.5: Distance function of each segment for different hypothetical torsion movement.

5.3 Results

5.3.1 Different Geometric Compensation Methods

In this section we discuss the effect of different geometric compensation methods on torsion esti-

mation. Tests are done over synthetic images generated using the simulation system introduced in

Chapter 3; for these images the real 3D eye position is known. The test involves 9114 images with

little eyelid movement, and with different camera offset parameters: the rotation angle varies from
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[0◦, 0◦, 0◦] to [10◦, 10◦, 10◦] and α varies from 0.0 to 0.2.

Figure 5.6 shows the torsion testing results with three different geometric compensation methods

based on three different calibration algorithms respectively. We use the average discrepancy be-

tween the measurement result and the true eye position as the accuracy metric, and use the number

of frames that have the discrepancy more than 3◦ (the outliers) as the robustness metric. The left

plot shows the number of outliers for three methods and the right plot shows the average error and

the 95% confidence interval. The eye position sequence numbers in Figure 5.6 correspond to the

horizontal and vertical eye position sequence numbers in Table 5.1. The large error in position

No.7, No.13, No.14 is due to the high level of eyelid occlusion when the eye is in that particular

position.
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Figure 5.6: Torsion testing results using different geometric compensation method

sequence number 1 2 3 4 5 6 7 8 9 10 11 12 13 14

horizontal angle -20 -15 0 15 20 0 0 0 0 15 -15 15 -30 30

vertical angle 0 0 0 0 0 10 20 -10 -20 10 -10 -10 0 0

Table 5.1: Horizontal and vertical eye position for testing images.
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One can see that although there are some variations, in most eye positions, the geometric com-

pensation method based on our calibration algorithm outperforms the other two methods. Over-

all, the mean error in torsion estimation for these three methods are shown in Table 5.2; our

method provides a 50% − 60% improvement in the accuracy of torsion measurement, and around

85% − 92% improvement in the robustness metric.

Geometric compensation method Average error 95% Confidence interval Number of outliers

based on Moore’s calibration algorithm 1.0634 0.0376 317

based on Zhu’s algorithm 1.3362 0.0560 640

based on our algorithm 0.5297 0.0186 45

Table 5.2: Average measurement error, 95% confidence interval and number of outliers for different
geometric compensation methods
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Figure 5.7: The reference image and the edge points detected on the pupil and iris boundary

Figures 5.7 and 5.8 illustrate how well different geometric compensation methods map points
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(1) Mapping of edge points by Moore’s calibration method

(2) Mapping of edge points by Zhu’s calibration method

(3) Mapping of edge points by our  calibration method
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Figure 5.8: Mapping of edge points on the pupil and iris boundary in the reference image to the test
image by results from three different calibration algorithms.
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from the reference image to the test image. Figure 5.7 shows one reference image and the edge

points detected on the pupil and iris boundary. These edge points in the reference image are

mapped to the test image to compensate for the geometric distortion while capturing the test tem-

plate. In real test, the pixels actually mapped should be pixels in the iris area. Here the edge

points are shown to demonstrate the discrepancy between the mapped pixels and the real edge

points in the test image. The position of the mapped edge points are shown in pink and yellow

dots in Figure 5.8 on top of the test images; two test images (the left and right columns) with three

different compensation methods (in top/middle/bottom rows) are shown. One can see that for our

algorithm, the mapped pixels match the edge boundary in the test image very closely, and in the

two other algorithms they do not match so well. This fact shows that our new calibration algorithm

and the corresponding mapping method provides a better geometric compensation and explains the

difference in torsion calculation performance shown in Figure 5.6.

5.3.2 Robust Template Matching Algorithm

We tested the torsion algorithm using images with known eye position generated by the simulation

system introduced in Chapter 3. Images were generated based on real eye images of four different

persons. The horizontal and vertical eye positions are listed in Table 5.1, and the eyelid movement

covers the iris template area at different degrees up to 50%. In each horizontal and vertical eye

position, 31 images with torsion position in the [−15◦, 15◦] range are generated and tested in the

order such that the torsion position is linearly increasing. Totally, 36456 images are tested. Figure

5.9 shows the result when the algorithms employ a full searching range in [−20◦, 20◦]. The left

plot shows the average torsion measurement error, which serves as an accuracy metric for these

algorithms. The right plot shows the percentage of outliers, for which the error in torsion measure-
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ment is larger than 3◦, which can be viewed as the robustness metric of the algorithms. The dotted

solid lines show the results of the algorithm that localizes the iris area first, explicitly excluding the

occlusions, and then performs the template matching. The solid lines with circles show the results

of our proposed robust template matching algorithm. The solid lines with cross show the results

of Zhu’s template matching algorithm. One can see that our algorithm performs better than Zhu’s

algorithm both in the average error and the robustness metric; it is very close to the algorithm that

localizes the iris first. The template matching algorithm with iris localization performs better than

the other two algorithms when the occlusion level is high, but it is slow and designed only to run in

the calibration phase to learn the statistics of the iris and the cost function; it can act as an empirical

lower bound for the measurement error of different algorithms as well.
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Figure 5.9: Results when the algorithms employ a full searching range in [−20◦, 20◦]

Figure 5.10 shows the result when the algorithms employ a inter-frame searching range of

[lastTor − 2◦, lastTor + 2◦], and assuming the algorithm always knows the true torsion posi-
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tion of the last frame. This is not a realistic scenario in practice but it is meant to show how

different algorithms perform under this extreme situation. Again, the left plot shows the average

torsion measurement error and the right plot shows the percentage of outliers. One can see that

there is almost no outliers for all the algorithms, and the accuracy performance of three algorithms

are very close to each other. When the occlusion level is low, our algorithm performs slightly better

than the other two algorithms, and when the occlusion level is high, the algorithm with iris local-

ization performs slightly better than the other two algorithms. In all cases, our proposed algorithm

performs better than Zhu’s algorithm.
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Figure 5.10: Results when the algorithms employ a fixed inter-frame searching range with the last

frame torsion position known

In another scenario, we assume that the algorithm knows the true torsion value for the first frame

in each eye position, i.e., the first of the 31 frames in the same horizontal and vertical eye position.

In Figure 5.11, the three solid lines show the results using fixed small inter-frame searching range;
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the dotted, circled, crossed solid lines represent the algorithm with iris localization, the proposed

robust template algorithm, and Zhu’s template matching algorithm respectively. The dashed line

with triangles shows the result of our proposed robust template matching algorithm with adaptive

searching range. One can see that the performance of the proposed algorithm is pretty close to

the algorithm that localizes the iris first. The overhead is that for 10% of the frames, it searches

the torsion value in the full range, which may slow down the frame rate a little bit, e.g., bring

the originally 120 Hz frame rate system to around 100 Hz, but the improvement in accuracy and

robustness is significant. Table 5.3 shows the overall average measurement error and percentage of

outliers for these four algorithms. Compared with Zhu’s algorithm, the proposed algorithm with

adaptive searching range improves about 55.3% in the accuracy metric and about 72.9% in the

robustness metric.
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Figure 5.11: Results when the algorithms employ a fixed or adaptive inter-frame searching range
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Matching method Search range Average error 95% Conf. interval % of outliers

matching after iris localization fixed 0.8821 0.0146 0.79%

Zhu’s algorithm fixed 2.2821 0.0738 5.21%

the proposed algorithm fixed 1.6508 0.0417 3.40%

the proposed algorithm adaptive 1.0194 0.0192 1.41%

Table 5.3: Overall performance of different algorithms

5.4 Summary

To improve the accuracy and robustness of the torsional measurement, we developed an iris lo-

calization algorithm that runs during the calibration process, which is essentially the “learning”

phase for the later tracking process. In the calibration procedure, not only the standard projection

parameters are estimated, but also the reference template is captured after locating the iris, and the

statistics of the cost function are collected as well.

We have also developed a robust template-matching algorithm for the tracking phase. By par-

titioning the template into many small segments and eliminating statistical outliers, we achieved

a more accurate and robust system than existing template-matching algorithm [40], which is cur-

rently the most robust online algorithm reported. Experiments carried out with a new simula-

tion system show that the accuracy and robustness in measurement improved by about 55.3% and

72.9% respectively compared with the template-matching algorithm, which performs better than

the widely used cross-correlation algorithm.

One contribution of our work is that we have designed a simple technique to eliminate outliers

87



CHAPTER 5. TORSIONAL EYE TRACKING

that suits the requirements of our application, which gives a respectable balance between accuracy

and speed. Eliminating outliers is a well-known concept in image processing. However, in torsion

eye position measurement systems, there are very few existing methods employing this concept.

The template-matching algorithm proposed in [40] uses pre-determined thresholds and considers

pixels outside the range as outliers. The problem with this method is that single pixel thresholds

cannot distinguish outliers whose grey values are similar to the legitimate pixels in the range; but

if we consider a group of neighboring pixels, we can distinguish them from the real iris area. That

is the reason that our method uses a segment as a unit to identify artifacts.

The other contribution of the work is that we developed an adaptive inter-frame searching range

mechanism to avoid being trapped in the erroneous “local minimum”. The searching range is large

when the cost function is unusually large, which indicates that it is highly possible that the small

searching range might have given an incorrect estimation.
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Chapter 6

Pupil Monitoring and Application in DR

Screening

6.1 Motivation: Diabetic Retinopathy Diagnosis

Figure 6.1: A scene as it might be viewed by a person with normal vision (a) and with DR (b). Both
pictures are from http://www.nei.nih.gov/photo/sims/.

According to Center for Disease Control and Prevention (CDC), diabetes mellitus (DM) is one

of the most prevalent, costly, and preventable chronic diseases in the United States [47]; “the direct

89



CHAPTER 6. PUPIL MONITORING AND APPLICATION IN DR SCREENING

and indirect costs of diabetes is 174 billion a year [47].” DR is an outcome of diabetes and it refers

to all the abnormalities of the tiny blood vessels of the retina caused by diabetes, such as blood

vessel wall weakening, blood vessel leakage, or abnormal new blood vessels proliferating in and

around the retina, etc. DR can cause blurred vision and is believed to be the leading cause of

blindness among most adults [48], which poses a major threat to the quality of life. Figure 6.1

shows a scene as it might be viewed by a person with normal vision and by a person with DR.

Some key facts about diabetes are shown in the list below:

• More than 21 million people in the United States have diabetes.

• 6.2 million people with diabetes are unaware they have the disease.

• An estimated 54 million Americans aged 40 to 74 (40.1 percent of the U.S. population in

this age group) have prediabetes, a condition that puts them at high risk for developing type

2 diabetes.

According to the study in [49], “Among an estimated 10.2 million US adults 40 years and older

known to have DM, the estimated crude prevalence rates for retinopathy and vision-threatening

retinopathy were 40.3% and 8.2%, respectively. The estimated US general population prevalence

rates for retinopathy and vision-threatening retinopathy were 3.4% (4.1 million persons) and 0.75%

(899000 persons)”. Futher projections suggest that the number is likely to be tripled in 2050, from

5.5 million in 2005 to 16.0 million for DR, and from 1.2 million in 2005 to 3.4 million for vision-

threatening DR (VTDR) [50]. “Diabetes is the leading cause of new cases of blindness among

adults aged 20 − 74 years old, and it causes 12, 000 to 24, 000 new cases of blindness each year.

[51]” “Half of the nearly one million patients who developed severe DR went blind within 5 years

of diagnosis. [52]”
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Early detection and timely treatment of DR can prevent vision loss [53], but about one-third of

the diabetic population remains undiagnosed, as mentioned previously. Furthermore, in the early

stage of DR, often there are no symptoms, nor does the person experience any pain. Even the

advanced proliferative retinopathy can develop without symptoms [53] . “Up to 21% of people

with type 2 diabetes have retinopathy when they are first diagnosed with diabetes. [54]” Delays in

the diagnosis of diabetes allow diabetic complications to advance greatly before detection, hense

increase the risks of the disease and make the treatment much more complicated.

Current methods to detect DR include: eye examination using ophthalmoscopy, nonmydriatic

fundus imaging, or a fluorescein angiogram. In the ophthalmoscopy examination, the care profes-

sional checks the retina during dilated eye examinations for early signs of the disease, including

leaking blood vessels, retinal swelling, damaged nerve tissue, etc [53]. The nonmydriatic fundus

imaging needs trained grader to assess disease severity. For the fluorescein angiogram, a special

dye called fluorescein is injected into the arm and pictures are taken as the dye circulates through

the blood vessels in the retina; the test allows the eye care professional to identify any swelling,

leaking or abnormal blood vessels from the photographs and recommend treatment. These meth-

ods either depend highly on the experience of the examiner or are invasive.

There is a major need for new methods to detect DR at an early stage, which can facilitate

medical intervention before the disease advances to its more debilitating advanced stages.

The objective of this research is to develop an automated, noninvasive tool for widespread screen-

ing of DR, to identify those who may require medical attention and/or therapy, and to prevent vi-

sion loss. The testing can be either self-administered or performed with minimal supervision in a

primary care physicians or eye care providers office.

The vascular damage to the retina caused by DR is not uniformly distributed. In the early stage,
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DR only affects the peripheral part of the retina, and the central retina is usually not affected until

the more advanced stage of DR. Presumably, for a patient with DR at the early stage, the pupil’s

response to light stimulus on the center retina would remain normal, and the pupil’s response

to light stimulus on the peripheral of the retina would be different from a healthy person. This

difference can be exploited to design a system used for early detection of DR. The approach of

using pupil’s response as a bio-sensor for retinal function has been studied and validated by prior

research [55–57]. However, its application as a broad screening approach for DR is quite recent

[3], and requires both the optimization of the testing system and extensive statistical analysis of

the patient data. Compared to existing methods, a digital image based pupillometry and analyzing

system has the advantages that it provides an objective and instantaneous test result; it is non-

invasive, easy to use, and does not require extensive training for operators. The output would

provide a straightforward indication on whether further monitoring or a treatment is needed. The

device can also be used to monitor the progressive changes of the disease as required.

6.2 Existing Pupil Area Monitoring Methods

Since the system is supposed to be used to perform tests among the general population when a wide

range of conditions exist, the system needs to facilitate a rapid test, be robust to interference, and

provide accurate information. Most existing eye tracking systems focus on eye position detection

instead of the pupil size change. Existing pupil size estimation systems either assume the artifacts,

including cornea reflex and eyelid occlusion, are negligible [58], or are not designed to detect the

pupil change online and are not fully automatic (depending on the eyelid position) [59]. In [60], the

horizontal diameter of the pupil is used to estimate the pupil size; while this seems like a fast and
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reasonable approach, the horizontal diameter of the pupil can suffer from artifacts such as cornea

reflections.

The pupil shape is close to a circle, and looks like an ellipse in the image when it is in an

eccentric position. An ellipse estimation can recover the area of the pupil under occlusions. Ellipse

estimation based on edge information is a widely used object extraction technique, but generally

faces the dilemma of utilizing Hough transform in a large parameter space which consumes lots of

computation power, or using local edge feature, like gradient information, to deduce the parameter

space, which suffers from poor consistency and accuracy [61]. In [61], global geometric symmetry

of ellipses is used to reduce the dimension of the parameter space. It still assumes that major part

of ellipse edge is detected correctly; especially the vertical scan assumes the upper and lower part

of the edge is not occluded. Given the fact that the upper eyelid drop is a frequent scenario, the

method proposed in [61] is not suitable for our application.

Starburst is an eye tracking system using RANSAC (RANdom SAmple Consensus) algorithm

iteratively to fit a subset of detected edge points to an ellipse [28]. Like most algorithms based on

RANSAC, the estimation result may take a long time to converge or may not be accurate when a

significant portion of edge points are outliers, i.e., when the pupil is partially occluded by dropping

eyelids or eyelashes. In [29], a threshold on the curvature of edge points is determined to eliminate

outliers before fitting edge points to an ellipse, in which the determination of curvature threshold

is not trivial and the heuristics used to select edge segments can sometimes fail. Bo th algorithms

in [28] and [29] are not implemented online.

A widely studied relevant topic is iris segmentation in the context of iris recognition. Most early

iris segmentation methods assume circular shape for pupil and iris boundary [62–67]. Recently

there are works targeting non-cooperative iris recognition and proposed segmentation algorithms
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[68–74] that can handle off-axis eye images and robust to occlusions from reflections, eyelids

and eyelashes, etc. Although impressive progress has been made in improving the accuracy and

speed of segmentation, to date there are no algorithms that are both robust to image noise and are

implemented online at an adequate frame rate that satisfies the requirements of our application.

The pupil tracking method presented in [75] is the most relevant work to our application. Al-

though it is not directly designed to measure the pupil size, estimating the closest matched ellipse

for the pupil boundary, plus the camera projection parameters, essentially gives us the pupil area.

It is implemented online (25 frs/sec) and addresses the occlusions using a constraint RANSAC

(C-RANSAC) algorithm that runs for 260 iterations. It first detects edge points in the image. In

each iteration, the algorithm randomly chooses five points to estimate an ellipse, then the ellipse

is evaluated based on how many edge pixels are “on” the ellipse (consensus). The ellipse with the

highest number of consensus is chosen as the best estimate. The evaluation step of the RANSAC

algorithm in ellipse estimation is usually computationally expensive since it needs to calculate the

distance of each edge point to the ellipse boundary. The algorithm in [75] enhances the speed by

discarding the ellipse early when

0.7R <
a

b
< 1.1R,

where a and b are the major and minor axes of the estimated ellipse, and R is the rough radius of the

reference pupil depending on the camera zooming level. One can see that the shape constraint is

fixed for different eye positions although the ellipse shape is obviously related to the eye position.

Being the most relevant work in the literature for our application, it still does not satisfy the speed

requirement of around 60 frs/sec for a binocular device, which requires the processing speed of

120 frs/sec, and sometimes it still produces unsatisfactory results when the occlusion level is

significant and the number of outliers are large.
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In summary, existing methods either are not implemented online, or do not address the problem

of eccentric pupil location and occlusions sufficiently, or do not provide a fast speed and robust

detection at the same time. For the screening procedure of DR, we implemented a robust online

pupil size monitoring system [76]. The system monitors the pupil size change under stimulation of

circular or annular objects of different sizes and brightness produced on a LCD screen facing the

subject. Pupil’s response is captured by digital cameras and the eye images acquired are processed

online. A novel algorithm is developed to calculate the pupil size to provide data input for the

screening procedure of DR. To distinguish real pupil size changes from artifacts like blinking,

eyelid drop or reflections, we use several image processing techniques to estimate the pupil size

when the pupil shape is partially occluded.

To extract the pupil and estimate its size, the algorithm first locates the approximate center of the

pupil by a simple threshold and blob analysis operation on a downsampled low pixel-density reso-

lution image in the same way described in [77], then detects edge segments using the canny edge

detector and separates edge segments whenever there is a high curvature in the curve, and finally

iteratively fits an ellipse to the edge segments based on the shape constraints from known camera

projection parameters. The edge detection procedure is applied to a small window of the full pixel-

density resolution image; the window encloses the approximate area of the pupil. This ensures

both a high speed operation and no loss of edge points. In the iterative ellipse fitting process, the

curvature information and pupil shape constraint from known camera projection parameters are

used to screen artifacts.

The novelty of the proposed algorithm is that it is the first pupil monitoring algorithm imposing

an adaptive shape constraint on the ellipse, which varies with the pupil location. It makes use of

the fact that the shape of the pupil boundary in the image is correlated with its position, and both
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of them are dependent on the 3D eye position and camera projection parameters, which makes it

easier to exclude outliers. The algorithm is fast, robust, and does not need to set tricky parameters;

it satisfies the online and robustness requirements of the DR application.

6.3 Proposed System: Fast Online Pupil Monitoring System

6.3.1 System Overview

Figure 6.2-a shows the system components, and Figure 6.2-b shows the block diagram of the

system. The subject is instructed to position both eyes in front of the frame, where the cameras are

installed. One eye of the subject faces directly the LCD screen and is stimulated by the light from

the screen, while the other eye is blocked. The desktop system controls the pattern displayed on

the LCD screen to stimulate the eye, another monitor connecting to the desktop system provides

the user interface. The images of both eyes are captured by the digital cameras and transferred to

the desktop system. We use a Dell desktop system to run our control and analysis software.

Figure 6.3 shows the LCD screen that presents the visual stimulus and the eye image capturing

device. Digital cameras are installed on a goggle frame that can exclude ambient illumination. The

goggle can be moved up and down to adapt to the height of the subject; it can also be turned around

so that the head position can be shifted with respect to the center of light stimulus up to 20◦ to avoid

blocking of the view by the subject’s nose and the goggle frame. Infrared off-axis illumination is

used for image acquisition to produce a black pupil effect so that it is easy to extract the pupil. The

illumination is provided by two micro LEDs operating at 950 nm for each camera, installed inside

the goggle frame between the eye and the lens holder. One hot mirror is installed inside the frame

for each camera, reflecting infrared light above 800 nm to the camera and allowing visible light to
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Figure 6.2: System components and the block diagram.

pass through. Trial lenses can be installed for astigmatism correction on the lens holder between

the eye and the hot mirror.

The software block diagram is shown in Figure 6.4. The software is developed on the Labview

7.1 platform using its vision module. The stimulus module presents two types of visual stimulus,

circular or annular bright objects, on the LCD screen to stimulate the central or the peripheral

sections of the retina respectively. At the same time the subject is presented with the stimulus,

the image acquisition and processing module captures and processes the eye images online, which

contains the eye response information under the specific stimulus. The image acquisition and

processing system reaches an online rate of 80 Hz (160 frs/sec) on a 3 GHz Pentium IV desktop

system. Software synchronization based on PC clock is used to relate the visual stimulus presented

to the subject and the eye response. Based on the image processing result, the analysis module

analyzes the eye response data collected and provides input for the screening procedure of DR.

For both types of stimulus, according to different test requirements, several parameters can be

97



CHAPTER 6. PUPIL MONITORING AND APPLICATION IN DR SCREENING

The eye image capturing device and the 

LCD screen presenting visual stimulus

Detailed view of the image 

capturing device

The camerasThe desktop 

computer
LED for 

illumination

The hot mirror Lens holder

The LCD screen The goggle frame

The firewire cable

Figure 6.3: The LCD screen that presents the visual stimulus and the eye image capturing device,
including the goggle frame, the cameras connected to the desktop computer by the Firewire
cables, the LEDs used for illumination, the hot mirrors reflecting the images to the cameras,
and the lens holders that can hold two thin rim trial lenses.
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Figure 6.4: System components and the software diagram

specified, including the brightness, frequency, on/off time in each period, start/stop time, and the

size of the stimulus, i.e., the diameter of the center stimulus, and inner and outer diameters of the

peripheral stimulus. A small fixation point is shown on the center to help the subject to focus.

Example stimulus patterns for central and peripheral vision are shown in Figure 6.5. During the

test, the system records the stimulus strength and the time of PC clock so that the stimulus can be

related to the pupil size data acquired online. In the current prototype system, the stimulus strength

is measured in relative luminance of the LCD screen in terms of grey value of the white pixels
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within the stimulus area. The strength value is assigned between 0 and 100, with 100 corresponding

to the maximum output of the LCD screen. In the future, it may be necessary to calibrate the

brightness of different monitors.

After the online test, the data analysis module is used to extract important features from the

pupil’s response traces for diagnosis purpose. Pupil size is currently measured in number of pixels.

For the application of DR screening, the types of feature to be extracted are determined from prior

medical knowledge, including the pupil size when the eye is in dark environment (the peaks of the

pupil size trace), the latency between activation of the visual stimulus and the initial constriction,

the minimum pupil size under the stimulus (the valleys of the pupil size trace), amplitude of the

pupil’s response, i.e., the difference between the peak and the valley, the maximum constriction

velocity, and the maximum pupil dilation velocity. The details of the analysis module and the proof

of concept test with human subjects for using this system as a screening tool for DR is presented

in Section 6.5.

Figure 6.5: Examples of stimulus pattern, the circular object for the central vision and the annular
object for the peripheral vision.
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6.3.2 Online Pupil Area Measuring Based on Ellipse Estimation with Shape

Constraint

The iterative ellipse estimation algorithm

Algorithm 3 The fast pupil monitoring algorithm
Input: Im: current input image
Output: pupil area, pupil location
(pupil area, pupil location) = pupil monitoring algorithm(Im)
{ sfim, appxPC} = threshold and blob analysis (Im);
edge map = canny edge detector (sfim);
edge segments = segmentation based on curvature threshold (edge map);
approximat shape constraint = get constraint (appxPC, Mr, α);
validity of edge points = mark validity (approximate shape constraint, edge map, appxPC);
EdgSegQueue = BuitQueue (edge segments, validity of edge points);
pupil boundary ellipse = iterative ellipse fit (EdgSegQueue, Mr, α);

The main steps of the pupil monitoring algorithm is listed in Algorithm 3, in which Mr, α is

the camera projection parameters obtained in the calibration process as described in Section 2.3,

and appxPC, sfim, are respectively the approximate pupil center and the full resolution image

in the small window around the approximate pupil center obtained through the threshold and blob

analysis operation.

After applying canny edge detector to the image sfim, the edge segments obtained may include

outliers, such as points from the cornea reflections, eyelash, eyelid edges, or other sources of noise.

We need a robust ellipse estimation that uses only the edge points on the real pupil boundary. To do

that, first, the curvature information is used to segment all the edge points into a few segments, each

of which has a continuous curvature; second, based on the approximate pupil location obtained in

the blob analysis step, the algorithm also labels all edge points coarsely as valid or invalid points for

the pupil boundary based on their gradient direction and distance to the approximate pupil center
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with a loose threshold; after that, each edge segment obtained in the segmentation step is sorted

in a queue by the percentage of valid edge points at a decreasing order; and finally an iterative

procedure is employed to select segments and estimate the ellipse. Knowing the camera geometry,

the pupil shape in the image is dependent on the pupil location. Therefore, in the iterative step,

the cost function of the estimated ellipse is evaluated based on how inconsistent the shape and the

location of the ellipse center is.

In [29], a curvature information is also used and the selection of curve segments is based on

heuristics. The curvature calculated in digital images can be highly noisy, and the heuristics used

in [29] sometimes can fail. The constraint on pupil shape is also used in [75], but a fixed threshold

on the ratio of the two axis length of the pupil are used; instead the shape constraint in our algorithm

is adaptive to the pupil location which provides a tighter constraint.

The segmentation of edge curve is based on curvature estimated from the image. By tracing the

edge segment, the gradient angle is calculated and filtered using a Gaussian window of 10 edge

points. At each edge point, e.g. the point c in Figure 6.6, the curvature is calculated according to

the following formula:

curvt =
φb − φf

ds
, (6.1)

in which φf is the filtered gradient angle of the previous edge point f in the segment, and φb is the

filtered gradient angle of the next edge point b, and ds is an estimation of the curve length between

point b and f .

With the curvature information, the algorithm segments connected edges when there is a sudden

change in the curvature, which usually is from the eyelid occlusion, or cornea reflections on the

pupil boundary. The threshold is chosen by experience and slightly biased toward breaking more

segments. The reason is that the purpose in this step is to separate the edge segments from real

101



CHAPTER 6. PUPIL MONITORING AND APPLICATION IN DR SCREENING

c

f

b

Figure 6.6: Curvature calculation in point c in an edge segment. It is based on the average gradient

angle of point b and f, and curve length between them.

pupil boundary and artifacts. It is acceptable to break the boundary by mistake occasionally since

there is an iterative step later on to add them into the group of segments to estimate the final pupil

boundary.

The last step of the algorithm is to estimate the ellipse iteratively using the queue of edge seg-

ments. First it adds the segment with the maximum percentage of valid edge points to the chosen

group of segments, calculates a cost based on the ellipse center and shape; then it takes the next

segment in the queue and adds to chosen group, estimate a new cost. The new segment is accepted

to the chosen group if the new cost is lower than the previous one; otherwise, the edge segment is

discarded. In the next iteration, another segment is taken from the queue and the previous steps are

repeated until the queue is empty. Finally, an ellipse is estimated from all the chosen segments. The

cost function is described in detail in the next section. The pseudo code of the iterative procedure

is shown in Algorithm 4.

The cost function for the ellipse estimation

The cost function of the estimated ellipse is calculated from the projection parameters obtained in

the calibration procedure. The circular pupil appears as an ellipse when projected onto an image.
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Algorithm 4 The iterative ellipse estimation algorithm
Input: EdgSegQueue: the queue of edge segments with decreasing percentage of valid edge points
Output: best ellipse
best ellipse = iterative ellipse estimation(EdgSegQueue,Mr, α)

Sc = Φ; chosen curves
best ellipse = Φ; best ellipse so far
gfun = 1000;
while isNotEmpty (EdgSegQueue) do

Cs = head of queue (EdgSegQueue);
Sc = Sc + Cs;
new ellipse = ellipse estimation (Sc); Estimate an ellipse with all edge points in Sc.
ngfun = cost function (new ellipse, Mr, α);
if ngfun ≤ gfun then

gfun = ngfun;
best ellipse = new ellipse;

else
Sc = Sc − Cs;

end if
end while

Intuitively, the shape of the pupil boundary depends on the eye position. We can characterize this

intuition in a mathematical form. Actually, the 3 × 3 symmetric matrix C1 of the ellipse equation

for the pupil boundary in the image when the eye is at a particular position and the 3×3 symmetric

matrix Ce of the ellipse equation for the pupil boundary in the eye coordinate system satisfies:

Ce " HT
1 × C1 × H1, (6.2)

in which, H1 is a 3 × 3 matrix characterizing the homography between the image and the pupil

plane in the eye frame. If the camera projection parameters are known, H1 can be determined from

the current eye position (which can be deduced from C1 following the method in Section 2.3.2).

The details of derivation is given in Chapter A. The implication of (6.2) is that if the matrix C1(i)

for an ellipse estimation from the image is true, and we derive the Ce(i) according to (6.2), Ce(i),

it should fit the real pupil boundary in the eye coordinate system, which means it is a circle and its

center is at the origin.
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From Ce(i), one can deduce the ellipse parameters:

Ellipse center Axis length Rotation angle

xc, yc a, b ξ

Table 6.1: Ellipse parameters

It follows naturally to define the cost function as:

fg = x2
c + y2

c + (a/b − 1)2; (6.3)

6.4 Results
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Figure 6.7: Flow of the algorithm and intermediate results:
(a) The input grey-level image.
(b) The result of threshold and blob analysis.
(c) Output of the Canny edge detector.
(d) The result of curve segmentation based on discontinuity of curvature.
(e) The result of the iterative ellipse fitting process.
(f) The final ellipse estimated shown in the input image.
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Iteration (2)

Iteration (1)

Iteration (3)

Figure 6.8: Three iterations in the iterative ellipse fitting procedure. Red segments are those already
chosen from previous iterations; the yellow segment is the one currently being processed.
In the title of the left column, the new cost when the current segment is added is shown,
and the decision whether to accept the segment or to discard is displayed as well. In the
right column, the blue curve shows the ellipse estimated from currenly chosen segments.

Figure 6.7 shows the flow of the algorithm and intermediate results. In image (2), the binary

image of full resolution in a small window enclosing the pupil and the approximate pupil center is
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shown. In image (4), different edge segments are shown in different colors. In image (5), points

in red color represent the final edge points used to estimate the ellipse, and the yellow curve is the

best ellipse estimation obtained. Figure 6.8 shows three iterations in the ellipse fitting procedure.

In the first row, the segment is accepted since it is the first segment processed; in the second row,

the new segment is chosen as well, since after adding the new segment to the chosen group, the

new cost is lower than the previous cost; in the third row, the new segment is discarded since the

new cost is larger than the previous cost. In Figure 6.9, four different input images with different

levels of occlusion are shown; for each image, the final estimated ellipse for the pupil boundary is

plotted in pink.

Figure 6.9: Eye images and the estimated elliptical pupil boundary.

We also tested the algorithm using the simulation system we developed as described in Chapter

3. The simulation system generates images at 15 different eye positions as listed in Table 6.2. In
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each eye position, the eyelids/eyelashes are moved up and down to synthesize images of different

levels of occlusion. We measure the occlusion by the percentage of pupil boundary being occluded.

For each eye position and each occlusion level, 10 images are generated by adding Gaussian noise

with zero mean and standard deviation of 1.7 to the image. Overall, 5600 images are synthesized

and tested. Figure 6.10 shows the results we get. Each data point in the plot shows the average

measurement error for images, whose occlusion level falls in the bin between (x − 5%, x + 5%],

in which x is the horizontal coordinate (occlusion level) where the data point is plotted. The

occlusion level is defined as the percentage of pupil boundary being occluded by eyelids, eyelashes

or reflections. The 95% confidence interval for each bin of images are plotted as well. The red

dashed line shows the results with the C-RANSAC algorithm proposed in [75] and the black solid

line shows the results using our proposed method. One can see that at lower occlusion levels

(< 20%), the performance of both algorithm is pretty close although our algorithm is slightly

better. At higher levels of occlusion, our algorithm outperforms the C-RANSAC algorithm.

θ -20 -15 0 15 20 0 0 0 0 -15 15 -15 15 -30 30

φ 0 0 0 0 0 10 20 -10 -20 10 10 -10 -10 0 0

ψ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 6.2: The 3D eye positions for which images are synthesized using the simulation system.
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Figure 6.10: The average measurement error and the 95% confidence interval for each bin of images

with the occlusion level in (x − 5%, x + 5%].

6.5 Application in DR Screening and Proof of Concept Test

with Human Subjects

It is well known that the pupil size and response can be affected by many factors including age, iris

color, media opacities, and medication or even within the same person at different anxiety levels.

It is difficult to collect enough statistics to address all of these aspects. To control these variations,

we use the central response of the pupil within the same eye as an internal reference and compare
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the peripheral response with it. The overall light sensitivity of the central part of retina is usually

stable until later stages of DR. The idea of using this intra ocular comparison method for DR

screening was first proposed by Gorin in [3] and the objective is to use the ratio of stimulus levels

when central and peripheral responses reach the same amplitude as the major criterion. We used a

slightly different ratio metric in the proof of concept test here, so that we do not need to perform

so many tests to find the specific stimulus levels when central and peripheral responses reach the

same amplitude. Basically, for each feature, we calculate the ratio of:

Pp − Pc

Pc

, (6.4)

where Pp is the parameter for the peripheral response and Pc is the parameter for the central re-

sponse at the same stimulus level; the parameter may be the amplitude, velocity, or response time

determined from the pupil trace. The parameter for the central response is considered the reference

value since by our hypothesis, at the early stage of DR, the central vision is to be preserved and

peripheral retinal sensitivity would reflect the changes from DR.

6.5.1 Analysis of the Pupil Response

The output of the online pupil monitoring process is sequences of pupil size and the corresponding

stimulus type and strength, along with the PC clock timing. The analysis module processes the

traces obtained and extract important features. The first step of the analysis is denoising. Although

the image processing module can tolerate a certain degree of interferences, there are still artifacts

remaining in the traces; one important artifact is introduced by blinking of the subject. We imple-

mented a blink removal procedure based on the amplitude, the velocity (calculated from the first
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derivative of the trace), and the width of the negative pikes in the trace. Figure 6.11 shows the

interface and examples of traces with blinks to be removed marked in red dots.

Figure 6.11: Tools to remove blinks. The black plots are the eye response traces, and the red dots
represent the blinks detected.
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(b)  A typical pupil size trace.

(a) Parameters to be measured from the pupil size trace.
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Figure 6.12: In the pupil size trace plot, the solid red plot is the chosen part of the eye response trace
for analysis, the dashed red part is the blink removed previously, and the yellow plot
represents the on/off time of the central stimulus.

After removal of the blinks, features including the peaks, valleys, latency, reflex amplitude, max-

imum constriction velocity, and maximum dilation velocity are extracted from the traces. Figure

6.12-a illustrates the parameters in the trace, and Figure 6.12-b shows a typical pupil’s response

111



CHAPTER 6. PUPIL MONITORING AND APPLICATION IN DR SCREENING

to a light stimulus. In each cycle of the stimulus, the point when the pupil starts constriction is

detected between the instance that the stimulus is on and the point where the maximum constric-

tion velocity is achieved, at the point when the first derivative of the pupil size trace reaches the

maximum negative value. The peak of the pupil size is measured at the point when the pupil starts

constriction, and the latency measures the time between the stimulus is on and the point when the

pupil starts constriction. The valley is found when the pupil size reaches the minimum value in

the cycle. The maximum constriction velocity and the maximum dilation velocity are calculated

respectively from the maximum negative first derivative and the maximum positive first derivative

of the trace.

6.5.2 Proof of Concept Test with Human Subjects

A proof of concept test is performed with the cooperation of two entities:

1. UCLA, Jules Stein Eye, Department of ophthalmology by Dr. Michael Gorin,

2. Neuro Kinetics, Inc., Pittsburgh, PA by Dr. Alexander Kiderman.

Two identical systems were built and installed at these two locations. Subjects who were sup-

posed to suffer from retinopathy were identified from the clinical practices of the retina faculty

at the Jules Stein Eye Institute by Dr. M. Gorin. Normal subjects in the control group were se-

lected and tested by Dr. Alex Kiderman at Neuro-Kinetics, in Pittsburgh, under the direction of

Dr. M. Gorin [78]. The nature and the purpose of the study were explained to the subjects, and the

informed consent of the patients was obtained from them as well. The main objective of the study

is to verify that the system provides an immediate indication of midperipheral ischemia, which is

the earliest sign of DR progression.
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In the preliminary phase of the test, it is found that three parameters, the constriction velocity,

the latency, and the amplitude have the highest repeatability for the same subject in different tests.

Hence, these three features were chosen as the primary outcome measures in the study. A total

of 32 subjects were tested; for 2 of them, there is not sufficient clinical information about the

severity of the DR available. Therefore, 30 subjects were included in the final data analysis. These

participants include normal subjects and subjects with full range of severity of DR. Table 6.3 lists

the distribution of the subjects [78]. Certain criteria is set up to eliminate other causes of retina

change, for example, subjects were chosen so that they have no history of prior ocular trauma or

surgery in the eyes; normal subjects must have a history of normal eye examination in the year

prior to participation in the study; patients with history of ocular disease, diabetes, and especially

glaucoma and high myopia are excluded; ages in the normal group are chosen to closely match the

diabetic patients, etc. [78].

To eliminate accommodation of the eye, proper refractive correction lenses are inserted in the

lens holder to account for the distance to the LCD screen. Before the test, the subject is dark-

adapted for at least 5 minutes until the dilated pupil size is stable. Then tests are performed by

exposing the eye to center and peripheral stimulus with varying on/off duration, and with increasing

intensity until the brightness level is one step above the one that elicits the maximum pupil’s

response. Each test lasts no more than 2 minutes and subsequent tests are separated by a 1 − 2

minutes break. Each session is no more than 45 minutes, and each subject is supposed to take 3

sessions on different days.

Figure 6.13 1 shows the average response for one subject. Each square dot represents the average

of the parameter value of the 20 repeated tests for one brightness level. The solid line plots are
1Plots are extracted from the report for the NIH Grant in [78].
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Medical info. Normal With Diabetics, no DR Mild DR Moderate DR Severe DR

number of subjects 14 7 4 3 2

Table 6.3: Distribution of the subjects participated in the test and included in the final data analysis

the second order polynomial fit of the average parameter values obtained at different brightness

level for each type of test. The formulas from the polynomial curve fit is used to calculate the

normalized parameter value at any specific brightness level according to (6.4).

Color of the bar Prior knowledge of the subject with regard to clinical retinopathy

blue normal

green diabetics with no or minimal clinical retinopathy

yellow mild DR

purple and red moderate and severe retinopathy

Table 6.4: Color of the data bar and its represented prior knowledge of the subject with regard to clinical

retinopathy.

In Figure6.14 2-(a,b) , each bar represents the average normalized parameter value between the

stimulus level of 10 and 60 for each individual. Figure 6.14-(c) shows the average latency for

both central and peripheral tests. Table 6.4 shows the color of the bar and its represented prior

knowledge of the subject with regard to clinical retinopathy. In each group, the subjects are listed

in the order of increasing age. One can see that with the increasing severity of DR, the normalized

constriction velocity and amplitude both show the trend of decreasing value, except for D0019,

which seems to be an abnormal sample. Later the subject D0019 was found to have evidence of

non-diabetic related retinal disorder not known before. In the group with minimal or no DR, the

subjects show little traditional signs of DR. However, by our test, a few samples in this group show
2Plots are extracted from the report for the NIH Grant in [78].
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values clearly distinct from the normal group, and several of them were found to have significant

peripheral ischemia by Optos fluorescein angiography with wide angle studies covering up to 200

degrees of the retina [78]. This result shows the potential of using the device to screen DR at the

very early stage. A much large number of samples are needed to analyze the system quantitatively,

and to help building the statistical model for the actual screening process. The latency plot in Figure

6.14 shows less change between groups and further research is needed to determine whether this

feature is useful in the screening process.

6.6 Summary

This section presented an accurate and robust image based pupillometry designed for the screen-

ing of DR based on different pupil’s response to peripheral and central stimulus. Test results on

pupil area measurement show that the designed system provides a more accurate measurement

of the pupil size under interferences compared with the best known online pupil area calculation

algorithm. It runs at 80Hz for a binocular system and satisfies the frame rate requirement of the

application. Using the online pupil monitoring system we have developed, a proof of concept test

is completed, and the result shows that there is a clear correlation between the normalized value of

constriction velocity, amplitude and the severity of DR, which was previously a hypothesis. Fur-

ther research is needed to analyze the data on pupil’s response to set up the norm for the purpose

of screening DR or determining the degree of pathology.
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Figure 6.14: Feature parameters for each individual subject who participated in the test. Light blue:
normal subjects; Green: diabetic patients with no DR; Yelow: diabetic patients with mild
DR; Purple: diabetic patients with moderate DR; Red: diabetic patients with severe DR.
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Chapter 7

Summary of Contributions and Future

Work

The main contribution of the thesis is the design and implementation of an accurate, robust and

fast eye tracking system. We proposed a new calibration algorithm to estimate imaging parame-

ters, developed a simulation system to establish the ground truth, and implemented a high-speed

horizontal and vertical tracking system, an online pupil monitoring system and a robust torsion

tracking system.

We proposed a new calibration method to estimate the imaging parameters, which are needed to

estimate the 3D eye position. Previous calibration methods either ignore the horizontal/vertical ro-

tation offset between the head frame and the camera frame, or approximate the imaging procedure

as an orthographic projection, or assume a single center for horizontal and vertical eye rotation.

These approximations produce measurements with large error when the eye is at a large angle.

We use a more accurate model for the eye movement and employ numerical methods to estimate

the imaging parameters. Simulation results show that the proposed method reduces the average

error in measurement to less than 0.02◦ for a wide range of eye positions for both horizontal and
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vertical eye position, while the current best available method has an average error of 0.59◦, 0.84◦

for horizontal and vertical eye position, respectively.

We developed a simulation system that can synthesize eye images using captured real eye im-

ages. The main purpose of our simulation effort is to provide close-to-real eye images in terms of

pupil shape, iris pattern, and artifacts, and at the same time, a ground truth of the 3D eye position,

which is very important information for evaluating the performance of different algorithms.

We developed a robust and online eye tracking system for measuring horizontal, vertical and

torsion eye position and for monitoring the change in pupil size. For the horizontal and vertical

eye position measurement, a high frame rate of 150Hz for a binocular system is achieved by em-

ploying the multi-resolution processing technique. The new symmetric mass center algorithm also

improves the measurement accuracy by up to 66.6% compared with the best available algorithm

with similiar frame rate. For the torsional eye tracking, the contribution lies in three aspects, firstly

we collected more information in the calibration phase than other existing algorithms, which helps

for the tracking later on and the cost in time is tolerable; secondly, a mechanism to eliminate

outliers is developed to achieve a robust and accurate estimation; last but not least, an adaptive

inter-frame searching range is used to ensure high frame rate and at the same time to avoid falling

into the “erroneous” local minima or losing the tracking. A simulation test shows that compared to

the best algorithm available, the robustness metric improved by about 94% and the accuracy metric

improved by about 81% under similiar computation cost.

Another contribution of the work is that we developed an online pupil size monitoring system and

analyzing method for the application of diabetic retinopathy screening. Test results on pupil area

measurement show that the designed system provides a more accurate measurement of the pupil

size under interferences compared with the best known online pupil area calculation algorithm. It
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runs at 80Hz for a binocular system and satisfies the frame rate requirement of the application.

Using the system we developed, a proof of concept test on human subjects is done to verify the DR

screening method proposed by Dr. Gorin, which is based on different pupil response to peripheral

and central stimulus; the test shows that there is a clear correlation between the normalized value of

constriction velocity, amplitude and the severity of diabetic retinopathy, which was the presumed

hypothesis before these measurements were made.

One innovation of this PhD dissertation is that we investigated the relationship of the shapes of

pupil and iris boundary in the eye images captured at different 3D positions. This relationship is

used in the calibration process to estimate the projecting parameters, e.g., the camera offset; it is

used in the pupil size monitoring algorithm to “predict” the pupil shape when the pupil center is

known; it is used in the iris localization algorithm as well. In the calibration case, for instance, it

gives more constraints than the pupil center, and in the other two cases, it results in a faster and

more accurate estimation for the pupil and iris boundary.

One very interesting direction for future work is the analysis of eye tracking traces and norm

establishment for the diagnosis or screening of certain diseases. For example, in the diabetic

retinopathy screening case, more tests on human subjects and further research are needed to an-

alyze the data on pupil response and to set up the norm for the purpose of screening DR or for

determining the degree of pathology. Self calibration without laser guide is another interesting re-

search topic. For eye tracking systems used in clinical environment where there is no sophisticated

device for laser guided calibration, or for portable systems that the subjects bring back home to

record eye movements, a self calibration system may be needed. Self calibration is possible, in the-

ory, if sufficient number of views of the eye at different positions are captured and the homography

is calculated between them. The current feature extraction tool for the DR Screening software is
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still semi-automatic and requires human intervention sometimes to eliminate artifacts; a software

system which is fully automatic is desired and will be developed in the future. Testing with real

captured eye images can be performed to further validate the accuracy and effectiveness of our

algorithm and system. It is desirable to further improve the frame rate for certain applications, and

this can be achieved by utilizing custom designed hardware, making use of the computing power

of GPU (Graphical Computing Unit), or/and performing adaptable image acquisition, which only

acquires part of the image necessary according to the current eye position.
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Appendix A

Homography Between Different Views of

the Eye and Relation Between Shapes of

Pupil (Iris) Boundaries

In this chapter, we derive the homography between different views of the eye and the mathematical

relationship between the shapes of the pupil(iris) boundary in two images. The relation between

the equation of the ellipse fitting the pupil(iris) boundary in one image in a known eye position, and

the equation of the ellipse fitting the pupil(iris) boundary in the eye coordinate system is derived

as well. We first present the method to calculate the homography between them, then we describe

the mathematical relationship between the ellipses.
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A.1 Derivation of Homographies

Let H0←1 be the 3×3 homography matrix between the image for the current eye position [θ1, φ1, ψ1]T ,

and the image for the central eye position [0, 0, 0]T , one has:
















u0

v0

1

















" H0←1

















u1

v1

1

















, (A.1)

in which, the homogeneous coordinate vector [u1, v1, 1]T is the projection of an object point in the

image when the eye is in current position, and [u0, v0, 1]T is the projection of the same object point

in the image when the eye is in the central position.

From Section 3.2.1, we have:
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in which Rtp(θ, φ), and FC(α, θ, φ) are defined as in (3.2).
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Let H0 represents the homography between the image in the central eye position and the pupil

plane in the eye frame, and H1 represents the homography between the image in current eye posi-

tion and the pupil plane in the eye frame, namely:
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One has:
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in which, E3×3 represents a matrix operator defined as below:

E3×3

(

[

&v1, &v2, &v3, &v4
]

)

=
[

&v1, &v2, &v3 + &v4
]

.

Furthermore, from (A.4) one has:
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From (A.1), (A.6), it follows that the homography H0←1 between the two images is:

H0←1 " H0 × (H1)
−1 (A.7)

A.2 Mathematical Relation between the Shapes of Pupil Bound-

ary

The pupil boundary in the eye frame is assumed to be a circle, and it appears as an ellipse when

projected onto an image. An ellipse can be represented by a 3 × 3 symmetric matrix C so that:

ptCp = 0,
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in which p = [x, y, 1]T is the homogeneous coordinate of a point on the ellipse.

Let the pupil boundary in the template image in the central eye position ([0, 0, 0]T ) be an ellipse

characterized by a 3 × 3 symmetric matrix C0:

[u0 v0 1] × C0 ×
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and let the the pupil boundary in current position [θ1, φ1, 0]T be an ellipse defined by a 3 × 3

symmetric matrix C1:

[u1 v1 1] × C1 ×
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From (A.1), (A.8), and (A.9), one obtains:

C1 " HT
0←1 × C0 × H0←1. (A.10)

In the eye coordinate system, the pupil boundary can be approximated by a circle around the

pupil center, which means points on the pupil boundary satisfies:
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in which, r is the pupil radius. When the pupil size changes, assuming symmetric change in the

pupil boundary, the radius r in (A.11) changes. From (A.4), (A.8), (A.9), and (A.11), one obtains:

Ce " HT
1 × C1 × H1

Ce " HT
0 × C0 × H0

(A.12)
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If the camera projection parameters and the eye position are known, from (A.12) one can derive

the ellipse equation for the pupil boundary in the image from the ellipse equation for the pupil

boundary in the eye coordinate system, or vice versa. Furthermore, since the pupil boundary itself

is modeled as a circle in the eye coordinate system, the effect of torsional motion to the shape of

pupil boundary in the image can be ignored. By assuming zero torsional movement, one can derive

the homography from (A.5) and (A.7) between the two images once the horizontal and vertical eye

position is known, hence derive the pupil shape in that position.
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Abstract

This dissertation presents an image based eye tracking system for
human disease diagnostic/screening systems. Current eye tracking
systems either do not satisfy the speed or cost requirement, or are not
robust enough for clinical use. This dissertation focuses on developing
an accurate, robust, and fast online eye tracking system.

Discovering the 3D eye position from 2D images requires the
recovering of image projection parameters through calibration. In
contrast to existing work, we use the more accurate two-radius rotation
model for eye movement and the perspective projection model for the
imaging process. The parameters of the elliptical pupil boundary from
multiple views of the eye are used as the constraints to estimate the
projection parameters. Simulation results show remarkable
improvements in measurement accuracy.

The dissertation presents an accurate, robust, and high-speed
horizontal and vertical eye tracking system on a general computer
system. A high frame rate of 150Hz for binocular systems is achieved
by applying multi-resolution image processing techniques. A novel
symmetric mass center algorithm is developed to handle occlusions. A
torsional eye tracking system robust to interference is presented as
well. Simulation results show significant improvement in accuracy and
robustness.

This dissertation presents an accurate and online pupil size monitoring
system for the screening of Diabetic Retinopathy based on pupil
response. Test results on pupil area measurement show that the
designed system provides a more accurate measurement of the pupil
size under interference. The dissertation also presents a proof of
concept test on human subjects to verify the screening method using
the pupil monitoring system developed.


